1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
//! Index/slot allocator policies for the pooling allocator.

use super::PoolingAllocationStrategy;
use crate::CompiledModuleId;
use rand::Rng;
use std::collections::HashMap;

/// A slot index. The job of this allocator is to hand out these
/// indices.
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub struct SlotId(pub usize);
impl SlotId {
    /// The index of this slot.
    pub fn index(self) -> usize {
        self.0
    }
}

/// An index in the global freelist.
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub struct GlobalFreeListIndex(usize);
impl GlobalFreeListIndex {
    /// The index of this slot.
    fn index(self) -> usize {
        self.0
    }
}

/// An index in a per-module freelist.
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub struct PerModuleFreeListIndex(usize);
impl PerModuleFreeListIndex {
    /// The index of this slot.
    fn index(self) -> usize {
        self.0
    }
}

#[derive(Clone, Debug)]
pub(crate) enum PoolingAllocationState {
    NextAvailable(Vec<SlotId>),
    Random(Vec<SlotId>),
    /// Reuse-affinity policy state.
    ///
    /// The data structures here deserve a little explanation:
    ///
    /// - free_list: this is a vec of slot indices that are free, no
    ///   matter their affinities (or no affinity at all).
    /// - per_module: this is a hashmap of vecs of slot indices that
    ///   are free, with affinity for particular module IDs. A slot may
    ///   appear in zero or one of these lists.
    /// - slot_state: indicates what state each slot is in: allocated
    ///   (Taken), only in free_list (Empty), or in free_list and a
    ///   per_module list (Affinity).
    ///
    /// The slot state tracks a slot's index in the global and
    /// per-module freelists, so it can be efficiently removed from
    /// both. We take some care to keep these up-to-date as well.
    ///
    /// On allocation, we first try to find a slot with affinity for
    /// the given module ID, if any. If not, we pick a random slot
    /// ID. This random choice is unbiased across all free slots.
    ReuseAffinity {
        /// Free-list of all slots. We use this to pick a victim when
        /// we don't have an appropriate slot with the preferred
        /// affinity.
        free_list: Vec<SlotId>,
        /// Invariant: any module ID in this hashmap must have a
        /// non-empty list of free slots (otherwise we remove it). We
        /// remove a module's freelist when we have no more slots with
        /// affinity for that module.
        per_module: HashMap<CompiledModuleId, Vec<SlotId>>,
        /// The state of any given slot. Records indices in the above
        /// list (empty) or two lists (with affinity), and these
        /// indices are kept up-to-date to allow fast removal.
        slot_state: Vec<SlotState>,
    },
}

#[derive(Clone, Debug)]
pub(crate) enum SlotState {
    /// Currently allocated.
    ///
    /// Invariant: no slot in this state has its index in either
    /// `free_list` or any list in `per_module`.
    Taken(Option<CompiledModuleId>),
    /// Currently free. A free slot is able to be allocated for any
    /// request, but may have affinity to a certain module that we
    /// prefer to use it for.
    ///
    /// Invariant: every slot in this state has its index in at least
    /// `free_list`, and possibly a `per_module` free-list; see
    /// FreeSlotState.
    Free(FreeSlotState),
}

impl SlotState {
    fn unwrap_free(&self) -> &FreeSlotState {
        match self {
            &Self::Free(ref free) => free,
            _ => panic!("Slot not free"),
        }
    }

    fn unwrap_free_mut(&mut self) -> &mut FreeSlotState {
        match self {
            &mut Self::Free(ref mut free) => free,
            _ => panic!("Slot not free"),
        }
    }

    fn unwrap_module_id(&self) -> Option<CompiledModuleId> {
        match self {
            &Self::Taken(module_id) => module_id,
            _ => panic!("Slot not in Taken state"),
        }
    }
}

#[derive(Clone, Debug)]
pub(crate) enum FreeSlotState {
    /// The slot is free, and has no affinity.
    ///
    /// Invariant: every slot in this state has its index in
    /// `free_list`. No slot in this state has its index in any other
    /// (per-module) free-list.
    NoAffinity {
        /// Index in the global free list.
        ///
        /// Invariant: free_list[slot_state[i].free_list_index] == i.
        free_list_index: GlobalFreeListIndex,
    },
    /// The slot is free, and has an affinity for some module. This
    /// means we prefer to choose this slot (or some other one with
    /// the same affinity) given a request to allocate a slot for this
    /// module. It can, however, still be used for any other module if
    /// needed.
    ///
    /// Invariant: every slot in this state has its index in both
    /// `free_list` *and* exactly one list in `per_module`.
    Affinity {
        module: CompiledModuleId,
        /// Index in the global free list.
        ///
        /// Invariant: free_list[slot_state[i].free_list_index] == i.
        free_list_index: GlobalFreeListIndex,
        /// Index in a per-module free list.
        ///
        /// Invariant: per_module[slot_state[i].module][slot_state[i].per_module_index]
        /// == i.
        per_module_index: PerModuleFreeListIndex,
    },
}

impl FreeSlotState {
    /// Get the index of this slot in the global free list.
    fn free_list_index(&self) -> GlobalFreeListIndex {
        match self {
            &Self::NoAffinity { free_list_index }
            | &Self::Affinity {
                free_list_index, ..
            } => free_list_index,
        }
    }

    /// Update the index of this slot in the global free list.
    fn update_free_list_index(&mut self, index: GlobalFreeListIndex) {
        match self {
            &mut Self::NoAffinity {
                ref mut free_list_index,
            }
            | &mut Self::Affinity {
                ref mut free_list_index,
                ..
            } => {
                *free_list_index = index;
            }
        }
    }

    /// Get the index of this slot in its per-module free list.
    fn per_module_index(&self) -> PerModuleFreeListIndex {
        match self {
            &Self::Affinity {
                per_module_index, ..
            } => per_module_index,
            _ => panic!("per_module_index on slot with no affinity"),
        }
    }

    /// Update the index of this slot in its per-module free list.
    fn update_per_module_index(&mut self, index: PerModuleFreeListIndex) {
        match self {
            &mut Self::Affinity {
                ref mut per_module_index,
                ..
            } => {
                *per_module_index = index;
            }
            _ => panic!("per_module_index on slot with no affinity"),
        }
    }
}

/// Internal: remove a slot-index from the global free list.
fn remove_global_free_list_item(
    slot_state: &mut Vec<SlotState>,
    free_list: &mut Vec<SlotId>,
    index: SlotId,
) {
    let free_list_index = slot_state[index.index()].unwrap_free().free_list_index();
    assert_eq!(index, free_list.swap_remove(free_list_index.index()));
    if free_list_index.index() < free_list.len() {
        let replaced = free_list[free_list_index.index()];
        slot_state[replaced.index()]
            .unwrap_free_mut()
            .update_free_list_index(free_list_index);
    }
}

/// Internal: remove a slot-index from a per-module free list.
fn remove_module_free_list_item(
    slot_state: &mut Vec<SlotState>,
    per_module: &mut HashMap<CompiledModuleId, Vec<SlotId>>,
    id: CompiledModuleId,
    index: SlotId,
) {
    debug_assert!(
        per_module.contains_key(&id),
        "per_module list for given module should not be empty"
    );

    let per_module_list = per_module.get_mut(&id).unwrap();
    debug_assert!(!per_module_list.is_empty());

    let per_module_index = slot_state[index.index()].unwrap_free().per_module_index();
    assert_eq!(index, per_module_list.swap_remove(per_module_index.index()));
    if per_module_index.index() < per_module_list.len() {
        let replaced = per_module_list[per_module_index.index()];
        slot_state[replaced.index()]
            .unwrap_free_mut()
            .update_per_module_index(per_module_index);
    }
    if per_module_list.is_empty() {
        per_module.remove(&id);
    }
}

impl PoolingAllocationState {
    /// Create the default state for this strategy.
    pub(crate) fn new(strategy: PoolingAllocationStrategy, max_instances: usize) -> Self {
        let ids = (0..max_instances).map(|i| SlotId(i)).collect::<Vec<_>>();
        match strategy {
            PoolingAllocationStrategy::NextAvailable => PoolingAllocationState::NextAvailable(ids),
            PoolingAllocationStrategy::Random => PoolingAllocationState::Random(ids),
            PoolingAllocationStrategy::ReuseAffinity => PoolingAllocationState::ReuseAffinity {
                free_list: ids,
                per_module: HashMap::new(),
                slot_state: (0..max_instances)
                    .map(|i| {
                        SlotState::Free(FreeSlotState::NoAffinity {
                            free_list_index: GlobalFreeListIndex(i),
                        })
                    })
                    .collect(),
            },
        }
    }

    /// Are any slots left, or is this allocator empty?
    pub(crate) fn is_empty(&self) -> bool {
        match self {
            &PoolingAllocationState::NextAvailable(ref free_list)
            | &PoolingAllocationState::Random(ref free_list) => free_list.is_empty(),
            &PoolingAllocationState::ReuseAffinity { ref free_list, .. } => free_list.is_empty(),
        }
    }

    /// Allocate a new slot.
    pub(crate) fn alloc(&mut self, id: Option<CompiledModuleId>) -> SlotId {
        match self {
            &mut PoolingAllocationState::NextAvailable(ref mut free_list) => {
                debug_assert!(free_list.len() > 0);
                free_list.pop().unwrap()
            }
            &mut PoolingAllocationState::Random(ref mut free_list) => {
                debug_assert!(free_list.len() > 0);
                let id = rand::thread_rng().gen_range(0..free_list.len());
                free_list.swap_remove(id)
            }
            &mut PoolingAllocationState::ReuseAffinity {
                ref mut free_list,
                ref mut per_module,
                ref mut slot_state,
                ..
            } => {
                if let Some(this_module) = id.and_then(|id| per_module.get_mut(&id)) {
                    // There is a freelist of slots with affinity for
                    // the requested module-ID. Pick the last one; any
                    // will do, no need for randomness here.
                    assert!(!this_module.is_empty());
                    let slot_id = this_module.pop().expect("List should never be empty");
                    if this_module.is_empty() {
                        per_module.remove(&id.unwrap());
                    }
                    // Make sure to remove from the global
                    // freelist. We already removed from the
                    // per-module list above.
                    remove_global_free_list_item(slot_state, free_list, slot_id);
                    slot_state[slot_id.index()] = SlotState::Taken(id);
                    slot_id
                } else {
                    // Pick a random free slot ID. Note that we do
                    // this, rather than pick a victim module first,
                    // to maintain an unbiased stealing distribution:
                    // we want the likelihood of our taking a slot
                    // from some other module's freelist to be
                    // proportional to that module's freelist
                    // length. Or in other words, every *slot* should
                    // be equally likely to be stolen. The
                    // alternative, where we pick the victim module
                    // freelist first, means that either a module with
                    // an affinity freelist of one slot has the same
                    // chances of losing that slot as one with a
                    // hundred slots; or else we need a weighted
                    // random choice among modules, which is just as
                    // complex as this process.
                    //
                    // We don't bother picking an empty slot (no
                    // established affinity) before a random slot,
                    // because this is more complex, and in the steady
                    // state, all slots will see at least one
                    // instantiation very quickly, so there will never
                    // (past an initial phase) be a slot with no
                    // affinity.
                    let free_list_index = rand::thread_rng().gen_range(0..free_list.len());
                    let slot_id = free_list[free_list_index];
                    // Remove from both the global freelist and
                    // per-module freelist, if any.
                    remove_global_free_list_item(slot_state, free_list, slot_id);
                    if let &SlotState::Free(FreeSlotState::Affinity { module, .. }) =
                        &slot_state[slot_id.index()]
                    {
                        remove_module_free_list_item(slot_state, per_module, module, slot_id);
                    }
                    slot_state[slot_id.index()] = SlotState::Taken(id);

                    slot_id
                }
            }
        }
    }

    pub(crate) fn free(&mut self, index: SlotId) {
        match self {
            &mut PoolingAllocationState::NextAvailable(ref mut free_list)
            | &mut PoolingAllocationState::Random(ref mut free_list) => {
                free_list.push(index);
            }
            &mut PoolingAllocationState::ReuseAffinity {
                ref mut per_module,
                ref mut free_list,
                ref mut slot_state,
            } => {
                let module_id = slot_state[index.index()].unwrap_module_id();

                let free_list_index = GlobalFreeListIndex(free_list.len());
                free_list.push(index);
                if let Some(id) = module_id {
                    let per_module_list = per_module
                        .entry(id)
                        .or_insert_with(|| Vec::with_capacity(1));
                    let per_module_index = PerModuleFreeListIndex(per_module_list.len());
                    per_module_list.push(index);
                    slot_state[index.index()] = SlotState::Free(FreeSlotState::Affinity {
                        module: id,
                        free_list_index,
                        per_module_index,
                    });
                } else {
                    slot_state[index.index()] =
                        SlotState::Free(FreeSlotState::NoAffinity { free_list_index });
                }
            }
        }
    }

    /// For testing only, we want to be able to assert what is on the
    /// single freelist, for the policies that keep just one.
    #[cfg(test)]
    pub(crate) fn testing_freelist(&self) -> &[SlotId] {
        match self {
            &PoolingAllocationState::NextAvailable(ref free_list)
            | &PoolingAllocationState::Random(ref free_list) => &free_list[..],
            _ => panic!("Wrong kind of state"),
        }
    }

    /// For testing only, get the list of all modules with at least
    /// one slot with affinity for that module.
    #[cfg(test)]
    pub(crate) fn testing_module_affinity_list(&self) -> Vec<CompiledModuleId> {
        match self {
            &PoolingAllocationState::NextAvailable(..) | &PoolingAllocationState::Random(..) => {
                panic!("Wrong kind of state")
            }
            &PoolingAllocationState::ReuseAffinity { ref per_module, .. } => {
                let mut ret = vec![];
                for (module, list) in per_module {
                    assert!(!list.is_empty());
                    ret.push(*module);
                }
                ret
            }
        }
    }
}

#[cfg(test)]
mod test {
    use super::{PoolingAllocationState, SlotId};
    use crate::CompiledModuleIdAllocator;
    use crate::PoolingAllocationStrategy;

    #[test]
    fn test_next_available_allocation_strategy() {
        let strat = PoolingAllocationStrategy::NextAvailable;
        let mut state = PoolingAllocationState::new(strat, 10);
        assert_eq!(state.alloc(None).index(), 9);
        let mut state = PoolingAllocationState::new(strat, 5);
        assert_eq!(state.alloc(None).index(), 4);
        let mut state = PoolingAllocationState::new(strat, 1);
        assert_eq!(state.alloc(None).index(), 0);
    }

    #[test]
    fn test_random_allocation_strategy() {
        let strat = PoolingAllocationStrategy::Random;
        let mut state = PoolingAllocationState::new(strat, 100);
        assert!(state.alloc(None).index() < 100);
        let mut state = PoolingAllocationState::new(strat, 1);
        assert_eq!(state.alloc(None).index(), 0);
    }

    #[test]
    fn test_affinity_allocation_strategy() {
        let strat = PoolingAllocationStrategy::ReuseAffinity;
        let id_alloc = CompiledModuleIdAllocator::new();
        let id1 = id_alloc.alloc();
        let id2 = id_alloc.alloc();
        let mut state = PoolingAllocationState::new(strat, 100);

        let index1 = state.alloc(Some(id1));
        assert!(index1.index() < 100);
        let index2 = state.alloc(Some(id2));
        assert!(index2.index() < 100);
        assert_ne!(index1, index2);

        state.free(index1);
        let index3 = state.alloc(Some(id1));
        assert_eq!(index3, index1);
        state.free(index3);

        state.free(index2);

        // Both id1 and id2 should have some slots with affinity.
        let affinity_modules = state.testing_module_affinity_list();
        assert_eq!(2, affinity_modules.len());
        assert!(affinity_modules.contains(&id1));
        assert!(affinity_modules.contains(&id2));

        // Now there is 1 free instance for id2 and 1 free instance
        // for id1, and 98 empty. Allocate 100 for id2. The first
        // should be equal to the one we know was previously used for
        // id2. The next 99 are arbitrary.

        let mut indices = vec![];
        for _ in 0..100 {
            assert!(!state.is_empty());
            indices.push(state.alloc(Some(id2)));
        }
        assert!(state.is_empty());
        assert_eq!(indices[0], index2);

        for i in indices {
            state.free(i);
        }

        // Now there should be no slots left with affinity for id1.
        let affinity_modules = state.testing_module_affinity_list();
        assert_eq!(1, affinity_modules.len());
        assert!(affinity_modules.contains(&id2));

        // Allocate an index we know previously had an instance but
        // now does not (list ran empty).
        let index = state.alloc(Some(id1));
        state.free(index);
    }

    #[test]
    fn test_affinity_allocation_strategy_random() {
        use rand::Rng;
        let mut rng = rand::thread_rng();

        let strat = PoolingAllocationStrategy::ReuseAffinity;
        let id_alloc = CompiledModuleIdAllocator::new();
        let ids = std::iter::repeat_with(|| id_alloc.alloc())
            .take(10)
            .collect::<Vec<_>>();
        let mut state = PoolingAllocationState::new(strat, 1000);
        let mut allocated: Vec<SlotId> = vec![];
        let mut last_id = vec![None; 1000];

        let mut hits = 0;
        for _ in 0..100_000 {
            if !allocated.is_empty() && (state.is_empty() || rng.gen_bool(0.5)) {
                let i = rng.gen_range(0..allocated.len());
                let to_free_idx = allocated.swap_remove(i);
                state.free(to_free_idx);
            } else {
                assert!(!state.is_empty());
                let id = ids[rng.gen_range(0..ids.len())];
                let index = state.alloc(Some(id));
                if last_id[index.index()] == Some(id) {
                    hits += 1;
                }
                last_id[index.index()] = Some(id);
                allocated.push(index);
            }
        }

        // 10% reuse would be random chance (because we have 10 module
        // IDs). Check for at least double that to ensure some sort of
        // affinity is occurring.
        assert!(
            hits > 20000,
            "expected at least 20000 (20%) ID-reuses but got {}",
            hits
        );
    }
}