1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
//! Implementation of a standard AArch64 ABI.

use crate::ir;
use crate::ir::types;
use crate::ir::types::*;
use crate::ir::MemFlags;
use crate::ir::Opcode;
use crate::ir::{dynamic_to_fixed, ExternalName, LibCall, Signature};
use crate::isa;
use crate::isa::aarch64::{inst::EmitState, inst::*, settings as aarch64_settings};
use crate::isa::unwind::UnwindInst;
use crate::machinst::*;
use crate::settings;
use crate::{CodegenError, CodegenResult};
use alloc::boxed::Box;
use alloc::vec::Vec;
use regalloc2::{PRegSet, VReg};
use smallvec::{smallvec, SmallVec};

// We use a generic implementation that factors out AArch64 and x64 ABI commonalities, because
// these ABIs are very similar.

/// Support for the AArch64 ABI from the callee side (within a function body).
pub(crate) type AArch64Callee = Callee<AArch64MachineDeps>;

/// Support for the AArch64 ABI from the caller side (at a callsite).
pub(crate) type AArch64Caller = Caller<AArch64MachineDeps>;

/// This is the limit for the size of argument and return-value areas on the
/// stack. We place a reasonable limit here to avoid integer overflow issues
/// with 32-bit arithmetic: for now, 128 MB.
static STACK_ARG_RET_SIZE_LIMIT: u64 = 128 * 1024 * 1024;

impl Into<AMode> for StackAMode {
    fn into(self) -> AMode {
        match self {
            StackAMode::FPOffset(off, ty) => AMode::FPOffset { off, ty },
            StackAMode::NominalSPOffset(off, ty) => AMode::NominalSPOffset { off, ty },
            StackAMode::SPOffset(off, ty) => AMode::SPOffset { off, ty },
        }
    }
}

// Returns the size of stack space needed to store the
// `int_reg` and `vec_reg`.
fn saved_reg_stack_size(
    int_reg: &[Writable<RealReg>],
    vec_reg: &[Writable<RealReg>],
) -> (usize, usize) {
    // Round up to multiple of 2, to keep 16-byte stack alignment.
    let int_save_bytes = (int_reg.len() + (int_reg.len() & 1)) * 8;
    // The Procedure Call Standard for the Arm 64-bit Architecture
    // (AAPCS64, including several related ABIs such as the one used by
    // Windows) mandates saving only the bottom 8 bytes of the vector
    // registers, so we round up the number of registers to ensure
    // proper stack alignment (similarly to the situation with
    // `int_reg`).
    let vec_reg_size = 8;
    let vec_save_padding = vec_reg.len() & 1;
    // FIXME: SVE: ABI is different to Neon, so do we treat all vec regs as Z-regs?
    let vec_save_bytes = (vec_reg.len() + vec_save_padding) * vec_reg_size;

    (int_save_bytes, vec_save_bytes)
}

/// AArch64-specific ABI behavior. This struct just serves as an implementation
/// point for the trait; it is never actually instantiated.
pub struct AArch64MachineDeps;

impl IsaFlags for aarch64_settings::Flags {}

impl ABIMachineSpec for AArch64MachineDeps {
    type I = Inst;

    type F = aarch64_settings::Flags;

    fn word_bits() -> u32 {
        64
    }

    /// Return required stack alignment in bytes.
    fn stack_align(_call_conv: isa::CallConv) -> u32 {
        16
    }

    fn compute_arg_locs(
        call_conv: isa::CallConv,
        _flags: &settings::Flags,
        params: &[ir::AbiParam],
        args_or_rets: ArgsOrRets,
        add_ret_area_ptr: bool,
    ) -> CodegenResult<(ABIArgVec, i64, Option<usize>)> {
        let is_apple_cc = call_conv.extends_apple_aarch64();

        // See AArch64 ABI (https://github.com/ARM-software/abi-aa/blob/2021Q1/aapcs64/aapcs64.rst#64parameter-passing), sections 6.4.
        //
        // MacOS aarch64 is slightly different, see also
        // https://developer.apple.com/documentation/xcode/writing_arm64_code_for_apple_platforms.
        // We are diverging from the MacOS aarch64 implementation in the
        // following ways:
        // - sign- and zero- extensions of data types less than 32 bits are not
        // implemented yet.
        // - we align the arguments stack space to a 16-bytes boundary, while
        // the MacOS allows aligning only on 8 bytes. In practice it means we're
        // slightly overallocating when calling, which is fine, and doesn't
        // break our other invariants that the stack is always allocated in
        // 16-bytes chunks.

        let mut next_xreg = 0;
        let mut next_vreg = 0;
        let mut next_stack: u64 = 0;
        let mut ret = ABIArgVec::new();

        let (max_per_class_reg_vals, mut remaining_reg_vals) = match args_or_rets {
            ArgsOrRets::Args => (8, 16), // x0-x7 and v0-v7

            // Note on return values: on the regular ABI, we may return values
            // in 8 registers for V128 and I64 registers independently of the
            // number of register values returned in the other class. That is,
            // we can return values in up to 8 integer and
            // 8 vector registers at once.
            //
            // In Wasmtime, we can only use one register for return
            // value for all the register classes. That is, we can't
            // return values in both one integer and one vector
            // register; only one return value may be in a register.
            ArgsOrRets::Rets => {
                if call_conv.extends_wasmtime() {
                    (1, 1) // x0 or v0, but not both
                } else {
                    (8, 16) // x0-x7 and v0-v7
                }
            }
        };

        for param in params {
            assert!(
                legal_type_for_machine(param.value_type),
                "Invalid type for AArch64: {:?}",
                param.value_type
            );

            let (rcs, reg_types) = Inst::rc_for_type(param.value_type)?;

            if let ir::ArgumentPurpose::StructArgument(size) = param.purpose {
                assert_eq!(args_or_rets, ArgsOrRets::Args);
                let offset = next_stack as i64;
                let size = size as u64;
                assert!(size % 8 == 0, "StructArgument size is not properly aligned");
                next_stack += size;
                ret.push(ABIArg::StructArg {
                    pointer: None,
                    offset,
                    size,
                    purpose: param.purpose,
                });
                continue;
            }

            if let ir::ArgumentPurpose::StructReturn = param.purpose {
                // FIXME add assert_eq!(args_or_rets, ArgsOrRets::Args); once
                // ensure_struct_return_ptr_is_returned is gone.
                assert!(
                    param.value_type == types::I64,
                    "StructReturn must be a pointer sized integer"
                );
                ret.push(ABIArg::Slots {
                    slots: smallvec![ABIArgSlot::Reg {
                        reg: xreg(8).to_real_reg().unwrap(),
                        ty: types::I64,
                        extension: param.extension,
                    },],
                    purpose: ir::ArgumentPurpose::StructReturn,
                });
                continue;
            }

            // Handle multi register params
            //
            // See AArch64 ABI (https://github.com/ARM-software/abi-aa/blob/2021Q1/aapcs64/aapcs64.rst#642parameter-passing-rules), (Section 6.4.2 Stage C).
            //
            // For arguments with alignment of 16 we round up the the register number
            // to the next even value. So we can never allocate for example an i128
            // to X1 and X2, we have to skip one register and do X2, X3
            // (Stage C.8)
            // Note: The Apple ABI deviates a bit here. They don't respect Stage C.8
            // and will happily allocate a i128 to X1 and X2
            //
            // For integer types with alignment of 16 we also have the additional
            // restriction of passing the lower half in Xn and the upper half in Xn+1
            // (Stage C.9)
            //
            // For examples of how LLVM handles this: https://godbolt.org/z/bhd3vvEfh
            //
            // On the Apple ABI it is unspecified if we can spill half the value into the stack
            // i.e load the lower half into x7 and the upper half into the stack
            // LLVM does not seem to do this, so we are going to replicate that behaviour
            let is_multi_reg = rcs.len() >= 2;
            if is_multi_reg {
                assert!(
                    rcs.len() == 2,
                    "Unable to handle multi reg params with more than 2 regs"
                );
                assert!(
                    rcs == &[RegClass::Int, RegClass::Int],
                    "Unable to handle non i64 regs"
                );

                let reg_class_space = max_per_class_reg_vals - next_xreg;
                let reg_space = remaining_reg_vals;

                if reg_space >= 2 && reg_class_space >= 2 {
                    // The aarch64 ABI does not allow us to start a split argument
                    // at an odd numbered register. So we need to skip one register
                    //
                    // TODO: The Fast ABI should probably not skip the register
                    if !is_apple_cc && next_xreg % 2 != 0 {
                        next_xreg += 1;
                    }

                    let lower_reg = xreg(next_xreg);
                    let upper_reg = xreg(next_xreg + 1);

                    ret.push(ABIArg::Slots {
                        slots: smallvec![
                            ABIArgSlot::Reg {
                                reg: lower_reg.to_real_reg().unwrap(),
                                ty: reg_types[0],
                                extension: param.extension,
                            },
                            ABIArgSlot::Reg {
                                reg: upper_reg.to_real_reg().unwrap(),
                                ty: reg_types[1],
                                extension: param.extension,
                            },
                        ],
                        purpose: param.purpose,
                    });

                    next_xreg += 2;
                    remaining_reg_vals -= 2;
                    continue;
                }
            } else {
                // Single Register parameters
                let rc = rcs[0];
                let next_reg = match rc {
                    RegClass::Int => &mut next_xreg,
                    RegClass::Float => &mut next_vreg,
                };

                if *next_reg < max_per_class_reg_vals && remaining_reg_vals > 0 {
                    let reg = match rc {
                        RegClass::Int => xreg(*next_reg),
                        RegClass::Float => vreg(*next_reg),
                    };
                    // Overlay Z-regs on V-regs for parameter passing.
                    let ty = if param.value_type.is_dynamic_vector() {
                        dynamic_to_fixed(param.value_type)
                    } else {
                        param.value_type
                    };
                    ret.push(ABIArg::reg(
                        reg.to_real_reg().unwrap(),
                        ty,
                        param.extension,
                        param.purpose,
                    ));
                    *next_reg += 1;
                    remaining_reg_vals -= 1;
                    continue;
                }
            }

            // Spill to the stack

            // Compute the stack slot's size.
            let size = (ty_bits(param.value_type) / 8) as u64;

            let size = if is_apple_cc
                || (call_conv.extends_wasmtime() && args_or_rets == ArgsOrRets::Rets)
            {
                // MacOS aarch64 and Wasmtime allow stack slots with
                // sizes less than 8 bytes. They still need to be
                // properly aligned on their natural data alignment,
                // though.
                size
            } else {
                // Every arg takes a minimum slot of 8 bytes. (16-byte stack
                // alignment happens separately after all args.)
                std::cmp::max(size, 8)
            };

            // Align the stack slot.
            debug_assert!(size.is_power_of_two());
            next_stack = align_to(next_stack, size);

            let slots = reg_types
                .iter()
                .copied()
                // Build the stack locations from each slot
                .scan(next_stack, |next_stack, ty| {
                    let slot_offset = *next_stack as i64;
                    *next_stack += (ty_bits(ty) / 8) as u64;

                    Some((ty, slot_offset))
                })
                .map(|(ty, offset)| ABIArgSlot::Stack {
                    offset,
                    ty,
                    extension: param.extension,
                })
                .collect();

            ret.push(ABIArg::Slots {
                slots,
                purpose: param.purpose,
            });

            next_stack += size;
        }

        let extra_arg = if add_ret_area_ptr {
            debug_assert!(args_or_rets == ArgsOrRets::Args);
            if next_xreg < max_per_class_reg_vals && remaining_reg_vals > 0 {
                ret.push(ABIArg::reg(
                    xreg(next_xreg).to_real_reg().unwrap(),
                    I64,
                    ir::ArgumentExtension::None,
                    ir::ArgumentPurpose::Normal,
                ));
            } else {
                ret.push(ABIArg::stack(
                    next_stack as i64,
                    I64,
                    ir::ArgumentExtension::None,
                    ir::ArgumentPurpose::Normal,
                ));
                next_stack += 8;
            }
            Some(ret.len() - 1)
        } else {
            None
        };

        next_stack = align_to(next_stack, 16);

        // To avoid overflow issues, limit the arg/return size to something
        // reasonable -- here, 128 MB.
        if next_stack > STACK_ARG_RET_SIZE_LIMIT {
            return Err(CodegenError::ImplLimitExceeded);
        }

        Ok((ret, next_stack as i64, extra_arg))
    }

    fn fp_to_arg_offset(_call_conv: isa::CallConv, _flags: &settings::Flags) -> i64 {
        16 // frame pointer + return address.
    }

    fn gen_load_stack(mem: StackAMode, into_reg: Writable<Reg>, ty: Type) -> Inst {
        Inst::gen_load(into_reg, mem.into(), ty, MemFlags::trusted())
    }

    fn gen_store_stack(mem: StackAMode, from_reg: Reg, ty: Type) -> Inst {
        Inst::gen_store(mem.into(), from_reg, ty, MemFlags::trusted())
    }

    fn gen_move(to_reg: Writable<Reg>, from_reg: Reg, ty: Type) -> Inst {
        Inst::gen_move(to_reg, from_reg, ty)
    }

    fn gen_extend(
        to_reg: Writable<Reg>,
        from_reg: Reg,
        signed: bool,
        from_bits: u8,
        to_bits: u8,
    ) -> Inst {
        assert!(from_bits < to_bits);
        Inst::Extend {
            rd: to_reg,
            rn: from_reg,
            signed,
            from_bits,
            to_bits,
        }
    }

    fn gen_ret(setup_frame: bool, isa_flags: &aarch64_settings::Flags, rets: Vec<Reg>) -> Inst {
        if isa_flags.sign_return_address() && (setup_frame || isa_flags.sign_return_address_all()) {
            let key = if isa_flags.sign_return_address_with_bkey() {
                APIKey::B
            } else {
                APIKey::A
            };

            Inst::AuthenticatedRet {
                key,
                is_hint: !isa_flags.has_pauth(),
                rets,
            }
        } else {
            Inst::Ret { rets }
        }
    }

    fn gen_add_imm(into_reg: Writable<Reg>, from_reg: Reg, imm: u32) -> SmallInstVec<Inst> {
        let imm = imm as u64;
        let mut insts = SmallVec::new();
        if let Some(imm12) = Imm12::maybe_from_u64(imm) {
            insts.push(Inst::AluRRImm12 {
                alu_op: ALUOp::Add,
                size: OperandSize::Size64,
                rd: into_reg,
                rn: from_reg,
                imm12,
            });
        } else {
            let scratch2 = writable_tmp2_reg();
            assert_ne!(scratch2.to_reg(), from_reg);
            insts.extend(Inst::load_constant(scratch2, imm.into()));
            insts.push(Inst::AluRRRExtend {
                alu_op: ALUOp::Add,
                size: OperandSize::Size64,
                rd: into_reg,
                rn: from_reg,
                rm: scratch2.to_reg(),
                extendop: ExtendOp::UXTX,
            });
        }
        insts
    }

    fn gen_stack_lower_bound_trap(limit_reg: Reg) -> SmallInstVec<Inst> {
        let mut insts = SmallVec::new();
        insts.push(Inst::AluRRRExtend {
            alu_op: ALUOp::SubS,
            size: OperandSize::Size64,
            rd: writable_zero_reg(),
            rn: stack_reg(),
            rm: limit_reg,
            extendop: ExtendOp::UXTX,
        });
        insts.push(Inst::TrapIf {
            trap_code: ir::TrapCode::StackOverflow,
            // Here `Lo` == "less than" when interpreting the two
            // operands as unsigned integers.
            kind: CondBrKind::Cond(Cond::Lo),
        });
        insts
    }

    fn gen_get_stack_addr(mem: StackAMode, into_reg: Writable<Reg>, _ty: Type) -> Inst {
        // FIXME: Do something different for dynamic types?
        let mem = mem.into();
        Inst::LoadAddr { rd: into_reg, mem }
    }

    fn get_stacklimit_reg() -> Reg {
        spilltmp_reg()
    }

    fn gen_load_base_offset(into_reg: Writable<Reg>, base: Reg, offset: i32, ty: Type) -> Inst {
        let mem = AMode::RegOffset {
            rn: base,
            off: offset as i64,
            ty,
        };
        Inst::gen_load(into_reg, mem, ty, MemFlags::trusted())
    }

    fn gen_store_base_offset(base: Reg, offset: i32, from_reg: Reg, ty: Type) -> Inst {
        let mem = AMode::RegOffset {
            rn: base,
            off: offset as i64,
            ty,
        };
        Inst::gen_store(mem, from_reg, ty, MemFlags::trusted())
    }

    fn gen_sp_reg_adjust(amount: i32) -> SmallInstVec<Inst> {
        if amount == 0 {
            return SmallVec::new();
        }

        let (amount, is_sub) = if amount > 0 {
            (amount as u64, false)
        } else {
            (-amount as u64, true)
        };

        let alu_op = if is_sub { ALUOp::Sub } else { ALUOp::Add };

        let mut ret = SmallVec::new();
        if let Some(imm12) = Imm12::maybe_from_u64(amount) {
            let adj_inst = Inst::AluRRImm12 {
                alu_op,
                size: OperandSize::Size64,
                rd: writable_stack_reg(),
                rn: stack_reg(),
                imm12,
            };
            ret.push(adj_inst);
        } else {
            let tmp = writable_spilltmp_reg();
            let const_inst = Inst::load_constant(tmp, amount);
            let adj_inst = Inst::AluRRRExtend {
                alu_op,
                size: OperandSize::Size64,
                rd: writable_stack_reg(),
                rn: stack_reg(),
                rm: tmp.to_reg(),
                extendop: ExtendOp::UXTX,
            };
            ret.extend(const_inst);
            ret.push(adj_inst);
        }
        ret
    }

    fn gen_nominal_sp_adj(offset: i32) -> Inst {
        Inst::VirtualSPOffsetAdj {
            offset: offset as i64,
        }
    }

    fn gen_prologue_start(
        setup_frame: bool,
        call_conv: isa::CallConv,
        flags: &settings::Flags,
        isa_flags: &aarch64_settings::Flags,
    ) -> SmallInstVec<Inst> {
        let mut insts = SmallVec::new();

        if isa_flags.sign_return_address() && (setup_frame || isa_flags.sign_return_address_all()) {
            let key = if isa_flags.sign_return_address_with_bkey() {
                APIKey::B
            } else {
                APIKey::A
            };

            insts.push(Inst::Pacisp { key });

            if flags.unwind_info() {
                insts.push(Inst::Unwind {
                    inst: UnwindInst::Aarch64SetPointerAuth {
                        return_addresses: true,
                    },
                });
            }
        } else if flags.unwind_info() && call_conv.extends_apple_aarch64() {
            // The macOS unwinder seems to require this.
            insts.push(Inst::Unwind {
                inst: UnwindInst::Aarch64SetPointerAuth {
                    return_addresses: false,
                },
            });
        }

        insts
    }

    fn gen_prologue_frame_setup(flags: &settings::Flags) -> SmallInstVec<Inst> {
        let mut insts = SmallVec::new();

        // stp fp (x29), lr (x30), [sp, #-16]!
        insts.push(Inst::StoreP64 {
            rt: fp_reg(),
            rt2: link_reg(),
            mem: PairAMode::SPPreIndexed(SImm7Scaled::maybe_from_i64(-16, types::I64).unwrap()),
            flags: MemFlags::trusted(),
        });

        if flags.unwind_info() {
            insts.push(Inst::Unwind {
                inst: UnwindInst::PushFrameRegs {
                    offset_upward_to_caller_sp: 16, // FP, LR
                },
            });
        }

        // mov fp (x29), sp. This uses the ADDI rd, rs, 0 form of `MOV` because
        // the usual encoding (`ORR`) does not work with SP.
        insts.push(Inst::AluRRImm12 {
            alu_op: ALUOp::Add,
            size: OperandSize::Size64,
            rd: writable_fp_reg(),
            rn: stack_reg(),
            imm12: Imm12 {
                bits: 0,
                shift12: false,
            },
        });
        insts
    }

    fn gen_epilogue_frame_restore(_: &settings::Flags) -> SmallInstVec<Inst> {
        let mut insts = SmallVec::new();

        // N.B.: sp is already adjusted to the appropriate place by the
        // clobber-restore code (which also frees the fixed frame). Hence, there
        // is no need for the usual `mov sp, fp` here.

        // `ldp fp, lr, [sp], #16`
        insts.push(Inst::LoadP64 {
            rt: writable_fp_reg(),
            rt2: writable_link_reg(),
            mem: PairAMode::SPPostIndexed(SImm7Scaled::maybe_from_i64(16, types::I64).unwrap()),
            flags: MemFlags::trusted(),
        });
        insts
    }

    fn gen_probestack(_: u32) -> SmallInstVec<Self::I> {
        // TODO: implement if we ever require stack probes on an AArch64 host
        // (unlikely unless Lucet is ported)
        smallvec![]
    }

    fn gen_inline_probestack(_frame_size: u32, _guard_size: u32) -> SmallInstVec<Self::I> {
        unimplemented!("Inline stack probing is unimplemented on AArch64");
    }

    // Returns stack bytes used as well as instructions. Does not adjust
    // nominal SP offset; abi generic code will do that.
    fn gen_clobber_save(
        _call_conv: isa::CallConv,
        setup_frame: bool,
        flags: &settings::Flags,
        clobbered_callee_saves: &[Writable<RealReg>],
        fixed_frame_storage_size: u32,
        _outgoing_args_size: u32,
    ) -> (u64, SmallVec<[Inst; 16]>) {
        let mut clobbered_int = vec![];
        let mut clobbered_vec = vec![];

        for &reg in clobbered_callee_saves.iter() {
            match reg.to_reg().class() {
                RegClass::Int => clobbered_int.push(reg),
                RegClass::Float => clobbered_vec.push(reg),
            }
        }

        let (int_save_bytes, vec_save_bytes) = saved_reg_stack_size(&clobbered_int, &clobbered_vec);
        let total_save_bytes = int_save_bytes + vec_save_bytes;
        let clobber_size = total_save_bytes as i32;
        let mut insts = SmallVec::new();

        if flags.unwind_info() && setup_frame {
            // The *unwind* frame (but not the actual frame) starts at the
            // clobbers, just below the saved FP/LR pair.
            insts.push(Inst::Unwind {
                inst: UnwindInst::DefineNewFrame {
                    offset_downward_to_clobbers: clobber_size as u32,
                    offset_upward_to_caller_sp: 16, // FP, LR
                },
            });
        }

        // We use pre-indexed addressing modes here, rather than the possibly
        // more efficient "subtract sp once then used fixed offsets" scheme,
        // because (i) we cannot necessarily guarantee that the offset of a
        // clobber-save slot will be within a SImm7Scaled (+504-byte) offset
        // range of the whole frame including other slots, it is more complex to
        // conditionally generate a two-stage SP adjustment (clobbers then fixed
        // frame) otherwise, and generally we just want to maintain simplicity
        // here for maintainability.  Because clobbers are at the top of the
        // frame, just below FP, all that is necessary is to use the pre-indexed
        // "push" `[sp, #-16]!` addressing mode.
        //
        // `frame_offset` tracks offset above start-of-clobbers for unwind-info
        // purposes.
        let mut clobber_offset = clobber_size as u32;
        let clobber_offset_change = 16;
        let iter = clobbered_int.chunks_exact(2);

        if let [rd] = iter.remainder() {
            let rd: Reg = rd.to_reg().into();

            debug_assert_eq!(rd.class(), RegClass::Int);
            // str rd, [sp, #-16]!
            insts.push(Inst::Store64 {
                rd,
                mem: AMode::SPPreIndexed {
                    simm9: SImm9::maybe_from_i64(-clobber_offset_change).unwrap(),
                },
                flags: MemFlags::trusted(),
            });

            if flags.unwind_info() {
                clobber_offset -= clobber_offset_change as u32;
                insts.push(Inst::Unwind {
                    inst: UnwindInst::SaveReg {
                        clobber_offset,
                        reg: rd.to_real_reg().unwrap(),
                    },
                });
            }
        }

        let mut iter = iter.rev();

        while let Some([rt, rt2]) = iter.next() {
            // .to_reg().into(): Writable<RealReg> --> RealReg --> Reg
            let rt: Reg = rt.to_reg().into();
            let rt2: Reg = rt2.to_reg().into();

            debug_assert!(rt.class() == RegClass::Int);
            debug_assert!(rt2.class() == RegClass::Int);

            // stp rt, rt2, [sp, #-16]!
            insts.push(Inst::StoreP64 {
                rt,
                rt2,
                mem: PairAMode::SPPreIndexed(
                    SImm7Scaled::maybe_from_i64(-clobber_offset_change, types::I64).unwrap(),
                ),
                flags: MemFlags::trusted(),
            });

            if flags.unwind_info() {
                clobber_offset -= clobber_offset_change as u32;
                insts.push(Inst::Unwind {
                    inst: UnwindInst::SaveReg {
                        clobber_offset,
                        reg: rt.to_real_reg().unwrap(),
                    },
                });
                insts.push(Inst::Unwind {
                    inst: UnwindInst::SaveReg {
                        clobber_offset: clobber_offset + (clobber_offset_change / 2) as u32,
                        reg: rt2.to_real_reg().unwrap(),
                    },
                });
            }
        }

        let store_vec_reg = |rd| Inst::FpuStore64 {
            rd,
            mem: AMode::SPPreIndexed {
                simm9: SImm9::maybe_from_i64(-clobber_offset_change).unwrap(),
            },
            flags: MemFlags::trusted(),
        };
        let iter = clobbered_vec.chunks_exact(2);

        if let [rd] = iter.remainder() {
            let rd: Reg = rd.to_reg().into();

            debug_assert_eq!(rd.class(), RegClass::Float);
            insts.push(store_vec_reg(rd));

            if flags.unwind_info() {
                clobber_offset -= clobber_offset_change as u32;
                insts.push(Inst::Unwind {
                    inst: UnwindInst::SaveReg {
                        clobber_offset,
                        reg: rd.to_real_reg().unwrap(),
                    },
                });
            }
        }

        let store_vec_reg_pair = |rt, rt2| {
            let clobber_offset_change = 16;

            (
                Inst::FpuStoreP64 {
                    rt,
                    rt2,
                    mem: PairAMode::SPPreIndexed(
                        SImm7Scaled::maybe_from_i64(-clobber_offset_change, F64).unwrap(),
                    ),
                    flags: MemFlags::trusted(),
                },
                clobber_offset_change as u32,
            )
        };
        let mut iter = iter.rev();

        while let Some([rt, rt2]) = iter.next() {
            let rt: Reg = rt.to_reg().into();
            let rt2: Reg = rt2.to_reg().into();

            debug_assert_eq!(rt.class(), RegClass::Float);
            debug_assert_eq!(rt2.class(), RegClass::Float);

            let (inst, clobber_offset_change) = store_vec_reg_pair(rt, rt2);

            insts.push(inst);

            if flags.unwind_info() {
                clobber_offset -= clobber_offset_change;
                insts.push(Inst::Unwind {
                    inst: UnwindInst::SaveReg {
                        clobber_offset,
                        reg: rt.to_real_reg().unwrap(),
                    },
                });
                insts.push(Inst::Unwind {
                    inst: UnwindInst::SaveReg {
                        clobber_offset: clobber_offset + clobber_offset_change / 2,
                        reg: rt2.to_real_reg().unwrap(),
                    },
                });
            }
        }

        // Allocate the fixed frame below the clobbers if necessary.
        if fixed_frame_storage_size > 0 {
            insts.extend(Self::gen_sp_reg_adjust(-(fixed_frame_storage_size as i32)));
        }

        (total_save_bytes as u64, insts)
    }

    fn gen_clobber_restore(
        _call_conv: isa::CallConv,
        sig: &Signature,
        flags: &settings::Flags,
        clobbers: &[Writable<RealReg>],
        fixed_frame_storage_size: u32,
        _outgoing_args_size: u32,
    ) -> SmallVec<[Inst; 16]> {
        let mut insts = SmallVec::new();
        let (clobbered_int, clobbered_vec) = get_regs_restored_in_epilogue(flags, sig, clobbers);

        // Free the fixed frame if necessary.
        if fixed_frame_storage_size > 0 {
            insts.extend(Self::gen_sp_reg_adjust(fixed_frame_storage_size as i32));
        }

        let load_vec_reg = |rd| Inst::FpuLoad64 {
            rd,
            mem: AMode::SPPostIndexed {
                simm9: SImm9::maybe_from_i64(16).unwrap(),
            },
            flags: MemFlags::trusted(),
        };
        let load_vec_reg_pair = |rt, rt2| Inst::FpuLoadP64 {
            rt,
            rt2,
            mem: PairAMode::SPPostIndexed(SImm7Scaled::maybe_from_i64(16, F64).unwrap()),
            flags: MemFlags::trusted(),
        };

        let mut iter = clobbered_vec.chunks_exact(2);

        while let Some([rt, rt2]) = iter.next() {
            let rt: Writable<Reg> = rt.map(|r| r.into());
            let rt2: Writable<Reg> = rt2.map(|r| r.into());

            debug_assert_eq!(rt.to_reg().class(), RegClass::Float);
            debug_assert_eq!(rt2.to_reg().class(), RegClass::Float);
            insts.push(load_vec_reg_pair(rt, rt2));
        }

        debug_assert!(iter.remainder().len() <= 1);

        if let [rd] = iter.remainder() {
            let rd: Writable<Reg> = rd.map(|r| r.into());

            debug_assert_eq!(rd.to_reg().class(), RegClass::Float);
            insts.push(load_vec_reg(rd));
        }

        let mut iter = clobbered_int.chunks_exact(2);

        while let Some([rt, rt2]) = iter.next() {
            let rt: Writable<Reg> = rt.map(|r| r.into());
            let rt2: Writable<Reg> = rt2.map(|r| r.into());

            debug_assert_eq!(rt.to_reg().class(), RegClass::Int);
            debug_assert_eq!(rt2.to_reg().class(), RegClass::Int);
            // ldp rt, rt2, [sp], #16
            insts.push(Inst::LoadP64 {
                rt,
                rt2,
                mem: PairAMode::SPPostIndexed(SImm7Scaled::maybe_from_i64(16, I64).unwrap()),
                flags: MemFlags::trusted(),
            });
        }

        debug_assert!(iter.remainder().len() <= 1);

        if let [rd] = iter.remainder() {
            let rd: Writable<Reg> = rd.map(|r| r.into());

            debug_assert_eq!(rd.to_reg().class(), RegClass::Int);
            // ldr rd, [sp], #16
            insts.push(Inst::ULoad64 {
                rd,
                mem: AMode::SPPostIndexed {
                    simm9: SImm9::maybe_from_i64(16).unwrap(),
                },
                flags: MemFlags::trusted(),
            });
        }

        insts
    }

    fn gen_call(
        dest: &CallDest,
        uses: SmallVec<[Reg; 8]>,
        defs: SmallVec<[Writable<Reg>; 8]>,
        clobbers: PRegSet,
        opcode: ir::Opcode,
        tmp: Writable<Reg>,
        callee_conv: isa::CallConv,
        caller_conv: isa::CallConv,
    ) -> SmallVec<[Inst; 2]> {
        let mut insts = SmallVec::new();
        match &dest {
            &CallDest::ExtName(ref name, RelocDistance::Near) => insts.push(Inst::Call {
                info: Box::new(CallInfo {
                    dest: name.clone(),
                    uses,
                    defs,
                    clobbers,
                    opcode,
                    caller_callconv: caller_conv,
                    callee_callconv: callee_conv,
                }),
            }),
            &CallDest::ExtName(ref name, RelocDistance::Far) => {
                insts.push(Inst::LoadExtName {
                    rd: tmp,
                    name: Box::new(name.clone()),
                    offset: 0,
                });
                insts.push(Inst::CallInd {
                    info: Box::new(CallIndInfo {
                        rn: tmp.to_reg(),
                        uses,
                        defs,
                        clobbers,
                        opcode,
                        caller_callconv: caller_conv,
                        callee_callconv: callee_conv,
                    }),
                });
            }
            &CallDest::Reg(reg) => insts.push(Inst::CallInd {
                info: Box::new(CallIndInfo {
                    rn: *reg,
                    uses,
                    defs,
                    clobbers,
                    opcode,
                    caller_callconv: caller_conv,
                    callee_callconv: callee_conv,
                }),
            }),
        }

        insts
    }

    fn gen_memcpy(
        call_conv: isa::CallConv,
        dst: Reg,
        src: Reg,
        size: usize,
    ) -> SmallVec<[Self::I; 8]> {
        let mut insts = SmallVec::new();
        let arg0 = writable_xreg(0);
        let arg1 = writable_xreg(1);
        let arg2 = writable_xreg(2);
        insts.push(Inst::gen_move(arg0, dst, I64));
        insts.push(Inst::gen_move(arg1, src, I64));
        insts.extend(Inst::load_constant(arg2, size as u64).into_iter());
        insts.push(Inst::Call {
            info: Box::new(CallInfo {
                dest: ExternalName::LibCall(LibCall::Memcpy),
                uses: smallvec![arg0.to_reg(), arg1.to_reg(), arg2.to_reg()],
                defs: smallvec![],
                clobbers: Self::get_regs_clobbered_by_call(call_conv),
                opcode: Opcode::Call,
                caller_callconv: call_conv,
                callee_callconv: call_conv,
            }),
        });
        insts
    }

    fn get_number_of_spillslots_for_value(rc: RegClass, vector_size: u32) -> u32 {
        assert_eq!(vector_size % 8, 0);
        // We allocate in terms of 8-byte slots.
        match rc {
            RegClass::Int => 1,
            RegClass::Float => vector_size / 8,
        }
    }

    /// Get the current virtual-SP offset from an instruction-emission state.
    fn get_virtual_sp_offset_from_state(s: &EmitState) -> i64 {
        s.virtual_sp_offset
    }

    /// Get the nominal-SP-to-FP offset from an instruction-emission state.
    fn get_nominal_sp_to_fp(s: &EmitState) -> i64 {
        s.nominal_sp_to_fp
    }

    fn get_regs_clobbered_by_call(_call_conv_of_callee: isa::CallConv) -> PRegSet {
        DEFAULT_AAPCS_CLOBBERS
    }

    fn get_ext_mode(
        _call_conv: isa::CallConv,
        _specified: ir::ArgumentExtension,
    ) -> ir::ArgumentExtension {
        ir::ArgumentExtension::None
    }

    fn get_clobbered_callee_saves(
        _call_conv: isa::CallConv,
        flags: &settings::Flags,
        sig: &Signature,
        regs: &[Writable<RealReg>],
    ) -> Vec<Writable<RealReg>> {
        let mut regs: Vec<Writable<RealReg>> = regs
            .iter()
            .cloned()
            .filter(|r| is_reg_saved_in_prologue(flags.enable_pinned_reg(), sig, r.to_reg()))
            .collect();

        // Sort registers for deterministic code output. We can do an unstable
        // sort because the registers will be unique (there are no dups).
        regs.sort_unstable_by_key(|r| VReg::from(r.to_reg()).vreg());
        regs
    }

    fn is_frame_setup_needed(
        is_leaf: bool,
        stack_args_size: u32,
        num_clobbered_callee_saves: usize,
        fixed_frame_storage_size: u32,
    ) -> bool {
        !is_leaf
            // The function arguments that are passed on the stack are addressed
            // relative to the Frame Pointer.
            || stack_args_size > 0
            || num_clobbered_callee_saves > 0
            || fixed_frame_storage_size > 0
    }
}

/// Is this type supposed to be seen on this machine? E.g. references of the
/// wrong width are invalid.
fn legal_type_for_machine(ty: Type) -> bool {
    match ty {
        R32 => false,
        _ => true,
    }
}

/// Is the given register saved in the prologue if clobbered, i.e., is it a
/// callee-save?
fn is_reg_saved_in_prologue(enable_pinned_reg: bool, sig: &Signature, r: RealReg) -> bool {
    // FIXME: We need to inspect whether a function is returning Z or P regs too.
    let save_z_regs = sig
        .params
        .iter()
        .filter(|p| p.value_type.is_dynamic_vector())
        .count()
        != 0;

    match r.class() {
        RegClass::Int => {
            // x19 - x28 inclusive are callee-saves.
            // However, x21 is the pinned reg if `enable_pinned_reg`
            // is set, and is implicitly globally-allocated, hence not
            // callee-saved in prologues.
            if enable_pinned_reg && r.hw_enc() == PINNED_REG {
                false
            } else {
                r.hw_enc() >= 19 && r.hw_enc() <= 28
            }
        }
        RegClass::Float => {
            // If a subroutine takes at least one argument in scalable vector registers
            // or scalable predicate registers, or if it is a function that returns
            // results in such registers, it must ensure that the entire contents of
            // z8-z23 are preserved across the call. In other cases it need only
            // preserve the low 64 bits of z8-z15.
            if save_z_regs {
                r.hw_enc() >= 8 && r.hw_enc() <= 23
            } else {
                // v8 - v15 inclusive are callee-saves.
                r.hw_enc() >= 8 && r.hw_enc() <= 15
            }
        }
    }
}

/// Return the set of all integer and vector registers that must be saved in the
/// prologue and restored in the epilogue, given the set of all registers
/// written by the function's body.
fn get_regs_restored_in_epilogue(
    flags: &settings::Flags,
    sig: &Signature,
    regs: &[Writable<RealReg>],
) -> (Vec<Writable<RealReg>>, Vec<Writable<RealReg>>) {
    let mut int_saves = vec![];
    let mut vec_saves = vec![];
    for &reg in regs {
        if is_reg_saved_in_prologue(flags.enable_pinned_reg(), sig, reg.to_reg()) {
            match reg.to_reg().class() {
                RegClass::Int => int_saves.push(reg),
                RegClass::Float => vec_saves.push(reg),
            }
        }
    }
    // Sort registers for deterministic code output. We can do an unstable sort because the
    // registers will be unique (there are no dups).
    int_saves.sort_unstable_by_key(|r| VReg::from(r.to_reg()).vreg());
    vec_saves.sort_unstable_by_key(|r| VReg::from(r.to_reg()).vreg());
    (int_saves, vec_saves)
}

const fn default_aapcs_clobbers() -> PRegSet {
    PRegSet::empty()
        // x0 - x17 inclusive are caller-saves.
        .with(xreg_preg(0))
        .with(xreg_preg(1))
        .with(xreg_preg(2))
        .with(xreg_preg(3))
        .with(xreg_preg(4))
        .with(xreg_preg(5))
        .with(xreg_preg(6))
        .with(xreg_preg(7))
        .with(xreg_preg(8))
        .with(xreg_preg(9))
        .with(xreg_preg(10))
        .with(xreg_preg(11))
        .with(xreg_preg(12))
        .with(xreg_preg(13))
        .with(xreg_preg(14))
        .with(xreg_preg(15))
        .with(xreg_preg(16))
        .with(xreg_preg(17))
        // v0 - v7 inclusive and v16 - v31 inclusive are
        // caller-saves. The upper 64 bits of v8 - v15 inclusive are
        // also caller-saves.  However, because we cannot currently
        // represent partial registers to regalloc2, we indicate here
        // that every vector register is caller-save. Because this
        // function is used at *callsites*, approximating in this
        // direction (save more than necessary) is conservative and
        // thus safe.
        //
        // Note that we exclude clobbers from a call instruction when
        // a call instruction's callee has the same ABI as the caller
        // (the current function body); this is safe (anything
        // clobbered by callee can be clobbered by caller as well) and
        // avoids unnecessary saves of v8-v15 in the prologue even
        // though we include them as defs here.
        .with(vreg_preg(0))
        .with(vreg_preg(1))
        .with(vreg_preg(2))
        .with(vreg_preg(3))
        .with(vreg_preg(4))
        .with(vreg_preg(5))
        .with(vreg_preg(6))
        .with(vreg_preg(7))
        .with(vreg_preg(8))
        .with(vreg_preg(9))
        .with(vreg_preg(10))
        .with(vreg_preg(11))
        .with(vreg_preg(12))
        .with(vreg_preg(13))
        .with(vreg_preg(14))
        .with(vreg_preg(15))
        .with(vreg_preg(16))
        .with(vreg_preg(17))
        .with(vreg_preg(18))
        .with(vreg_preg(19))
        .with(vreg_preg(20))
        .with(vreg_preg(21))
        .with(vreg_preg(22))
        .with(vreg_preg(23))
        .with(vreg_preg(24))
        .with(vreg_preg(25))
        .with(vreg_preg(26))
        .with(vreg_preg(27))
        .with(vreg_preg(28))
        .with(vreg_preg(29))
        .with(vreg_preg(30))
        .with(vreg_preg(31))
}

const DEFAULT_AAPCS_CLOBBERS: PRegSet = default_aapcs_clobbers();