1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214
// -*- mode: rust; -*-
//
// This file is part of schnorrkel.
// Copyright (c) 2019 Web 3 Foundation
// See LICENSE for licensing information.
//
// Authors:
// - Jeffrey Burdges <jeff@web3.foundation>
//! ### Implementation of a Verifiable Random Function (VRF) using Ristretto points and Schnorr DLEQ proofs.
//!
//! *Warning* We warn that our VRF construction supports malleable
//! outputs via the `*malleable*` methods. These are insecure when
//! used in conjunction with our HDKD provided in dervie.rs.
//! Attackers could translate malleable VRF outputs from one soft subkey
//! to another soft subkey, gaining early knowledge of the VRF output.
//! We suggest using either non-malleable VRFs or using implicit
//! certificates instead of HDKD when using VRFs.
//!
//! We model the VRF on "Making NSEC5 Practical for DNSSEC" by
//! Dimitrios Papadopoulos, Duane Wessels, Shumon Huque, Moni Naor,
//! Jan Včelák, Leonid Rezyin, andd Sharon Goldberg.
//! https://eprint.iacr.org/2017/099.pdf
//! We note the V(X)EdDSA signature scheme by Trevor Perrin at
//! https://www.signal.org/docs/specifications/xeddsa/#vxeddsa
//! is almost identical to the NSEC5 construction, except that
//! V(X)Ed25519 fails to be a VRF by giving signers multiple
//! outputs per input. There is another even later variant at
//! https://datatracker.ietf.org/doc/draft-irtf-cfrg-vrf/
//!
//! We support individual signers merging numerous VRF outputs created
//! with the same keypair, which follows the "DLEQ Proofs" and "Batching
//! the Proofs" sections of "Privacy Pass - The Math" by Alex Davidson,
//! https://new.blog.cloudflare.com/privacy-pass-the-math/#dleqproofs
//! and "Privacy Pass: Bypassing Internet Challenges Anonymously"
//! by Alex Davidson, Ian Goldberg, Nick Sullivan, George Tankersley,
//! and Filippo Valsorda.
//! https://www.petsymposium.org/2018/files/papers/issue3/popets-2018-0026.pdf
//!
//! As noted there, our merging technique's soundness appeals to
//! Theorem 3.17 on page 74 of Ryan Henry's PhD thesis
//! "Efficient Zero-Knowledge Proofs and Applications"
//! https://uwspace.uwaterloo.ca/bitstream/handle/10012/8621/Henry_Ryan.pdf
//! See also the attack on Peng and Bao’s batch proof protocol in
//! "Batch Proofs of Partial Knowledge" by Ryan Henry and Ian Goldberg
//! https://www.cypherpunks.ca/~iang/pubs/batchzkp-acns.pdf
//!
//! We might reasonably ask if the VRF signer's public key should
//! really be hashed when creating the scalars in `vrfs_merge*`.
//! After all, there is no similar requirement when the values being
//! hashed are BLS public keys in say
//! https://crypto.stanford.edu/~dabo/pubs/papers/BLSmultisig.html
//! In fact, we expect the public key could be dropped both in
//! Privacy Pass' case, due to using randomness in the messages,
//! and in the VRF case, provided the message depends upon shared
//! randomness created after the public key. Yet, there are VRF
//! applications outside these two cases, and DLEQ proof applications
//! where the points are not even hashes. At minimum, we expect
//! hashing the public key prevents malicious signers from choosing
//! their key to cancel out the blinding of a particular point,
//! which might become important in a some anonymity applications.
//! In any case, there is no cost to hashing the public key for VRF
//! applications, but important such an approach cannot yield a
//! verifiable shuffle.
//! TODO: Explain better!
//!
//! We also implement verifier side batching analogous to batched
//! verification of Schnorr signatures, but note this requires an
//! extra curve point, which enlarges the VRF proofs from 64 bytes
//! to 96 bytes. We provide `shorten_*` methods to produce the
//! non-batchable proof from the batchable proof because doing so
//! is an inherent part of the batch verification anyways.
//! TODO: Security arguments!
//!
//! We do not provide DLEQ proofs optimized for the same signer using
//! multiple public keys because such constructions sound more the
//! domain of zero-knowledge proof libraries.
use core::borrow::Borrow;
#[cfg(any(feature = "alloc", feature = "std"))]
use core::iter::once;
#[cfg(feature = "alloc")]
use alloc::{boxed::Box, vec::Vec};
#[cfg(feature = "std")]
use std::{boxed::Box, vec::Vec};
use curve25519_dalek::constants;
use curve25519_dalek::ristretto::{CompressedRistretto, RistrettoPoint};
use curve25519_dalek::scalar::Scalar;
use curve25519_dalek::traits::{IsIdentity,MultiscalarMul,VartimeMultiscalarMul}; // Identity
use merlin::Transcript;
use super::*;
use crate::context::SigningTranscript;
use crate::points::RistrettoBoth;
// use crate::errors::SignatureError;
/// Value for `kusama` paramater to `*dleq*` methods that yields the VRF for kusama.
///
/// Greg Maxwell argue that nonce generation should hash all parameters
/// that challenge generation does in https://moderncrypto.org/mail-archive/curves/2020/001012.html
/// We support this position in prionciple as a defense in depth against
/// attacks that cause missalignment between the public and secret keys.
///
/// We did this for signatures but not for the VRF deployed in Kusama.
/// We cannot justify add this defense to the deployed VRF because
/// several layers already address this attack, including merlin's
/// witnesses and that signers normally only sign VRF outputs once.
///
/// We suggest using Greg Maxwell's trick if you use a stand alone DLEQ
/// proof though, meaning call `*dleq*` methods with `kusama: false`.
///
/// see: https://github.com/w3f/schnorrkel/issues/53
// We currently lack tests for the case when this is false, but you can
// rerun cargo test with this set to false for that.
pub const KUSAMA_VRF : bool = true;
/// Length of VRF output.
pub const VRF_OUTPUT_LENGTH : usize = 32;
/// Length of the short VRF proof which lacks support for batch verification.
pub const VRF_PROOF_LENGTH : usize = 64;
/// Length of the longer VRF proof which supports batch verification.
pub const VRF_PROOF_BATCHABLE_LENGTH : usize = 96;
/// `SigningTranscript` helper trait that manages VRF output malleability.
///
/// In short, `VRFSigningTranscript` acts like a default argument
/// `malleabe : bool = false` for every mathod that uses it instead of
/// `SigningTranscript`.
pub trait VRFSigningTranscript {
/// Real underlying `SigningTranscript`
type T: SigningTranscript;
/// Return the underlying `SigningTranscript` after addressing
/// VRF output malleability, usually by making it non-malleable,
fn transcript_with_malleability_addressed(self, publickey: &PublicKey) -> Self::T;
}
impl<T> VRFSigningTranscript for T where T: SigningTranscript {
type T = T;
#[inline(always)]
fn transcript_with_malleability_addressed(mut self, publickey: &PublicKey) -> T {
self.commit_point(b"vrf-nm-pk", publickey.as_compressed());
// publickey.make_transcript_nonmalleable(&mut self);
self
}
}
/// VRF SigningTranscript for malleable VRF ouputs.
///
/// *Warning* We caution that malleable VRF outputs are insecure when
/// used in conjunction with HDKD, as provided in dervie.rs.
/// Attackers could translate malleable VRF outputs from one soft subkey
/// to another soft subkey, gaining early knowledge of the VRF output.
/// We think most VRF applicaitons for which HDKH soudns suitable
/// benefit from using implicit certificates insead of HDKD anyways,
/// which should also be secure in combination with HDKD.
/// We always use non-malleable VRF inputs in our convenience methods.
#[derive(Clone)]
pub struct Malleable<T: SigningTranscript>(pub T);
impl<T> VRFSigningTranscript for Malleable<T> where T: SigningTranscript {
type T = T;
#[inline(always)]
fn transcript_with_malleability_addressed(self, _publickey: &PublicKey) -> T { self.0 }
}
/// Create a malleable VRF input point by hashing a transcript to a point.
///
/// *Warning* We caution that malleable VRF inputs are insecure when
/// used in conjunction with HDKD, as provided in dervie.rs.
/// Attackers could translate malleable VRF outputs from one soft subkey
/// to another soft subkey, gaining early knowledge of the VRF output.
/// We think most VRF applicaitons for which HDKH soudns suitable
/// benefit from using implicit certificates insead of HDKD anyways,
/// which should also be secure in combination with HDKH.
/// We always use non-malleable VRF inputs in our convenience methods.
pub fn vrf_malleable_hash<T: SigningTranscript>(mut t: T) -> RistrettoBoth {
let mut b = [0u8; 64];
t.challenge_bytes(b"VRFHash", &mut b);
RistrettoBoth::from_point(RistrettoPoint::from_uniform_bytes(&b))
}
impl PublicKey {
/// Create a non-malleable VRF input point by hashing a transcript to a point.
pub fn vrf_hash<T>(&self, t: T) -> RistrettoBoth
where T: VRFSigningTranscript {
vrf_malleable_hash(t.transcript_with_malleability_addressed(self))
}
/// Pair a non-malleable VRF output with the hash of the given transcript.
pub fn vrf_attach_hash<T>(&self, output: VRFOutput, t: T) -> SignatureResult<VRFInOut>
where T: VRFSigningTranscript {
output.attach_input_hash(self,t)
}
}
/// VRF output, possibly unverified.
///
/// Internally, we keep both `RistrettoPoint` and `CompressedRistretto`
/// forms using `RistrettoBoth`.
///
/// We'd actually love to statically distinguish here between inputs
/// and outputs, as well as whether outputs were verified, but doing
/// so would disrupt our general purpose DLEQ proof mechanism, so
/// users must be responcible for this themselves. We do however
/// consume by value in actual output methods, and do not implement
/// `Copy`, as a reminder that VRF outputs should only be used once
/// and should be checked before usage.
#[derive(Debug, Copy, Clone, Default, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub struct VRFOutput(pub [u8; PUBLIC_KEY_LENGTH]);
impl VRFOutput {
const DESCRIPTION: &'static str =
"A Ristretto Schnorr VRF output represented as a 32-byte Ristretto compressed point";
/// Convert this VRF output to a byte array.
#[inline]
pub fn to_bytes(&self) -> [u8; VRF_OUTPUT_LENGTH] {
self.0
}
/// View this secret key as a byte array.
#[inline]
pub fn as_bytes(&self) -> &[u8; VRF_OUTPUT_LENGTH] {
&self.0
}
/// Construct a `VRFOutput` from a slice of bytes.
#[inline]
pub fn from_bytes(bytes: &[u8]) -> SignatureResult<VRFOutput> {
if bytes.len() != VRF_OUTPUT_LENGTH {
return Err(SignatureError::BytesLengthError {
name: "VRFOutput",
description: VRFOutput::DESCRIPTION,
length: VRF_OUTPUT_LENGTH
});
}
let mut bits: [u8; 32] = [0u8; 32];
bits.copy_from_slice(&bytes[..32]);
Ok(VRFOutput(bits))
}
/// Pair a non-malleable VRF output with the hash of the given transcript.
pub fn attach_input_hash<T>(&self, public: &PublicKey, t: T) -> SignatureResult<VRFInOut>
where T: VRFSigningTranscript {
let input = public.vrf_hash(t);
let output = RistrettoBoth::from_bytes_ser("VRFOutput", VRFOutput::DESCRIPTION, &self.0) ?;
if output.as_point().is_identity() { return Err(SignatureError::PointDecompressionError); }
Ok(VRFInOut { input, output })
}
}
serde_boilerplate!(VRFOutput);
/// VRF input and output paired together, possibly unverified.
///
/// Internally, we keep both `RistrettoPoint` and `CompressedRistretto`
/// forms using `RistrettoBoth`.
#[derive(Debug, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub struct VRFInOut {
/// VRF input point
pub input: RistrettoBoth,
/// VRF output point
pub output: RistrettoBoth,
}
impl SecretKey {
/// Evaluate the VRF-like multiplication on an uncompressed point,
/// probably not useful in this form.
pub fn vrf_create_from_point(&self, input: RistrettoBoth) -> VRFInOut {
let output = RistrettoBoth::from_point(&self.key * input.as_point());
VRFInOut { input, output }
}
/// Evaluate the VRF-like multiplication on a compressed point,
/// useful for proving key exchanges, OPRFs, or sequential VRFs.
///
/// We caution that such protocols could provide signing oracles
/// and note that `vrf_create_from_point` cannot check for
/// problematic inputs like `attach_input_hash` does.
pub fn vrf_create_from_compressed_point(&self, input: &VRFOutput) -> SignatureResult<VRFInOut> {
let input = RistrettoBoth::from_compressed(CompressedRistretto(input.0)) ?;
Ok(self.vrf_create_from_point(input))
}
}
impl Keypair {
/// Evaluate the VRF on the given transcript.
pub fn vrf_create_hash<T: VRFSigningTranscript>(&self, t: T) -> VRFInOut {
self.secret.vrf_create_from_point(self.public.vrf_hash(t))
}
}
impl VRFInOut {
/// VRF output point bytes for serialization.
pub fn as_output_bytes(&self) -> &[u8; 32] {
self.output.as_compressed().as_bytes()
}
/// VRF output point bytes for serialization.
pub fn to_output(&self) -> VRFOutput {
VRFOutput(self.output.as_compressed().to_bytes())
}
/// Commit VRF input and output to a transcript.
///
/// We commit both the input and output to provide the 2Hash-DH
/// construction from Theorem 2 on page 32 in appendix C of
/// ["Ouroboros Praos: An adaptively-secure, semi-synchronous proof-of-stake blockchain"](https://eprint.iacr.org/2017/573.pdf)
/// by Bernardo David, Peter Gazi, Aggelos Kiayias, and Alexander Russell.
///
/// We use this construction both for the VRF usage methods
/// `VRFInOut::make_*` as well as for signer side batching.
pub fn commit<T: SigningTranscript>(&self, t: &mut T) {
t.commit_point(b"vrf-in", self.input.as_compressed());
t.commit_point(b"vrf-out", self.output.as_compressed());
}
/// Raw bytes output from the VRF.
///
/// If you are not the signer then you must verify the VRF before calling this method.
///
/// If called with distinct contexts then outputs should be independent.
///
/// We incorporate both the input and output to provide the 2Hash-DH
/// construction from Theorem 2 on page 32 in appendex C of
/// ["Ouroboros Praos: An adaptively-secure, semi-synchronous proof-of-stake blockchain"](https://eprint.iacr.org/2017/573.pdf)
/// by Bernardo David, Peter Gazi, Aggelos Kiayias, and Alexander Russell.
pub fn make_bytes<B: Default + AsMut<[u8]>>(&self, context: &[u8]) -> B {
let mut t = Transcript::new(b"VRFResult");
t.append_message(b"",context);
self.commit(&mut t);
let mut seed = B::default();
t.challenge_bytes(b"", seed.as_mut());
seed
}
/// VRF output converted into any `SeedableRng`.
///
/// If you are not the signer then you must verify the VRF before calling this method.
///
/// We expect most users would prefer the less generic `VRFInOut::make_chacharng` method.
pub fn make_rng<R: ::rand_core::SeedableRng>(&self, context: &[u8]) -> R {
R::from_seed(self.make_bytes::<R::Seed>(context))
}
/// VRF output converted into a `ChaChaRng`.
///
/// If you are not the signer then you must verify the VRF before calling this method.
///
/// If called with distinct contexts then outputs should be independent.
/// Independent output streams are available via `ChaChaRng::set_stream` too.
///
/// We incorporate both the input and output to provide the 2Hash-DH
/// construction from Theorem 2 on page 32 in appendex C of
/// ["Ouroboros Praos: An adaptively-secure, semi-synchronous proof-of-stake blockchain"](https://eprint.iacr.org/2017/573.pdf)
/// by Bernardo David, Peter Gazi, Aggelos Kiayias, and Alexander Russell.
#[cfg(feature = "rand_chacha")]
pub fn make_chacharng(&self, context: &[u8]) -> ::rand_chacha::ChaChaRng {
self.make_rng::<::rand_chacha::ChaChaRng>(context)
}
/// VRF output converted into Merlin's Keccek based `Rng`.
///
/// If you are not the signer then you must verify the VRF before calling this method.
///
/// We think this might be marginally slower than `ChaChaRng`
/// when considerable output is required, but it should reduce
/// the final linked binary size slightly, and improves domain
/// separation.
#[inline(always)]
pub fn make_merlin_rng(&self, context: &[u8]) -> merlin::TranscriptRng {
// Very insecure hack except for our commit_witness_bytes below
struct ZeroFakeRng;
impl ::rand_core::RngCore for ZeroFakeRng {
fn next_u32(&mut self) -> u32 { panic!() }
fn next_u64(&mut self) -> u64 { panic!() }
fn fill_bytes(&mut self, dest: &mut [u8]) {
for i in dest.iter_mut() { *i = 0; }
}
fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), ::rand_core::Error> {
self.fill_bytes(dest);
Ok(())
}
}
impl ::rand_core::CryptoRng for ZeroFakeRng {}
let mut t = Transcript::new(b"VRFResult");
t.append_message(b"",context);
self.commit(&mut t);
t.build_rng().finalize(&mut ZeroFakeRng)
}
}
fn challenge_scalar_128<T: SigningTranscript>(mut t: T) -> Scalar {
let mut s = [0u8; 16];
t.challenge_bytes(b"", &mut s);
Scalar::from(u128::from_le_bytes(s))
}
impl PublicKey {
/// Merge VRF input and output pairs from the same signer,
/// using variable time arithmetic
///
/// You should use `vartime=true` when verifying VRF proofs batched
/// by the singer. You could usually use `vartime=true` even when
/// producing proofs, provided the set being signed is not secret.
///
/// There is sadly no constant time 128 bit multiplication in dalek,
/// making `vartime=false` somewhat slower than necessary. It should
/// only impact signers in niche scenarios however, so the slower
/// variant should normally be unnecessary.
///
/// Panics if given an empty points list.
///
/// TODO: Add constant time 128 bit batched multiplication to dalek.
/// TODO: Is rand_chacha's `gen::<u128>()` standardizable enough to
/// prefer it over merlin for the output?
pub fn vrfs_merge<B>(&self, ps: &[B], vartime: bool) -> VRFInOut
where
B: Borrow<VRFInOut>,
{
assert!( ps.len() > 0);
let mut t = ::merlin::Transcript::new(b"MergeVRFs");
t.commit_point(b"vrf:pk", self.as_compressed());
for p in ps.iter() {
p.borrow().commit(&mut t);
}
let zf = || ps.iter().map(|p| {
let mut t0 = t.clone();
p.borrow().commit(&mut t0);
challenge_scalar_128(t0)
});
#[cfg(any(feature = "alloc", feature = "std"))]
let zs: Vec<Scalar> = zf().collect();
#[cfg(any(feature = "alloc", feature = "std"))]
let zf = || zs.iter();
// We need actual fns here because closures cannot easily take
// closures as arguments, due to Rust lacking polymorphic
// closures but giving all closures unique types.
fn get_input(p: &VRFInOut) -> &RistrettoPoint { p.input.as_point() }
fn get_output(p: &VRFInOut) -> &RistrettoPoint { p.output.as_point() }
#[cfg(any(feature = "alloc", feature = "std"))]
let go = |io: fn(p: &VRFInOut) -> &RistrettoPoint| {
let ps = ps.iter().map( |p| io(p.borrow()) );
RistrettoBoth::from_point(if vartime {
RistrettoPoint::vartime_multiscalar_mul(zf(), ps)
} else {
RistrettoPoint::multiscalar_mul(zf(), ps)
})
};
#[cfg(not(any(feature = "alloc", feature = "std")))]
let go = |io: fn(p: &VRFInOut) -> &RistrettoPoint| {
use curve25519_dalek::traits::Identity;
let mut acc = RistrettoPoint::identity();
for (z,p) in zf().zip(ps) {
acc += z * io(p.borrow());
}
RistrettoBoth::from_point(acc)
};
let input = go( get_input );
let output = go( get_output );
VRFInOut { input, output }
}
}
/// Short proof of correctness for associated VRF output,
/// for which no batched verification works.
#[derive(Debug, Clone, PartialEq, Eq)] // PartialOrd, Ord, Hash
pub struct VRFProof {
/// Challenge
c: Scalar,
/// Schnorr proof
s: Scalar,
}
impl VRFProof {
const DESCRIPTION : &'static str = "A Ristretto Schnorr VRF proof without batch verification support, which consists of two scalars, making it 64 bytes.";
/// Convert this `VRFProof` to a byte array.
#[inline]
pub fn to_bytes(&self) -> [u8; VRF_PROOF_LENGTH] {
let mut bytes = [0u8; VRF_PROOF_LENGTH];
bytes[..32].copy_from_slice(&self.c.as_bytes()[..]);
bytes[32..].copy_from_slice(&self.s.as_bytes()[..]);
bytes
}
/// Construct a `VRFProof` from a slice of bytes.
#[inline]
pub fn from_bytes(bytes: &[u8]) -> SignatureResult<VRFProof> {
if bytes.len() != VRF_PROOF_LENGTH {
return Err(SignatureError::BytesLengthError {
name: "VRFProof",
description: VRFProof::DESCRIPTION,
length: VRF_PROOF_LENGTH
});
}
let mut c: [u8; 32] = [0u8; 32];
let mut s: [u8; 32] = [0u8; 32];
c.copy_from_slice(&bytes[..32]);
s.copy_from_slice(&bytes[32..]);
let c = Scalar::from_canonical_bytes(c).ok_or(SignatureError::ScalarFormatError) ?;
let s = Scalar::from_canonical_bytes(s).ok_or(SignatureError::ScalarFormatError) ?;
Ok(VRFProof { c, s })
}
}
serde_boilerplate!(VRFProof);
/// Longer proof of correctness for associated VRF output,
/// which supports batching.
#[derive(Debug, Clone, PartialEq, Eq)] // PartialOrd, Ord, Hash
#[allow(non_snake_case)]
pub struct VRFProofBatchable {
/// Our nonce R = r G to permit batching the first verification equation
R: CompressedRistretto,
/// Our input hashed and raised to r to permit batching the second verification equation
Hr: CompressedRistretto,
/// Schnorr proof
s: Scalar,
}
impl VRFProofBatchable {
const DESCRIPTION : &'static str = "A Ristretto Schnorr VRF proof that supports batch verification, which consists of two Ristretto compressed points and one scalar, making it 96 bytes.";
/// Convert this `VRFProofBatchable` to a byte array.
#[allow(non_snake_case)]
#[inline]
pub fn to_bytes(&self) -> [u8; VRF_PROOF_BATCHABLE_LENGTH] {
let mut bytes = [0u8; VRF_PROOF_BATCHABLE_LENGTH];
bytes[0..32].copy_from_slice(&self.R.as_bytes()[..]);
bytes[32..64].copy_from_slice(&self.Hr.as_bytes()[..]);
bytes[64..96].copy_from_slice(&self.s.as_bytes()[..]);
bytes
}
/// Construct a `VRFProofBatchable` from a slice of bytes.
#[allow(non_snake_case)]
#[inline]
pub fn from_bytes(bytes: &[u8]) -> SignatureResult<VRFProofBatchable> {
if bytes.len() != VRF_PROOF_BATCHABLE_LENGTH {
return Err(SignatureError::BytesLengthError {
name: "VRFProofBatchable",
description: VRFProofBatchable::DESCRIPTION,
length: VRF_PROOF_BATCHABLE_LENGTH,
});
}
let mut R: [u8; 32] = [0u8; 32];
let mut Hr: [u8; 32] = [0u8; 32];
let mut s: [u8; 32] = [0u8; 32];
R.copy_from_slice(&bytes[0..32]);
Hr.copy_from_slice(&bytes[32..64]);
s.copy_from_slice(&bytes[64..96]);
let s = Scalar::from_canonical_bytes(s).ok_or(SignatureError::ScalarFormatError) ?;
Ok(VRFProofBatchable { R: CompressedRistretto(R), Hr: CompressedRistretto(Hr), s })
}
/// Return the shortened `VRFProof` for retransmitting in not batched situations
#[allow(non_snake_case)]
pub fn shorten_dleq<T>(&self, mut t: T, public: &PublicKey, p: &VRFInOut, kusama: bool) -> VRFProof
where T: SigningTranscript,
{
t.proto_name(b"DLEQProof");
// t.commit_point(b"vrf:g",constants::RISTRETTO_BASEPOINT_TABLE.basepoint().compress());
t.commit_point(b"vrf:h", p.input.as_compressed());
if !kusama { t.commit_point(b"vrf:pk", public.as_compressed()); }
t.commit_point(b"vrf:R=g^r", &self.R);
t.commit_point(b"vrf:h^r", &self.Hr);
if kusama { t.commit_point(b"vrf:pk", public.as_compressed()); }
t.commit_point(b"vrf:h^sk", p.output.as_compressed());
VRFProof {
c: t.challenge_scalar(b"prove"), // context, message, A/public_key, R=rG
s: self.s,
}
}
/// Return the shortened `VRFProof` for retransmitting in non-batched situations
///
/// TODO: Avoid the error path here by avoiding decompressing,
/// either locally here, or more likely by decompressing
/// `VRFOutput` in deserialization.
pub fn shorten_vrf<T>( &self, public: &PublicKey, t: T, out: &VRFOutput)
-> SignatureResult<VRFProof>
where T: VRFSigningTranscript,
{
let p = out.attach_input_hash(public,t) ?; // Avoidable errors if decompressed earlier
let t0 = Transcript::new(b"VRF"); // We have context in t and another hear confuses batching
Ok(self.shorten_dleq(t0, public, &p, KUSAMA_VRF))
}
}
serde_boilerplate!(VRFProofBatchable);
impl Keypair {
/// Produce DLEQ proof.
///
/// We assume the `VRFInOut` paramater has been computed correctly
/// by multiplying every input point by `self.secret`, like by
/// using one of the `vrf_create_*` methods on `SecretKey`.
/// If so, we produce a proof that this multiplication was done correctly.
#[allow(non_snake_case)]
pub fn dleq_proove<T>(&self, mut t: T, p: &VRFInOut, kusama: bool) -> (VRFProof, VRFProofBatchable)
where
T: SigningTranscript,
{
t.proto_name(b"DLEQProof");
// t.commit_point(b"vrf:g",constants::RISTRETTO_BASEPOINT_TABLE.basepoint().compress());
t.commit_point(b"vrf:h", p.input.as_compressed());
if !kusama { t.commit_point(b"vrf:pk", self.public.as_compressed()); }
// We compute R after adding pk and all h.
let mut r = t.witness_scalar(b"proving\00",&[&self.secret.nonce]);
let R = (&r * &constants::RISTRETTO_BASEPOINT_TABLE).compress();
t.commit_point(b"vrf:R=g^r", &R);
let Hr = (&r * p.input.as_point()).compress();
t.commit_point(b"vrf:h^r", &Hr);
if kusama { t.commit_point(b"vrf:pk", self.public.as_compressed()); }
// We add h^sk last to save an allocation if we ever need to hash multiple h together.
t.commit_point(b"vrf:h^sk", p.output.as_compressed());
let c = t.challenge_scalar(b"prove"); // context, message, A/public_key, R=rG
let s = &r - &(&c * &self.secret.key);
::zeroize::Zeroize::zeroize(&mut r);
(VRFProof { c, s }, VRFProofBatchable { R, Hr, s })
}
/// Run VRF on one single input transcript, producing the outpus
/// and correspodning short proof.
///
/// There are schemes like Ouroboros Praos in which nodes evaluate
/// VRFs repeatedly until they win some contest. In these case,
/// you should probably use vrf_sign_n_check to gain access to the
/// `VRFInOut` from `vrf_create_hash` first, and then avoid computing
/// the proof whenever you do not win.
pub fn vrf_sign<T>(&self, t: T) -> (VRFInOut, VRFProof, VRFProofBatchable)
where T: VRFSigningTranscript,
{
self.vrf_sign_extra(t,Transcript::new(b"VRF"))
// We have context in t and another hear confuses batching
}
/// Run VRF on one single input transcript and an extra message transcript,
/// producing the outpus and correspodning short proof.
pub fn vrf_sign_extra<T,E>(&self, t: T, extra: E) -> (VRFInOut, VRFProof, VRFProofBatchable)
where T: VRFSigningTranscript,
E: SigningTranscript,
{
let p = self.vrf_create_hash(t);
let (proof, proof_batchable) = self.dleq_proove(extra, &p, KUSAMA_VRF);
(p, proof, proof_batchable)
}
/// Run VRF on one single input transcript, producing the outpus
/// and correspodning short proof only if the result first passes
/// some check.
///
/// There are schemes like Ouroboros Praos in which nodes evaluate
/// VRFs repeatedly until they win some contest. In these case,
/// you might use this function to short circuit computing the full
/// proof.
pub fn vrf_sign_after_check<T,F>(&self, t: T, mut check: F)
-> Option<(VRFInOut, VRFProof, VRFProofBatchable)>
where T: VRFSigningTranscript,
F: FnMut(&VRFInOut) -> bool,
{
self.vrf_sign_extra_after_check(t,
|io| if check(io) { Some(Transcript::new(b"VRF")) } else { None }
)
}
/// Run VRF on one single input transcript, producing the outpus
/// and correspodning short proof only if the result first passes
/// some check, which itself returns an extra message transcript.
pub fn vrf_sign_extra_after_check<T,E,F>(&self, t: T, mut check: F)
-> Option<(VRFInOut, VRFProof, VRFProofBatchable)>
where T: VRFSigningTranscript,
E: SigningTranscript,
F: FnMut(&VRFInOut) -> Option<E>,
{
let p = self.vrf_create_hash(t);
let extra = check(&p) ?;
let (proof, proof_batchable) = self.dleq_proove(extra, &p, KUSAMA_VRF);
Some((p, proof, proof_batchable))
}
/// Run VRF on several input transcripts, producing their outputs
/// and a common short proof.
///
/// We merge the VRF outputs using variable time arithmetic, so
/// if even the hash of the message being signed is sensitive then
/// you might reimplement some constant time variant.
#[cfg(any(feature = "alloc", feature = "std"))]
pub fn vrfs_sign<T, I>(&self, ts: I) -> (Box<[VRFInOut]>, VRFProof, VRFProofBatchable)
where
T: VRFSigningTranscript,
I: IntoIterator<Item = T>,
{
self.vrfs_sign_extra(ts, Transcript::new(b"VRF"))
}
/// Run VRF on several input transcripts and an extra message transcript,
/// producing their outputs and a common short proof.
///
/// We merge the VRF outputs using variable time arithmetic, so
/// if even the hash of the message being signed is sensitive then
/// you might reimplement some constant time variant.
#[cfg(any(feature = "alloc", feature = "std"))]
pub fn vrfs_sign_extra<T,E,I>(&self, ts: I, extra: E) -> (Box<[VRFInOut]>, VRFProof, VRFProofBatchable)
where
T: VRFSigningTranscript,
E: SigningTranscript,
I: IntoIterator<Item = T>,
{
let ps = ts.into_iter()
.map(|t| self.vrf_create_hash(t))
.collect::<Vec<VRFInOut>>();
let p = self.public.vrfs_merge(&ps,true);
let (proof, proof_batchable) = self.dleq_proove(extra, &p, KUSAMA_VRF);
(ps.into_boxed_slice(), proof, proof_batchable)
}
}
impl PublicKey {
/// Verify DLEQ proof that `p.output = s * p.input` where `self`
/// `s` times the basepoint.
///
/// We return an enlarged `VRFProofBatchable` instead of just true,
/// so that verifiers can forward batchable proofs.
///
/// In principle, one might provide "blindly verifiable" VRFs that
/// avoid requiring `self` here, but naively such constructions
/// risk the same flaws as DLEQ based blind signatures, and this
/// version exploits the slightly faster basepoint arithmetic.
#[allow(non_snake_case)]
pub fn dleq_verify<T>(
&self,
mut t: T,
p: &VRFInOut,
proof: &VRFProof,
kusama: bool,
) -> SignatureResult<VRFProofBatchable>
where
T: SigningTranscript,
{
t.proto_name(b"DLEQProof");
// t.commit_point(b"vrf:g",constants::RISTRETTO_BASEPOINT_TABLE.basepoint().compress());
t.commit_point(b"vrf:h", p.input.as_compressed());
if !kusama { t.commit_point(b"vrf:pk", self.as_compressed()); }
// We recompute R aka u from the proof
// let R = (&proof.c * self.as_point()) + (&proof.s * &constants::RISTRETTO_BASEPOINT_TABLE);
let R = RistrettoPoint::vartime_double_scalar_mul_basepoint(
&proof.c,
self.as_point(),
&proof.s,
).compress();
t.commit_point(b"vrf:R=g^r", &R);
// We also recompute h^r aka u using the proof
#[cfg(not(any(feature = "alloc", feature = "std")))]
let Hr = (&proof.c * p.output.as_point()) + (&proof.s * p.input.as_point());
// TODO: Verify if this is actually faster using benchmarks
#[cfg(any(feature = "alloc", feature = "std"))]
let Hr = RistrettoPoint::vartime_multiscalar_mul(
&[proof.c, proof.s],
&[*p.output.as_point(), *p.input.as_point()],
);
let Hr = Hr.compress();
t.commit_point(b"vrf:h^r", &Hr);
if kusama { t.commit_point(b"vrf:pk", self.as_compressed()); }
// We add h^sk last to save an allocation if we ever need to hash multiple h together.
t.commit_point(b"vrf:h^sk", p.output.as_compressed());
// We need not check that h^pk lies on the curve because Ristretto ensures this.
let VRFProof { c, s } = *proof;
if c == t.challenge_scalar(b"prove") {
Ok(VRFProofBatchable { R, Hr, s }) // Scalar: Copy ?!?
} else {
Err(SignatureError::EquationFalse)
}
}
/// Verify VRF proof for one single input transcript and corresponding output.
pub fn vrf_verify<T: VRFSigningTranscript>(
&self,
t: T,
out: &VRFOutput,
proof: &VRFProof,
) -> SignatureResult<(VRFInOut, VRFProofBatchable)> {
self.vrf_verify_extra(t,out,proof,Transcript::new(b"VRF"))
}
/// Verify VRF proof for one single input transcript and corresponding output.
pub fn vrf_verify_extra<T,E>(
&self,
t: T,
out: &VRFOutput,
proof: &VRFProof,
extra: E,
) -> SignatureResult<(VRFInOut, VRFProofBatchable)>
where T: VRFSigningTranscript,
E: SigningTranscript,
{
let p = out.attach_input_hash(self,t)?;
let proof_batchable = self.dleq_verify(extra, &p, proof, KUSAMA_VRF)?;
Ok((p, proof_batchable))
}
/// Verify a common VRF short proof for several input transcripts and corresponding outputs.
#[cfg(any(feature = "alloc", feature = "std"))]
pub fn vrfs_verify<T,I,O>(
&self,
transcripts: I,
outs: &[O],
proof: &VRFProof,
) -> SignatureResult<(Box<[VRFInOut]>, VRFProofBatchable)>
where
T: VRFSigningTranscript,
I: IntoIterator<Item = T>,
O: Borrow<VRFOutput>,
{
self.vrfs_verify_extra(transcripts,outs,proof,Transcript::new(b"VRF"))
}
/// Verify a common VRF short proof for several input transcripts and corresponding outputs.
#[cfg(any(feature = "alloc", feature = "std"))]
pub fn vrfs_verify_extra<T,E,I,O>(
&self,
transcripts: I,
outs: &[O],
proof: &VRFProof,
extra: E,
) -> SignatureResult<(Box<[VRFInOut]>, VRFProofBatchable)>
where
T: VRFSigningTranscript,
E: SigningTranscript,
I: IntoIterator<Item = T>,
O: Borrow<VRFOutput>,
{
let mut ts = transcripts.into_iter();
let ps = ts.by_ref().zip(outs)
.map(|(t, out)| out.borrow().attach_input_hash(self,t))
.collect::<SignatureResult<Vec<VRFInOut>>>()?;
assert!(ts.next().is_none(), "Too few VRF outputs for VRF inputs.");
assert!(
ps.len() == outs.len(),
"Too few VRF inputs for VRF outputs."
);
let p = self.vrfs_merge(&ps[..],true);
let proof_batchable = self.dleq_verify(extra, &p, proof, KUSAMA_VRF)?;
Ok((ps.into_boxed_slice(), proof_batchable))
}
}
/// Batch verify DLEQ proofs where the public keys were held by
/// different parties.
///
/// We first reconstruct the `c`s present in the `VRFProof`s but absent
/// in the `VRFProofBatchable`s, using `shorten_dleq`. We then verify
/// the `R` and `Hr` components of the `VRFProofBatchable`s using the
/// two equations a normal verification uses to discover them.
/// We do this by delinearizing both verification equations with
/// random numbers.
///
/// TODO: Assess when the two verification equations should be
/// combined, presumably by benchmarking both forms. At smaller batch
/// sizes then we should clearly benefit form the combined form, but
/// bany combination doubles the scalar by scalar multiplicications
/// and hashing, so large enough batch verifications should favor two
/// seperate calls.
#[cfg(any(feature = "alloc", feature = "std"))]
#[allow(non_snake_case)]
pub fn dleq_verify_batch(
ps: &[VRFInOut],
proofs: &[VRFProofBatchable],
public_keys: &[PublicKey],
kusama: bool,
) -> SignatureResult<()> {
const ASSERT_MESSAGE: &'static str = "The number of messages/transcripts / input points, output points, proofs, and public keys must be equal.";
assert!(ps.len() == proofs.len(), ASSERT_MESSAGE);
assert!(proofs.len() == public_keys.len(), ASSERT_MESSAGE);
// Use a random number generator keyed by the publidc keys, the
// inout and putput points, and the system randomn number gnerator.
let mut csprng = {
let mut t = Transcript::new(b"VB-RNG");
for (pk,p) in public_keys.iter().zip(ps) {
t.commit_point(b"",pk.as_compressed());
p.commit(&mut t);
}
t.build_rng().finalize(&mut rand_hack())
};
// Select a random 128-bit scalar for each signature.
// We may represent these as scalars because we use
// variable time 256 bit multiplication below.
let rnd_128bit_scalar = |_| {
let mut r = [0u8; 16];
csprng.fill_bytes(&mut r);
Scalar::from(u128::from_le_bytes(r))
};
let zz: Vec<Scalar> = proofs.iter().map(rnd_128bit_scalar).collect();
let z_s: Vec<Scalar> = zz.iter().zip(proofs)
.map(|(z, proof)| z * proof.s)
.collect();
// Compute the basepoint coefficient, ∑ s[i] z[i] (mod l)
let B_coefficient: Scalar = z_s.iter().sum();
let t0 = Transcript::new(b"VRF");
let z_c: Vec<Scalar> = zz.iter().enumerate()
.map( |(i, z)| z * proofs[i].shorten_dleq(t0.clone(), &public_keys[i], &ps[i], kusama).c )
.collect();
// Compute (∑ z[i] s[i] (mod l)) B + ∑ (z[i] c[i] (mod l)) A[i] - ∑ z[i] R[i] = 0
let mut b = RistrettoPoint::optional_multiscalar_mul(
zz.iter().map(|z| -z)
.chain(z_c.iter().cloned())
.chain(once(B_coefficient)),
proofs.iter().map(|proof| proof.R.decompress())
.chain(public_keys.iter().map(|pk| Some(*pk.as_point())))
.chain(once(Some(constants::RISTRETTO_BASEPOINT_POINT))),
).map(|id| id.is_identity()).unwrap_or(false);
// Compute (∑ z[i] s[i] (mod l)) Input[i] + ∑ (z[i] c[i] (mod l)) Output[i] - ∑ z[i] Hr[i] = 0
b &= RistrettoPoint::optional_multiscalar_mul(
zz.iter().map(|z| -z)
.chain(z_c)
.chain(z_s),
proofs.iter().map(|proof| proof.Hr.decompress())
.chain(ps.iter().map(|p| Some(*p.output.as_point())))
.chain(ps.iter().map(|p| Some(*p.input.as_point()))),
).map(|id| id.is_identity()).unwrap_or(false);
if b { Ok(()) } else { Err(SignatureError::EquationFalse) }
}
/// Batch verify VRFs by different signers
///
///
#[cfg(any(feature = "alloc", feature = "std"))]
pub fn vrf_verify_batch<T, I>(
transcripts: I,
outs: &[VRFOutput],
proofs: &[VRFProofBatchable],
publickeys: &[PublicKey],
) -> SignatureResult<Box<[VRFInOut]>>
where
T: VRFSigningTranscript,
I: IntoIterator<Item = T>,
{
let mut ts = transcripts.into_iter();
let ps = ts.by_ref()
.zip(publickeys)
.zip(outs)
.map(|((t, pk), out)| out.attach_input_hash(pk,t))
.collect::<SignatureResult<Vec<VRFInOut>>>()?;
assert!(ts.next().is_none(), "Too few VRF outputs for VRF inputs.");
assert!(
ps.len() == outs.len(),
"Too few VRF inputs for VRF outputs."
);
if dleq_verify_batch(&ps[..], proofs, publickeys, KUSAMA_VRF).is_ok() {
Ok(ps.into_boxed_slice())
} else {
Err(SignatureError::EquationFalse)
}
}
#[cfg(test)]
mod tests {
#[cfg(feature = "alloc")]
use alloc::vec::Vec;
#[cfg(feature = "std")]
use std::vec::Vec;
use super::*;
#[test]
fn vrf_single() {
// #[cfg(feature = "getrandom")]
let mut csprng = ::rand_core::OsRng;
let keypair1 = Keypair::generate_with(&mut csprng);
let ctx = signing_context(b"yo!");
let msg = b"meow";
let (io1, proof1, proof1batchable) = keypair1.vrf_sign(ctx.bytes(msg));
let out1 = &io1.to_output();
assert_eq!(
proof1,
proof1batchable
.shorten_vrf(&keypair1.public, ctx.bytes(msg), &out1)
.unwrap(),
"Oops `shorten_vrf` failed"
);
let (io1too, proof1too) = keypair1.public.vrf_verify(ctx.bytes(msg), &out1, &proof1)
.expect("Correct VRF verification failed!");
assert_eq!(
io1too, io1,
"Output differs between signing and verification!"
);
assert_eq!(
proof1batchable, proof1too,
"VRF verification yielded incorrect batchable proof"
);
assert_eq!(
keypair1.vrf_sign(ctx.bytes(msg)).0,
io1,
"Rerunning VRF gave different output"
);
assert!(
keypair1.public.vrf_verify(ctx.bytes(b"not meow"), &out1, &proof1).is_err(),
"VRF verification with incorrect message passed!"
);
let keypair2 = Keypair::generate_with(&mut csprng);
assert!(
keypair2.public.vrf_verify(ctx.bytes(msg), &out1, &proof1).is_err(),
"VRF verification with incorrect signer passed!"
);
}
#[test]
fn vrf_malleable() {
// #[cfg(feature = "getrandom")]
let mut csprng = ::rand_core::OsRng;
let keypair1 = Keypair::generate_with(&mut csprng);
let ctx = signing_context(b"yo!");
let msg = b"meow";
let (io1, proof1, proof1batchable) = keypair1.vrf_sign(Malleable(ctx.bytes(msg)));
let out1 = &io1.to_output();
assert_eq!(
proof1,
proof1batchable.shorten_vrf(&keypair1.public, Malleable(ctx.bytes(msg)), &out1).unwrap(),
"Oops `shorten_vrf` failed"
);
let (io1too, proof1too) = keypair1
.public.vrf_verify(Malleable(ctx.bytes(msg)), &out1, &proof1)
.expect("Correct VRF verification failed!");
assert_eq!(
io1too, io1,
"Output differs between signing and verification!"
);
assert_eq!(
proof1batchable, proof1too,
"VRF verification yielded incorrect batchable proof"
);
assert_eq!(
keypair1.vrf_sign(Malleable(ctx.bytes(msg))).0,
io1,
"Rerunning VRF gave different output"
);
assert!(
keypair1.public.vrf_verify(Malleable(ctx.bytes(b"not meow")), &out1, &proof1).is_err(),
"VRF verification with incorrect message passed!"
);
let keypair2 = Keypair::generate_with(&mut csprng);
assert!(
keypair2.public.vrf_verify(Malleable(ctx.bytes(msg)), &out1, &proof1).is_err(),
"VRF verification with incorrect signer passed!"
);
let (io2, _proof2, _proof2batchable) = keypair2.vrf_sign(Malleable(ctx.bytes(msg)));
let out2 = &io2.to_output();
// Verified key exchange, aka sequential two party VRF.
let t0 = Transcript::new(b"VRF");
let io21 = keypair2.secret.vrf_create_from_compressed_point(out1).unwrap();
let proofs21 = keypair2.dleq_proove(t0.clone(), &io21, KUSAMA_VRF);
let io12 = keypair1.secret.vrf_create_from_compressed_point(out2).unwrap();
let proofs12 = keypair1.dleq_proove(t0.clone(), &io12, KUSAMA_VRF);
assert_eq!(io12.output, io21.output, "Sequential two-party VRF failed");
assert_eq!(
proofs21.0,
proofs21.1.shorten_dleq(t0.clone(), &keypair2.public, &io21, KUSAMA_VRF),
"Oops `shorten_dleq` failed"
);
assert_eq!(
proofs12.0,
proofs12.1.shorten_dleq(t0.clone(), &keypair1.public, &io12, KUSAMA_VRF),
"Oops `shorten_dleq` failed"
);
assert!(keypair1
.public
.dleq_verify(t0.clone(), &io12, &proofs12.0, KUSAMA_VRF)
.is_ok());
assert!(keypair2
.public
.dleq_verify(t0.clone(), &io21, &proofs21.0, KUSAMA_VRF)
.is_ok());
}
#[cfg(any(feature = "alloc", feature = "std"))]
#[test]
fn vrfs_merged_and_batched() {
let mut csprng = ::rand_core::OsRng;
let keypairs: Vec<Keypair> = (0..4)
.map(|_| Keypair::generate_with(&mut csprng))
.collect();
let ctx = signing_context(b"yo!");
let messages: [&[u8; 4]; 2] = [b"meow", b"woof"];
let ts = || messages.iter().map(|m| ctx.bytes(*m));
let ios_n_proofs = keypairs.iter().map(|k| k.vrfs_sign(ts())).collect::<Vec<(
Box<[VRFInOut]>,
VRFProof,
VRFProofBatchable,
)>>();
for (k, (ios, proof, proof_batchable)) in keypairs.iter().zip(&ios_n_proofs) {
let outs = ios
.iter()
.map(|io| io.to_output())
.collect::<Vec<VRFOutput>>();
let (ios_too, proof_too) = k
.public
.vrfs_verify(ts(), &outs, &proof)
.expect("Valid VRF output verification failed!");
assert_eq!(
ios_too, *ios,
"Output differs between signing and verification!"
);
assert_eq!(
proof_too, *proof_batchable,
"Returning batchable proof failed!"
);
}
for (k, (ios, proof, _proof_batchable)) in keypairs.iter().zip(&ios_n_proofs) {
let outs = ios.iter()
.rev()
.map(|io| io.to_output())
.collect::<Vec<VRFOutput>>();
assert!(
k.public.vrfs_verify(ts(), &outs, &proof).is_err(),
"Incorrect VRF output verification passed!"
);
}
for (k, (ios, proof, _proof_batchable)) in keypairs.iter().rev().zip(&ios_n_proofs) {
let outs = ios.iter()
.map(|io| io.to_output())
.collect::<Vec<VRFOutput>>();
assert!(
k.public.vrfs_verify(ts(), &outs, &proof).is_err(),
"VRF output verification by a different signer passed!"
);
}
let mut ios = keypairs.iter().enumerate()
.map(|(i, keypair)| keypair.public.vrfs_merge(&ios_n_proofs[i].0,true))
.collect::<Vec<VRFInOut>>();
let mut proofs = ios_n_proofs.iter()
.map(|(_ios, _proof, proof_batchable)| proof_batchable.clone())
.collect::<Vec<VRFProofBatchable>>();
let mut public_keys = keypairs.iter()
.map(|keypair| keypair.public.clone())
.collect::<Vec<PublicKey>>();
assert!(
dleq_verify_batch(&ios, &proofs, &public_keys, KUSAMA_VRF).is_ok(),
"Batch verification failed!"
);
proofs.reverse();
assert!(
dleq_verify_batch(&ios, &proofs, &public_keys, KUSAMA_VRF).is_err(),
"Batch verification with incorrect proofs passed!"
);
proofs.reverse();
public_keys.reverse();
assert!(
dleq_verify_batch(&ios, &proofs, &public_keys, KUSAMA_VRF).is_err(),
"Batch verification with incorrect public keys passed!"
);
public_keys.reverse();
ios.reverse();
assert!(
dleq_verify_batch(&ios, &proofs, &public_keys, KUSAMA_VRF).is_err(),
"Batch verification with incorrect points passed!"
);
}
}