1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
//! Computation of basic block order in emitted code.
//!
//! This module handles the translation from CLIF BBs to VCode BBs.
//!
//! The basic idea is that we compute a sequence of "lowered blocks" that
//! correspond to one or more blocks in the graph: (CLIF CFG) `union` (implicit
//! block on *every* edge). Conceptually, the lowering pipeline wants to insert
//! moves for phi-nodes on every block-to-block transfer; these blocks always
//! conceptually exist, but may be merged with an "original" CLIF block (and
//! hence not actually exist; this is equivalent to inserting the blocks only on
//! critical edges).
//!
//! In other words, starting from a CFG like this (where each "CLIF block" and
//! "(edge N->M)" is a separate basic block):
//!
//! ```plain
//!
//!              CLIF block 0
//!               /           \
//!       (edge 0->1)         (edge 0->2)
//!              |                |
//!       CLIF block 1         CLIF block 2
//!              \                /
//!           (edge 1->3)   (edge 2->3)
//!                   \      /
//!                 CLIF block 3
//! ```
//!
//! We can produce a CFG of lowered blocks like so:
//!
//! ```plain
//!            +--------------+
//!            | CLIF block 0 |
//!            +--------------+
//!               /           \
//!     +--------------+     +--------------+
//!     | (edge 0->1)  |     |(edge 0->2)   |
//!     | CLIF block 1 |     | CLIF block 2 |
//!     +--------------+     +--------------+
//!              \                /
//!          +-----------+ +-----------+
//!          |(edge 1->3)| |(edge 2->3)|
//!          +-----------+ +-----------+
//!                   \      /
//!                +------------+
//!                |CLIF block 3|
//!                +------------+
//! ```
//!
//! (note that the edges into CLIF blocks 1 and 2 could be merged with those
//! blocks' original bodies, but the out-edges could not because for simplicity
//! in the successor-function definition, we only ever merge an edge onto one
//! side of an original CLIF block.)
//!
//! Each `LoweredBlock` names just an original CLIF block, an original CLIF
//! block prepended or appended with an edge block (never both, though), or just
//! an edge block.
//!
//! To compute this lowering, we do a DFS over the CLIF-plus-edge-block graph
//! (never actually materialized, just defined by a "successors" function), and
//! compute the reverse postorder.
//!
//! This algorithm isn't perfect w.r.t. generated code quality: we don't, for
//! example, consider any information about whether edge blocks will actually
//! have content, because this computation happens as part of lowering *before*
//! regalloc, and regalloc may or may not insert moves/spills/reloads on any
//! particular edge. But it works relatively well and is conceptually simple.
//! Furthermore, the [MachBuffer] machine-code sink performs final peephole-like
//! branch editing that in practice elides empty blocks and simplifies some of
//! the other redundancies that this scheme produces.

use crate::entity::SecondaryMap;
use crate::fx::{FxHashMap, FxHashSet};
use crate::inst_predicates::visit_block_succs;
use crate::ir::{Block, Function, Inst, Opcode};
use crate::{machinst::*, trace};

use smallvec::SmallVec;

/// Mapping from CLIF BBs to VCode BBs.
#[derive(Debug)]
pub struct BlockLoweringOrder {
    /// Lowered blocks, in BlockIndex order. Each block is some combination of
    /// (i) a CLIF block, and (ii) inserted crit-edge blocks before or after;
    /// see [LoweredBlock] for details.
    lowered_order: Vec<LoweredBlock>,
    /// Successors for all lowered blocks, in one serialized vector. Indexed by
    /// the ranges in `lowered_succ_ranges`.
    #[allow(dead_code)]
    lowered_succs: Vec<(Inst, LoweredBlock)>,
    /// BlockIndex values for successors for all lowered blocks, in the same
    /// order as `lowered_succs`.
    lowered_succ_indices: Vec<(Inst, BlockIndex)>,
    /// Ranges in `lowered_succs` giving the successor lists for each lowered
    /// block. Indexed by lowering-order index (`BlockIndex`).
    lowered_succ_ranges: Vec<(usize, usize)>,
    /// Mapping from CLIF BB to BlockIndex (index in lowered order). Note that
    /// some CLIF BBs may not be lowered; in particular, we skip unreachable
    /// blocks.
    #[allow(dead_code)]
    orig_map: SecondaryMap<Block, Option<BlockIndex>>,
    /// Cold blocks. These blocks are not reordered in the
    /// `lowered_order` above; the lowered order must respect RPO
    /// (uses after defs) in order for lowering to be
    /// correct. Instead, this set is used to provide `is_cold()`,
    /// which is used by VCode emission to sink the blocks at the last
    /// moment (when we actually emit bytes into the MachBuffer).
    cold_blocks: FxHashSet<BlockIndex>,
}

/// The origin of a block in the lowered block-order: either an original CLIF
/// block, or an inserted edge-block, or a combination of the two if an edge is
/// non-critical.
#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
pub enum LoweredBlock {
    /// Block in original CLIF, with no merged edge-blocks.
    Orig {
        /// Original CLIF block.
        block: Block,
    },
    /// Block in the original CLIF, plus edge-block to one succ (which is the
    /// one successor of the original block).
    OrigAndEdge {
        /// The original CLIF block contained in this lowered block.
        block: Block,
        /// The edge (jump) instruction transitioning from this block
        /// to the next, i.e., corresponding to the included edge-block. This
        /// will be an instruction in `block`.
        edge_inst: Inst,
        /// The successor index in this edge, to distinguish multiple
        /// edges between the same block pair.
        succ_idx: usize,
        /// The successor CLIF block.
        succ: Block,
    },
    /// Block in the original CLIF, preceded by edge-block from one pred (which
    /// is the one pred of the original block).
    EdgeAndOrig {
        /// The previous CLIF block, i.e., the edge block's predecessor.
        pred: Block,
        /// The edge (jump) instruction corresponding to the included
        /// edge-block. This will be an instruction in `pred`.
        edge_inst: Inst,
        /// The successor index in this edge, to distinguish multiple
        /// edges between the same block pair.
        succ_idx: usize,
        /// The original CLIF block included in this lowered block.
        block: Block,
    },
    /// Split critical edge between two CLIF blocks. This lowered block does not
    /// correspond to any original CLIF blocks; it only serves as an insertion
    /// point for work to happen on the transition from `pred` to `succ`.
    Edge {
        /// The predecessor CLIF block.
        pred: Block,
        /// The edge (jump) instruction corresponding to this edge's transition.
        /// This will be an instruction in `pred`.
        edge_inst: Inst,
        /// The successor index in this edge, to distinguish multiple
        /// edges between the same block pair.
        succ_idx: usize,
        /// The successor CLIF block.
        succ: Block,
    },
}

impl LoweredBlock {
    /// The associated original (CLIF) block included in this lowered block, if
    /// any.
    pub fn orig_block(self) -> Option<Block> {
        match self {
            LoweredBlock::Orig { block, .. }
            | LoweredBlock::OrigAndEdge { block, .. }
            | LoweredBlock::EdgeAndOrig { block, .. } => Some(block),
            LoweredBlock::Edge { .. } => None,
        }
    }

    /// The associated in-edge, if any.
    #[cfg(test)]
    pub fn in_edge(self) -> Option<(Block, Inst, Block)> {
        match self {
            LoweredBlock::EdgeAndOrig {
                pred,
                edge_inst,
                block,
                ..
            } => Some((pred, edge_inst, block)),
            _ => None,
        }
    }

    /// the associated out-edge, if any. Also includes edge-only blocks.
    #[cfg(test)]
    pub fn out_edge(self) -> Option<(Block, Inst, Block)> {
        match self {
            LoweredBlock::OrigAndEdge {
                block,
                edge_inst,
                succ,
                ..
            } => Some((block, edge_inst, succ)),
            LoweredBlock::Edge {
                pred,
                edge_inst,
                succ,
                ..
            } => Some((pred, edge_inst, succ)),
            _ => None,
        }
    }
}

impl BlockLoweringOrder {
    /// Compute and return a lowered block order for `f`.
    pub fn new(f: &Function) -> BlockLoweringOrder {
        trace!("BlockLoweringOrder: function body {:?}", f);

        // Make sure that we have an entry block, and the entry block is
        // not marked as cold. (The verifier ensures this as well, but
        // the user may not have run the verifier, and this property is
        // critical to avoid a miscompile, so we assert it here too.)
        let entry = f.layout.entry_block().expect("Must have entry block");
        assert!(!f.layout.is_cold(entry));

        // Step 1: compute the in-edge and out-edge count of every block.
        let mut block_in_count = SecondaryMap::with_default(0);
        let mut block_out_count = SecondaryMap::with_default(0);

        // Cache the block successors to avoid re-examining branches below.
        let mut block_succs: SmallVec<[(Inst, usize, Block); 128]> = SmallVec::new();
        let mut block_succ_range = SecondaryMap::with_default((0, 0));
        for block in f.layout.blocks() {
            let block_succ_start = block_succs.len();
            let mut succ_idx = 0;
            visit_block_succs(f, block, |inst, succ| {
                block_out_count[block] += 1;
                block_in_count[succ] += 1;
                block_succs.push((inst, succ_idx, succ));
                succ_idx += 1;
            });
            let block_succ_end = block_succs.len();
            block_succ_range[block] = (block_succ_start, block_succ_end);

            for inst in f.layout.block_likely_branches(block) {
                if f.dfg[inst].opcode() == Opcode::Return {
                    // Implicit output edge for any return.
                    block_out_count[block] += 1;
                }
            }
        }
        // Implicit input edge for entry block.
        block_in_count[entry] += 1;

        // All blocks ending in conditional branches or br_tables must
        // have edge-moves inserted at the top of successor blocks,
        // not at the end of themselves. This is because the moves
        // would have to be inserted prior to the branch's register
        // use; but RA2's model is that the moves happen *on* the
        // edge, after every def/use in the block. RA2 will check for
        // "branch register use safety" and panic if such a problem
        // occurs. To avoid this, we force the below algorithm to
        // never merge the edge block onto the end of a block that
        // ends in a conditional branch. We do this by "faking" more
        // than one successor, even if there is only one.
        //
        // (One might ask, isn't that always the case already? It
        // could not be, in cases of br_table with no table and just a
        // default label, for example.)
        for block in f.layout.blocks() {
            for inst in f.layout.block_likely_branches(block) {
                // If the block has a branch with any "fixed args"
                // (not blockparam args) ...
                if f.dfg[inst].opcode().is_branch() && f.dfg.inst_fixed_args(inst).len() > 0 {
                    // ... then force a minimum successor count of
                    // two, so the below algorithm cannot put
                    // edge-moves on the end of the block.
                    block_out_count[block] = std::cmp::max(2, block_out_count[block]);
                }
            }
        }

        // Here we define the implicit CLIF-plus-edges graph. There are
        // conceptually two such graphs: the original, with every edge explicit,
        // and the merged one, with blocks (represented by `LoweredBlock`
        // values) that contain original CLIF blocks, edges, or both. This
        // function returns a lowered block's successors as per the latter, with
        // consideration to edge-block merging.
        //
        // Note that there is a property of the block-merging rules below
        // that is very important to ensure we don't miss any lowered blocks:
        // any block in the implicit CLIF-plus-edges graph will *only* be
        // included in one block in the merged graph.
        //
        // This, combined with the property that every edge block is reachable
        // only from one predecessor (and hence cannot be reached by a DFS
        // backedge), means that it is sufficient in our DFS below to track
        // visited-bits per original CLIF block only, not per edge. This greatly
        // simplifies the data structures (no need to keep a sparse hash-set of
        // (block, block) tuples).
        let compute_lowered_succs = |ret: &mut Vec<(Inst, LoweredBlock)>, block: LoweredBlock| {
            let start_idx = ret.len();
            match block {
                LoweredBlock::Orig { block } | LoweredBlock::EdgeAndOrig { block, .. } => {
                    // At an orig block; successors are always edge blocks,
                    // possibly with orig blocks following.
                    let range = block_succ_range[block];
                    for &(edge_inst, succ_idx, succ) in &block_succs[range.0..range.1] {
                        if block_in_count[succ] == 1 {
                            ret.push((
                                edge_inst,
                                LoweredBlock::EdgeAndOrig {
                                    pred: block,
                                    edge_inst,
                                    succ_idx,
                                    block: succ,
                                },
                            ));
                        } else {
                            ret.push((
                                edge_inst,
                                LoweredBlock::Edge {
                                    pred: block,
                                    edge_inst,
                                    succ_idx,
                                    succ,
                                },
                            ));
                        }
                    }
                }
                LoweredBlock::Edge {
                    succ, edge_inst, ..
                }
                | LoweredBlock::OrigAndEdge {
                    succ, edge_inst, ..
                } => {
                    // At an edge block; successors are always orig blocks,
                    // possibly with edge blocks following.
                    if block_out_count[succ] == 1 {
                        let range = block_succ_range[succ];
                        // check if the one succ is a real CFG edge (vs.
                        // implicit return succ).
                        if range.1 - range.0 > 0 {
                            debug_assert!(range.1 - range.0 == 1);
                            let (succ_edge_inst, succ_succ_idx, succ_succ) = block_succs[range.0];
                            ret.push((
                                edge_inst,
                                LoweredBlock::OrigAndEdge {
                                    block: succ,
                                    edge_inst: succ_edge_inst,
                                    succ_idx: succ_succ_idx,
                                    succ: succ_succ,
                                },
                            ));
                        } else {
                            ret.push((edge_inst, LoweredBlock::Orig { block: succ }));
                        }
                    } else {
                        ret.push((edge_inst, LoweredBlock::Orig { block: succ }));
                    }
                }
            }
            let end_idx = ret.len();
            (start_idx, end_idx)
        };

        // Build the explicit LoweredBlock-to-LoweredBlock successors list.
        let mut lowered_succs = vec![];
        let mut lowered_succ_indices = vec![];

        // Step 2: Compute RPO traversal of the implicit CLIF-plus-edge-block graph. Use an
        // explicit stack so we don't overflow the real stack with a deep DFS.
        #[derive(Debug)]
        struct StackEntry {
            this: LoweredBlock,
            succs: (usize, usize), // range in lowered_succs
            cur_succ: usize,       // index in lowered_succs
        }

        let mut stack: SmallVec<[StackEntry; 16]> = SmallVec::new();
        let mut visited = FxHashSet::default();
        let mut postorder = vec![];

        // Add the entry block.
        //
        // FIXME(cfallin): we might be able to use OrigAndEdge. Find a
        // way to not special-case the entry block here.
        let block = LoweredBlock::Orig { block: entry };
        visited.insert(block);
        let range = compute_lowered_succs(&mut lowered_succs, block);
        lowered_succ_indices.resize(lowered_succs.len(), 0);
        stack.push(StackEntry {
            this: block,
            succs: range,
            cur_succ: range.1,
        });

        while !stack.is_empty() {
            let stack_entry = stack.last_mut().unwrap();
            let range = stack_entry.succs;
            if stack_entry.cur_succ == range.0 {
                postorder.push((stack_entry.this, range));
                stack.pop();
            } else {
                // Heuristic: chase the children in reverse. This puts the first
                // successor block first in RPO, all other things being equal,
                // which tends to prioritize loop backedges over out-edges,
                // putting the edge-block closer to the loop body and minimizing
                // live-ranges in linear instruction space.
                let next = lowered_succs[stack_entry.cur_succ - 1].1;
                stack_entry.cur_succ -= 1;
                if visited.contains(&next) {
                    continue;
                }
                visited.insert(next);
                let range = compute_lowered_succs(&mut lowered_succs, next);
                lowered_succ_indices.resize(lowered_succs.len(), 0);
                stack.push(StackEntry {
                    this: next,
                    succs: range,
                    cur_succ: range.1,
                });
            }
        }

        postorder.reverse();
        let rpo = postorder;

        // Step 3: now that we have RPO, build the BlockIndex/BB fwd/rev maps.
        let mut lowered_order = vec![];
        let mut cold_blocks = FxHashSet::default();
        let mut lowered_succ_ranges = vec![];
        let mut lb_to_bindex = FxHashMap::default();
        for (block, succ_range) in rpo.into_iter() {
            let index = BlockIndex::new(lowered_order.len());
            lb_to_bindex.insert(block, index);
            lowered_order.push(block);
            lowered_succ_ranges.push(succ_range);

            match block {
                LoweredBlock::Orig { block }
                | LoweredBlock::OrigAndEdge { block, .. }
                | LoweredBlock::EdgeAndOrig { block, .. } => {
                    if f.layout.is_cold(block) {
                        cold_blocks.insert(index);
                    }
                }
                LoweredBlock::Edge { pred, succ, .. } => {
                    if f.layout.is_cold(pred) || f.layout.is_cold(succ) {
                        cold_blocks.insert(index);
                    }
                }
            }
        }

        let lowered_succ_indices = lowered_succs
            .iter()
            .map(|&(inst, succ)| (inst, lb_to_bindex.get(&succ).cloned().unwrap()))
            .collect();

        let mut orig_map = SecondaryMap::with_default(None);
        for (i, lb) in lowered_order.iter().enumerate() {
            let i = BlockIndex::new(i);
            if let Some(b) = lb.orig_block() {
                orig_map[b] = Some(i);
            }
        }

        let result = BlockLoweringOrder {
            lowered_order,
            lowered_succs,
            lowered_succ_indices,
            lowered_succ_ranges,
            orig_map,
            cold_blocks,
        };
        trace!("BlockLoweringOrder: {:?}", result);
        result
    }

    /// Get the lowered order of blocks.
    pub fn lowered_order(&self) -> &[LoweredBlock] {
        &self.lowered_order[..]
    }

    /// Get the successor indices for a lowered block.
    pub fn succ_indices(&self, block: BlockIndex) -> &[(Inst, BlockIndex)] {
        let range = self.lowered_succ_ranges[block.index()];
        &self.lowered_succ_indices[range.0..range.1]
    }

    /// Determine whether the given lowered-block index is cold.
    pub fn is_cold(&self, block: BlockIndex) -> bool {
        self.cold_blocks.contains(&block)
    }
}

#[cfg(test)]
mod test {
    use super::*;
    use crate::cursor::{Cursor, FuncCursor};
    use crate::ir::types::*;
    use crate::ir::UserFuncName;
    use crate::ir::{AbiParam, Function, InstBuilder, Signature};
    use crate::isa::CallConv;

    fn build_test_func(n_blocks: usize, edges: &[(usize, usize)]) -> Function {
        assert!(n_blocks > 0);

        let name = UserFuncName::testcase("test0");
        let mut sig = Signature::new(CallConv::SystemV);
        sig.params.push(AbiParam::new(I32));
        let mut func = Function::with_name_signature(name, sig);
        let blocks = (0..n_blocks)
            .map(|i| {
                let bb = func.dfg.make_block();
                assert!(bb.as_u32() == i as u32);
                bb
            })
            .collect::<Vec<_>>();

        let arg0 = func.dfg.append_block_param(blocks[0], I32);

        let mut pos = FuncCursor::new(&mut func);

        let mut edge = 0;
        for i in 0..n_blocks {
            pos.insert_block(blocks[i]);
            let mut succs = vec![];
            while edge < edges.len() && edges[edge].0 == i {
                succs.push(edges[edge].1);
                edge += 1;
            }
            if succs.len() == 0 {
                pos.ins().return_(&[arg0]);
            } else if succs.len() == 1 {
                pos.ins().jump(blocks[succs[0]], &[]);
            } else if succs.len() == 2 {
                pos.ins().brnz(arg0, blocks[succs[0]], &[]);
                pos.ins().jump(blocks[succs[1]], &[]);
            } else {
                panic!("Too many successors");
            }
        }

        func
    }

    #[test]
    fn test_blockorder_diamond() {
        let func = build_test_func(4, &[(0, 1), (0, 2), (1, 3), (2, 3)]);
        let order = BlockLoweringOrder::new(&func);

        assert_eq!(order.lowered_order.len(), 6);

        assert!(order.lowered_order[0].orig_block().unwrap().as_u32() == 0);
        assert!(order.lowered_order[0].in_edge().is_none());
        assert!(order.lowered_order[0].out_edge().is_none());

        assert!(order.lowered_order[1].orig_block().unwrap().as_u32() == 1);
        assert!(order.lowered_order[1].in_edge().unwrap().0.as_u32() == 0);
        assert!(order.lowered_order[1].in_edge().unwrap().2.as_u32() == 1);

        assert!(order.lowered_order[2].orig_block().is_none());
        assert!(order.lowered_order[2].in_edge().is_none());
        assert!(order.lowered_order[2].out_edge().unwrap().0.as_u32() == 1);
        assert!(order.lowered_order[2].out_edge().unwrap().2.as_u32() == 3);

        assert!(order.lowered_order[3].orig_block().unwrap().as_u32() == 2);
        assert!(order.lowered_order[3].in_edge().unwrap().0.as_u32() == 0);
        assert!(order.lowered_order[3].in_edge().unwrap().2.as_u32() == 2);
        assert!(order.lowered_order[3].out_edge().is_none());

        assert!(order.lowered_order[4].orig_block().is_none());
        assert!(order.lowered_order[4].in_edge().is_none());
        assert!(order.lowered_order[4].out_edge().unwrap().0.as_u32() == 2);
        assert!(order.lowered_order[4].out_edge().unwrap().2.as_u32() == 3);

        assert!(order.lowered_order[5].orig_block().unwrap().as_u32() == 3);
        assert!(order.lowered_order[5].in_edge().is_none());
        assert!(order.lowered_order[5].out_edge().is_none());
    }

    #[test]
    fn test_blockorder_critedge() {
        //            0
        //          /   \
        //         1     2
        //        /  \     \
        //       3    4    |
        //       |\  _|____|
        //       | \/ |
        //       | /\ |
        //       5    6
        //
        // (3 -> 5, 3 -> 6, 4 -> 6 are critical edges and must be split)
        //
        let func = build_test_func(
            7,
            &[
                (0, 1),
                (0, 2),
                (1, 3),
                (1, 4),
                (2, 5),
                (3, 5),
                (3, 6),
                (4, 6),
            ],
        );
        let order = BlockLoweringOrder::new(&func);

        assert_eq!(order.lowered_order.len(), 11);
        println!("ordered = {:?}", order.lowered_order);

        // block 0
        assert!(order.lowered_order[0].orig_block().unwrap().as_u32() == 0);
        assert!(order.lowered_order[0].in_edge().is_none());
        assert!(order.lowered_order[0].out_edge().is_none());

        // edge 0->1 + block 1
        assert!(order.lowered_order[1].orig_block().unwrap().as_u32() == 1);
        assert!(order.lowered_order[1].in_edge().unwrap().0.as_u32() == 0);
        assert!(order.lowered_order[1].in_edge().unwrap().2.as_u32() == 1);
        assert!(order.lowered_order[1].out_edge().is_none());

        // edge 1->3 + block 3
        assert!(order.lowered_order[2].orig_block().unwrap().as_u32() == 3);
        assert!(order.lowered_order[2].in_edge().unwrap().0.as_u32() == 1);
        assert!(order.lowered_order[2].in_edge().unwrap().2.as_u32() == 3);
        assert!(order.lowered_order[2].out_edge().is_none());

        // edge 3->5
        assert!(order.lowered_order[3].orig_block().is_none());
        assert!(order.lowered_order[3].in_edge().is_none());
        assert!(order.lowered_order[3].out_edge().unwrap().0.as_u32() == 3);
        assert!(order.lowered_order[3].out_edge().unwrap().2.as_u32() == 5);

        // edge 3->6
        assert!(order.lowered_order[4].orig_block().is_none());
        assert!(order.lowered_order[4].in_edge().is_none());
        assert!(order.lowered_order[4].out_edge().unwrap().0.as_u32() == 3);
        assert!(order.lowered_order[4].out_edge().unwrap().2.as_u32() == 6);

        // edge 1->4 + block 4
        assert!(order.lowered_order[5].orig_block().unwrap().as_u32() == 4);
        assert!(order.lowered_order[5].in_edge().unwrap().0.as_u32() == 1);
        assert!(order.lowered_order[5].in_edge().unwrap().2.as_u32() == 4);
        assert!(order.lowered_order[5].out_edge().is_none());

        // edge 4->6
        assert!(order.lowered_order[6].orig_block().is_none());
        assert!(order.lowered_order[6].in_edge().is_none());
        assert!(order.lowered_order[6].out_edge().unwrap().0.as_u32() == 4);
        assert!(order.lowered_order[6].out_edge().unwrap().2.as_u32() == 6);

        // block 6
        assert!(order.lowered_order[7].orig_block().unwrap().as_u32() == 6);
        assert!(order.lowered_order[7].in_edge().is_none());
        assert!(order.lowered_order[7].out_edge().is_none());

        // edge 0->2 + block 2
        assert!(order.lowered_order[8].orig_block().unwrap().as_u32() == 2);
        assert!(order.lowered_order[8].in_edge().unwrap().0.as_u32() == 0);
        assert!(order.lowered_order[8].in_edge().unwrap().2.as_u32() == 2);
        assert!(order.lowered_order[8].out_edge().is_none());

        // edge 2->5
        assert!(order.lowered_order[9].orig_block().is_none());
        assert!(order.lowered_order[9].in_edge().is_none());
        assert!(order.lowered_order[9].out_edge().unwrap().0.as_u32() == 2);
        assert!(order.lowered_order[9].out_edge().unwrap().2.as_u32() == 5);

        // block 5
        assert!(order.lowered_order[10].orig_block().unwrap().as_u32() == 5);
        assert!(order.lowered_order[10].in_edge().is_none());
        assert!(order.lowered_order[10].out_edge().is_none());
    }
}