1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541
//! Index/slot allocator policies for the pooling allocator.
use super::PoolingAllocationStrategy;
use crate::CompiledModuleId;
use rand::Rng;
use std::collections::HashMap;
/// A slot index. The job of this allocator is to hand out these
/// indices.
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub struct SlotId(pub usize);
impl SlotId {
/// The index of this slot.
pub fn index(self) -> usize {
self.0
}
}
/// An index in the global freelist.
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub struct GlobalFreeListIndex(usize);
impl GlobalFreeListIndex {
/// The index of this slot.
fn index(self) -> usize {
self.0
}
}
/// An index in a per-module freelist.
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub struct PerModuleFreeListIndex(usize);
impl PerModuleFreeListIndex {
/// The index of this slot.
fn index(self) -> usize {
self.0
}
}
#[derive(Clone, Debug)]
pub(crate) enum PoolingAllocationState {
NextAvailable(Vec<SlotId>),
Random(Vec<SlotId>),
/// Reuse-affinity policy state.
///
/// The data structures here deserve a little explanation:
///
/// - free_list: this is a vec of slot indices that are free, no
/// matter their affinities (or no affinity at all).
/// - per_module: this is a hashmap of vecs of slot indices that
/// are free, with affinity for particular module IDs. A slot may
/// appear in zero or one of these lists.
/// - slot_state: indicates what state each slot is in: allocated
/// (Taken), only in free_list (Empty), or in free_list and a
/// per_module list (Affinity).
///
/// The slot state tracks a slot's index in the global and
/// per-module freelists, so it can be efficiently removed from
/// both. We take some care to keep these up-to-date as well.
///
/// On allocation, we first try to find a slot with affinity for
/// the given module ID, if any. If not, we pick a random slot
/// ID. This random choice is unbiased across all free slots.
ReuseAffinity {
/// Free-list of all slots. We use this to pick a victim when
/// we don't have an appropriate slot with the preferred
/// affinity.
free_list: Vec<SlotId>,
/// Invariant: any module ID in this hashmap must have a
/// non-empty list of free slots (otherwise we remove it). We
/// remove a module's freelist when we have no more slots with
/// affinity for that module.
per_module: HashMap<CompiledModuleId, Vec<SlotId>>,
/// The state of any given slot. Records indices in the above
/// list (empty) or two lists (with affinity), and these
/// indices are kept up-to-date to allow fast removal.
slot_state: Vec<SlotState>,
},
}
#[derive(Clone, Debug)]
pub(crate) enum SlotState {
/// Currently allocated.
///
/// Invariant: no slot in this state has its index in either
/// `free_list` or any list in `per_module`.
Taken(Option<CompiledModuleId>),
/// Currently free. A free slot is able to be allocated for any
/// request, but may have affinity to a certain module that we
/// prefer to use it for.
///
/// Invariant: every slot in this state has its index in at least
/// `free_list`, and possibly a `per_module` free-list; see
/// FreeSlotState.
Free(FreeSlotState),
}
impl SlotState {
fn unwrap_free(&self) -> &FreeSlotState {
match self {
&Self::Free(ref free) => free,
_ => panic!("Slot not free"),
}
}
fn unwrap_free_mut(&mut self) -> &mut FreeSlotState {
match self {
&mut Self::Free(ref mut free) => free,
_ => panic!("Slot not free"),
}
}
fn unwrap_module_id(&self) -> Option<CompiledModuleId> {
match self {
&Self::Taken(module_id) => module_id,
_ => panic!("Slot not in Taken state"),
}
}
}
#[derive(Clone, Debug)]
pub(crate) enum FreeSlotState {
/// The slot is free, and has no affinity.
///
/// Invariant: every slot in this state has its index in
/// `free_list`. No slot in this state has its index in any other
/// (per-module) free-list.
NoAffinity {
/// Index in the global free list.
///
/// Invariant: free_list[slot_state[i].free_list_index] == i.
free_list_index: GlobalFreeListIndex,
},
/// The slot is free, and has an affinity for some module. This
/// means we prefer to choose this slot (or some other one with
/// the same affinity) given a request to allocate a slot for this
/// module. It can, however, still be used for any other module if
/// needed.
///
/// Invariant: every slot in this state has its index in both
/// `free_list` *and* exactly one list in `per_module`.
Affinity {
module: CompiledModuleId,
/// Index in the global free list.
///
/// Invariant: free_list[slot_state[i].free_list_index] == i.
free_list_index: GlobalFreeListIndex,
/// Index in a per-module free list.
///
/// Invariant: per_module[slot_state[i].module][slot_state[i].per_module_index]
/// == i.
per_module_index: PerModuleFreeListIndex,
},
}
impl FreeSlotState {
/// Get the index of this slot in the global free list.
fn free_list_index(&self) -> GlobalFreeListIndex {
match self {
&Self::NoAffinity { free_list_index }
| &Self::Affinity {
free_list_index, ..
} => free_list_index,
}
}
/// Update the index of this slot in the global free list.
fn update_free_list_index(&mut self, index: GlobalFreeListIndex) {
match self {
&mut Self::NoAffinity {
ref mut free_list_index,
}
| &mut Self::Affinity {
ref mut free_list_index,
..
} => {
*free_list_index = index;
}
}
}
/// Get the index of this slot in its per-module free list.
fn per_module_index(&self) -> PerModuleFreeListIndex {
match self {
&Self::Affinity {
per_module_index, ..
} => per_module_index,
_ => panic!("per_module_index on slot with no affinity"),
}
}
/// Update the index of this slot in its per-module free list.
fn update_per_module_index(&mut self, index: PerModuleFreeListIndex) {
match self {
&mut Self::Affinity {
ref mut per_module_index,
..
} => {
*per_module_index = index;
}
_ => panic!("per_module_index on slot with no affinity"),
}
}
}
/// Internal: remove a slot-index from the global free list.
fn remove_global_free_list_item(
slot_state: &mut Vec<SlotState>,
free_list: &mut Vec<SlotId>,
index: SlotId,
) {
let free_list_index = slot_state[index.index()].unwrap_free().free_list_index();
assert_eq!(index, free_list.swap_remove(free_list_index.index()));
if free_list_index.index() < free_list.len() {
let replaced = free_list[free_list_index.index()];
slot_state[replaced.index()]
.unwrap_free_mut()
.update_free_list_index(free_list_index);
}
}
/// Internal: remove a slot-index from a per-module free list.
fn remove_module_free_list_item(
slot_state: &mut Vec<SlotState>,
per_module: &mut HashMap<CompiledModuleId, Vec<SlotId>>,
id: CompiledModuleId,
index: SlotId,
) {
debug_assert!(
per_module.contains_key(&id),
"per_module list for given module should not be empty"
);
let per_module_list = per_module.get_mut(&id).unwrap();
debug_assert!(!per_module_list.is_empty());
let per_module_index = slot_state[index.index()].unwrap_free().per_module_index();
assert_eq!(index, per_module_list.swap_remove(per_module_index.index()));
if per_module_index.index() < per_module_list.len() {
let replaced = per_module_list[per_module_index.index()];
slot_state[replaced.index()]
.unwrap_free_mut()
.update_per_module_index(per_module_index);
}
if per_module_list.is_empty() {
per_module.remove(&id);
}
}
impl PoolingAllocationState {
/// Create the default state for this strategy.
pub(crate) fn new(strategy: PoolingAllocationStrategy, max_instances: usize) -> Self {
let ids = (0..max_instances).map(|i| SlotId(i)).collect::<Vec<_>>();
match strategy {
PoolingAllocationStrategy::NextAvailable => PoolingAllocationState::NextAvailable(ids),
PoolingAllocationStrategy::Random => PoolingAllocationState::Random(ids),
PoolingAllocationStrategy::ReuseAffinity => PoolingAllocationState::ReuseAffinity {
free_list: ids,
per_module: HashMap::new(),
slot_state: (0..max_instances)
.map(|i| {
SlotState::Free(FreeSlotState::NoAffinity {
free_list_index: GlobalFreeListIndex(i),
})
})
.collect(),
},
}
}
/// Are any slots left, or is this allocator empty?
pub(crate) fn is_empty(&self) -> bool {
match self {
&PoolingAllocationState::NextAvailable(ref free_list)
| &PoolingAllocationState::Random(ref free_list) => free_list.is_empty(),
&PoolingAllocationState::ReuseAffinity { ref free_list, .. } => free_list.is_empty(),
}
}
/// Allocate a new slot.
pub(crate) fn alloc(&mut self, id: Option<CompiledModuleId>) -> SlotId {
match self {
&mut PoolingAllocationState::NextAvailable(ref mut free_list) => {
debug_assert!(free_list.len() > 0);
free_list.pop().unwrap()
}
&mut PoolingAllocationState::Random(ref mut free_list) => {
debug_assert!(free_list.len() > 0);
let id = rand::thread_rng().gen_range(0..free_list.len());
free_list.swap_remove(id)
}
&mut PoolingAllocationState::ReuseAffinity {
ref mut free_list,
ref mut per_module,
ref mut slot_state,
..
} => {
if let Some(this_module) = id.and_then(|id| per_module.get_mut(&id)) {
// There is a freelist of slots with affinity for
// the requested module-ID. Pick the last one; any
// will do, no need for randomness here.
assert!(!this_module.is_empty());
let slot_id = this_module.pop().expect("List should never be empty");
if this_module.is_empty() {
per_module.remove(&id.unwrap());
}
// Make sure to remove from the global
// freelist. We already removed from the
// per-module list above.
remove_global_free_list_item(slot_state, free_list, slot_id);
slot_state[slot_id.index()] = SlotState::Taken(id);
slot_id
} else {
// Pick a random free slot ID. Note that we do
// this, rather than pick a victim module first,
// to maintain an unbiased stealing distribution:
// we want the likelihood of our taking a slot
// from some other module's freelist to be
// proportional to that module's freelist
// length. Or in other words, every *slot* should
// be equally likely to be stolen. The
// alternative, where we pick the victim module
// freelist first, means that either a module with
// an affinity freelist of one slot has the same
// chances of losing that slot as one with a
// hundred slots; or else we need a weighted
// random choice among modules, which is just as
// complex as this process.
//
// We don't bother picking an empty slot (no
// established affinity) before a random slot,
// because this is more complex, and in the steady
// state, all slots will see at least one
// instantiation very quickly, so there will never
// (past an initial phase) be a slot with no
// affinity.
let free_list_index = rand::thread_rng().gen_range(0..free_list.len());
let slot_id = free_list[free_list_index];
// Remove from both the global freelist and
// per-module freelist, if any.
remove_global_free_list_item(slot_state, free_list, slot_id);
if let &SlotState::Free(FreeSlotState::Affinity { module, .. }) =
&slot_state[slot_id.index()]
{
remove_module_free_list_item(slot_state, per_module, module, slot_id);
}
slot_state[slot_id.index()] = SlotState::Taken(id);
slot_id
}
}
}
}
pub(crate) fn free(&mut self, index: SlotId) {
match self {
&mut PoolingAllocationState::NextAvailable(ref mut free_list)
| &mut PoolingAllocationState::Random(ref mut free_list) => {
free_list.push(index);
}
&mut PoolingAllocationState::ReuseAffinity {
ref mut per_module,
ref mut free_list,
ref mut slot_state,
} => {
let module_id = slot_state[index.index()].unwrap_module_id();
let free_list_index = GlobalFreeListIndex(free_list.len());
free_list.push(index);
if let Some(id) = module_id {
let per_module_list = per_module
.entry(id)
.or_insert_with(|| Vec::with_capacity(1));
let per_module_index = PerModuleFreeListIndex(per_module_list.len());
per_module_list.push(index);
slot_state[index.index()] = SlotState::Free(FreeSlotState::Affinity {
module: id,
free_list_index,
per_module_index,
});
} else {
slot_state[index.index()] =
SlotState::Free(FreeSlotState::NoAffinity { free_list_index });
}
}
}
}
/// For testing only, we want to be able to assert what is on the
/// single freelist, for the policies that keep just one.
#[cfg(test)]
pub(crate) fn testing_freelist(&self) -> &[SlotId] {
match self {
&PoolingAllocationState::NextAvailable(ref free_list)
| &PoolingAllocationState::Random(ref free_list) => &free_list[..],
_ => panic!("Wrong kind of state"),
}
}
/// For testing only, get the list of all modules with at least
/// one slot with affinity for that module.
#[cfg(test)]
pub(crate) fn testing_module_affinity_list(&self) -> Vec<CompiledModuleId> {
match self {
&PoolingAllocationState::NextAvailable(..) | &PoolingAllocationState::Random(..) => {
panic!("Wrong kind of state")
}
&PoolingAllocationState::ReuseAffinity { ref per_module, .. } => {
let mut ret = vec![];
for (module, list) in per_module {
assert!(!list.is_empty());
ret.push(*module);
}
ret
}
}
}
}
#[cfg(test)]
mod test {
use super::{PoolingAllocationState, SlotId};
use crate::CompiledModuleIdAllocator;
use crate::PoolingAllocationStrategy;
#[test]
fn test_next_available_allocation_strategy() {
let strat = PoolingAllocationStrategy::NextAvailable;
let mut state = PoolingAllocationState::new(strat, 10);
assert_eq!(state.alloc(None).index(), 9);
let mut state = PoolingAllocationState::new(strat, 5);
assert_eq!(state.alloc(None).index(), 4);
let mut state = PoolingAllocationState::new(strat, 1);
assert_eq!(state.alloc(None).index(), 0);
}
#[test]
fn test_random_allocation_strategy() {
let strat = PoolingAllocationStrategy::Random;
let mut state = PoolingAllocationState::new(strat, 100);
assert!(state.alloc(None).index() < 100);
let mut state = PoolingAllocationState::new(strat, 1);
assert_eq!(state.alloc(None).index(), 0);
}
#[test]
fn test_affinity_allocation_strategy() {
let strat = PoolingAllocationStrategy::ReuseAffinity;
let id_alloc = CompiledModuleIdAllocator::new();
let id1 = id_alloc.alloc();
let id2 = id_alloc.alloc();
let mut state = PoolingAllocationState::new(strat, 100);
let index1 = state.alloc(Some(id1));
assert!(index1.index() < 100);
let index2 = state.alloc(Some(id2));
assert!(index2.index() < 100);
assert_ne!(index1, index2);
state.free(index1);
let index3 = state.alloc(Some(id1));
assert_eq!(index3, index1);
state.free(index3);
state.free(index2);
// Both id1 and id2 should have some slots with affinity.
let affinity_modules = state.testing_module_affinity_list();
assert_eq!(2, affinity_modules.len());
assert!(affinity_modules.contains(&id1));
assert!(affinity_modules.contains(&id2));
// Now there is 1 free instance for id2 and 1 free instance
// for id1, and 98 empty. Allocate 100 for id2. The first
// should be equal to the one we know was previously used for
// id2. The next 99 are arbitrary.
let mut indices = vec![];
for _ in 0..100 {
assert!(!state.is_empty());
indices.push(state.alloc(Some(id2)));
}
assert!(state.is_empty());
assert_eq!(indices[0], index2);
for i in indices {
state.free(i);
}
// Now there should be no slots left with affinity for id1.
let affinity_modules = state.testing_module_affinity_list();
assert_eq!(1, affinity_modules.len());
assert!(affinity_modules.contains(&id2));
// Allocate an index we know previously had an instance but
// now does not (list ran empty).
let index = state.alloc(Some(id1));
state.free(index);
}
#[test]
fn test_affinity_allocation_strategy_random() {
use rand::Rng;
let mut rng = rand::thread_rng();
let strat = PoolingAllocationStrategy::ReuseAffinity;
let id_alloc = CompiledModuleIdAllocator::new();
let ids = std::iter::repeat_with(|| id_alloc.alloc())
.take(10)
.collect::<Vec<_>>();
let mut state = PoolingAllocationState::new(strat, 1000);
let mut allocated: Vec<SlotId> = vec![];
let mut last_id = vec![None; 1000];
let mut hits = 0;
for _ in 0..100_000 {
if !allocated.is_empty() && (state.is_empty() || rng.gen_bool(0.5)) {
let i = rng.gen_range(0..allocated.len());
let to_free_idx = allocated.swap_remove(i);
state.free(to_free_idx);
} else {
assert!(!state.is_empty());
let id = ids[rng.gen_range(0..ids.len())];
let index = state.alloc(Some(id));
if last_id[index.index()] == Some(id) {
hits += 1;
}
last_id[index.index()] = Some(id);
allocated.push(index);
}
}
// 10% reuse would be random chance (because we have 10 module
// IDs). Check for at least double that to ensure some sort of
// affinity is occurring.
assert!(
hits > 20000,
"expected at least 20000 (20%) ID-reuses but got {}",
hits
);
}
}