1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393
// Copyright 2021 Parity Technologies (UK) Ltd.
// This file is part of Polkadot.
// Polkadot is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// Polkadot is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with Polkadot. If not, see <http://www.gnu.org/licenses/>.
//! Common logic for implementation of worker processes.
use crate::LOG_TARGET;
use cpu_time::ProcessTime;
use futures::{never::Never, FutureExt as _};
use futures_timer::Delay;
use pin_project::pin_project;
use rand::Rng;
use std::{
fmt, mem,
path::{Path, PathBuf},
pin::Pin,
sync::mpsc::{Receiver, RecvTimeoutError},
task::{Context, Poll},
time::Duration,
};
use tokio::{
io::{self, AsyncRead, AsyncReadExt as _, AsyncWrite, AsyncWriteExt as _, ReadBuf},
net::{UnixListener, UnixStream},
process,
runtime::{Handle, Runtime},
};
/// A multiple of the job timeout (in CPU time) for which we are willing to wait on the host (in
/// wall clock time). This is lenient because CPU time may go slower than wall clock time.
pub const JOB_TIMEOUT_WALL_CLOCK_FACTOR: u32 = 4;
/// Some allowed overhead that we account for in the "CPU time monitor" thread's sleeps, on the
/// child process.
pub const JOB_TIMEOUT_OVERHEAD: Duration = Duration::from_millis(50);
/// This is publicly exposed only for integration tests.
#[doc(hidden)]
pub async fn spawn_with_program_path(
debug_id: &'static str,
program_path: impl Into<PathBuf>,
extra_args: &'static [&'static str],
spawn_timeout: Duration,
) -> Result<(IdleWorker, WorkerHandle), SpawnErr> {
let program_path = program_path.into();
with_transient_socket_path(debug_id, |socket_path| {
let socket_path = socket_path.to_owned();
async move {
let listener = UnixListener::bind(&socket_path).map_err(|err| {
gum::warn!(
target: LOG_TARGET,
%debug_id,
"cannot bind unix socket: {:?}",
err,
);
SpawnErr::Bind
})?;
let handle =
WorkerHandle::spawn(program_path, extra_args, socket_path).map_err(|err| {
gum::warn!(
target: LOG_TARGET,
%debug_id,
"cannot spawn a worker: {:?}",
err,
);
SpawnErr::ProcessSpawn
})?;
futures::select! {
accept_result = listener.accept().fuse() => {
let (stream, _) = accept_result.map_err(|err| {
gum::warn!(
target: LOG_TARGET,
%debug_id,
"cannot accept a worker: {:?}",
err,
);
SpawnErr::Accept
})?;
Ok((IdleWorker { stream, pid: handle.id() }, handle))
}
_ = Delay::new(spawn_timeout).fuse() => {
Err(SpawnErr::AcceptTimeout)
}
}
}
})
.await
}
async fn with_transient_socket_path<T, F, Fut>(debug_id: &'static str, f: F) -> Result<T, SpawnErr>
where
F: FnOnce(&Path) -> Fut,
Fut: futures::Future<Output = Result<T, SpawnErr>> + 'static,
{
let socket_path = tmpfile(&format!("pvf-host-{}", debug_id))
.await
.map_err(|_| SpawnErr::TmpFile)?;
let result = f(&socket_path).await;
// Best effort to remove the socket file. Under normal circumstances the socket will be removed
// by the worker. We make sure that it is removed here, just in case a failed rendezvous.
let _ = tokio::fs::remove_file(socket_path).await;
result
}
/// Returns a path under the given `dir`. The file name will start with the given prefix.
///
/// There is only a certain number of retries. If exceeded this function will give up and return an
/// error.
pub async fn tmpfile_in(prefix: &str, dir: &Path) -> io::Result<PathBuf> {
fn tmppath(prefix: &str, dir: &Path) -> PathBuf {
use rand::distributions::Alphanumeric;
const DESCRIMINATOR_LEN: usize = 10;
let mut buf = Vec::with_capacity(prefix.len() + DESCRIMINATOR_LEN);
buf.extend(prefix.as_bytes());
buf.extend(rand::thread_rng().sample_iter(&Alphanumeric).take(DESCRIMINATOR_LEN));
let s = std::str::from_utf8(&buf)
.expect("the string is collected from a valid utf-8 sequence; qed");
let mut file = dir.to_owned();
file.push(s);
file
}
const NUM_RETRIES: usize = 50;
for _ in 0..NUM_RETRIES {
let candidate_path = tmppath(prefix, dir);
if !candidate_path.exists() {
return Ok(candidate_path)
}
}
Err(io::Error::new(io::ErrorKind::Other, "failed to create a temporary file"))
}
/// The same as [`tmpfile_in`], but uses [`std::env::temp_dir`] as the directory.
pub async fn tmpfile(prefix: &str) -> io::Result<PathBuf> {
let temp_dir = PathBuf::from(std::env::temp_dir());
tmpfile_in(prefix, &temp_dir).await
}
pub fn worker_event_loop<F, Fut>(debug_id: &'static str, socket_path: &str, mut event_loop: F)
where
F: FnMut(Handle, UnixStream) -> Fut,
Fut: futures::Future<Output = io::Result<Never>>,
{
let rt = Runtime::new().expect("Creates tokio runtime. If this panics the worker will die and the host will detect that and deal with it.");
let handle = rt.handle();
let err = rt
.block_on(async move {
let stream = UnixStream::connect(socket_path).await?;
let _ = tokio::fs::remove_file(socket_path).await;
let result = event_loop(handle.clone(), stream).await;
result
})
// It's never `Ok` because it's `Ok(Never)`.
.unwrap_err();
gum::debug!(
target: LOG_TARGET,
worker_pid = %std::process::id(),
"pvf worker ({}): {:?}",
debug_id,
err,
);
// We don't want tokio to wait for the tasks to finish. We want to bring down the worker as fast
// as possible and not wait for stalled validation to finish. This isn't strictly necessary now,
// but may be in the future.
rt.shutdown_background();
}
/// Loop that runs in the CPU time monitor thread on prepare and execute jobs. Continuously wakes up
/// and then either blocks for the remaining CPU time, or returns if we exceed the CPU timeout.
///
/// Returning `Some` indicates that we should send a `TimedOut` error to the host. Will return
/// `None` if the other thread finishes first, without us timing out.
///
/// NOTE: Sending a `TimedOut` error to the host will cause the worker, whether preparation or
/// execution, to be killed by the host. We do not kill the process here because it would interfere
/// with the proper handling of this error.
pub fn cpu_time_monitor_loop(
cpu_time_start: ProcessTime,
timeout: Duration,
finished_rx: Receiver<()>,
) -> Option<Duration> {
loop {
let cpu_time_elapsed = cpu_time_start.elapsed();
// Treat the timeout as CPU time, which is less subject to variance due to load.
if cpu_time_elapsed <= timeout {
// Sleep for the remaining CPU time, plus a bit to account for overhead. Note that the sleep
// is wall clock time. The CPU clock may be slower than the wall clock.
let sleep_interval = timeout.saturating_sub(cpu_time_elapsed) + JOB_TIMEOUT_OVERHEAD;
match finished_rx.recv_timeout(sleep_interval) {
// Received finish signal.
Ok(()) => return None,
// Timed out, restart loop.
Err(RecvTimeoutError::Timeout) => continue,
Err(RecvTimeoutError::Disconnected) => return None,
}
}
return Some(cpu_time_elapsed)
}
}
/// A struct that represents an idle worker.
///
/// This struct is supposed to be used as a token that is passed by move into a subroutine that
/// initiates a job. If the worker dies on the duty, then the token is not returned.
#[derive(Debug)]
pub struct IdleWorker {
/// The stream to which the child process is connected.
pub stream: UnixStream,
/// The identifier of this process. Used to reset the niceness.
pub pid: u32,
}
/// An error happened during spawning a worker process.
#[derive(Clone, Debug)]
pub enum SpawnErr {
/// Cannot obtain a temporary file location.
TmpFile,
/// Cannot bind the socket to the given path.
Bind,
/// An error happened during accepting a connection to the socket.
Accept,
/// An error happened during spawning the process.
ProcessSpawn,
/// The deadline allotted for the worker spawning and connecting to the socket has elapsed.
AcceptTimeout,
}
/// This is a representation of a potentially running worker. Drop it and the process will be killed.
///
/// A worker's handle is also a future that resolves when it's detected that the worker's process
/// has been terminated. Since the worker is running in another process it is obviously not
/// necessary to poll this future to make the worker run, it's only for termination detection.
///
/// This future relies on the fact that a child process's stdout `fd` is closed upon it's termination.
#[pin_project]
pub struct WorkerHandle {
child: process::Child,
child_id: u32,
#[pin]
stdout: process::ChildStdout,
program: PathBuf,
drop_box: Box<[u8]>,
}
impl WorkerHandle {
fn spawn(
program: impl AsRef<Path>,
extra_args: &[&str],
socket_path: impl AsRef<Path>,
) -> io::Result<Self> {
let mut child = process::Command::new(program.as_ref())
.args(extra_args)
.arg(socket_path.as_ref().as_os_str())
.stdout(std::process::Stdio::piped())
.kill_on_drop(true)
.spawn()?;
let child_id = child
.id()
.ok_or(io::Error::new(io::ErrorKind::Other, "could not get id of spawned process"))?;
let stdout = child
.stdout
.take()
.expect("the process spawned with piped stdout should have the stdout handle");
Ok(WorkerHandle {
child,
child_id,
stdout,
program: program.as_ref().to_path_buf(),
// We don't expect the bytes to be ever read. But in case we do, we should not use a buffer
// of a small size, because otherwise if the child process does return any data we will end up
// issuing a syscall for each byte. We also prefer not to do allocate that on the stack, since
// each poll the buffer will be allocated and initialized (and that's due `poll_read` takes &mut [u8]
// and there are no guarantees that a `poll_read` won't ever read from there even though that's
// unlikely).
//
// OTOH, we also don't want to be super smart here and we could just afford to allocate a buffer
// for that here.
drop_box: vec![0; 8192].into_boxed_slice(),
})
}
/// Returns the process id of this worker.
pub fn id(&self) -> u32 {
self.child_id
}
}
impl futures::Future for WorkerHandle {
type Output = ();
fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
let me = self.project();
// Create a `ReadBuf` here instead of storing it in `WorkerHandle` to avoid a lifetime
// parameter on `WorkerHandle`. Creating the `ReadBuf` is fairly cheap.
let mut read_buf = ReadBuf::new(&mut *me.drop_box);
match futures::ready!(AsyncRead::poll_read(me.stdout, cx, &mut read_buf)) {
Ok(()) => {
if read_buf.filled().len() > 0 {
// weird, we've read something. Pretend that never happened and reschedule
// ourselves.
cx.waker().wake_by_ref();
Poll::Pending
} else {
// Nothing read means `EOF` means the child was terminated. Resolve.
Poll::Ready(())
}
},
Err(err) => {
// The implementation is guaranteed to not to return `WouldBlock` and Interrupted. This
// leaves us with legit errors which we suppose were due to termination.
// Log the status code.
gum::debug!(
target: LOG_TARGET,
worker_pid = %me.child_id,
status_code = ?me.child.try_wait().ok().flatten().map(|c| c.to_string()),
"pvf worker ({}): {:?}",
me.program.display(),
err,
);
Poll::Ready(())
},
}
}
}
impl fmt::Debug for WorkerHandle {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "WorkerHandle(pid={})", self.id())
}
}
/// Convert the given path into a byte buffer.
pub fn path_to_bytes(path: &Path) -> &[u8] {
// Ideally, we take the `OsStr` of the path, send that and reconstruct this on the other side.
// However, libstd doesn't provide us with such an option. There are crates out there that
// allow for extraction of a path, but TBH it doesn't seem to be a real issue.
//
// However, should be there reports we can incorporate such a crate here.
path.to_str().expect("non-UTF-8 path").as_bytes()
}
/// Interprets the given bytes as a path. Returns `None` if the given bytes do not constitute a
/// a proper utf-8 string.
pub fn bytes_to_path(bytes: &[u8]) -> Option<PathBuf> {
std::str::from_utf8(bytes).ok().map(PathBuf::from)
}
pub async fn framed_send(w: &mut (impl AsyncWrite + Unpin), buf: &[u8]) -> io::Result<()> {
let len_buf = buf.len().to_le_bytes();
w.write_all(&len_buf).await?;
w.write_all(buf).await?;
Ok(())
}
pub async fn framed_recv(r: &mut (impl AsyncRead + Unpin)) -> io::Result<Vec<u8>> {
let mut len_buf = [0u8; mem::size_of::<usize>()];
r.read_exact(&mut len_buf).await?;
let len = usize::from_le_bytes(len_buf);
let mut buf = vec![0; len];
r.read_exact(&mut buf).await?;
Ok(buf)
}