1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
//! Constant-time software implementation of POLYVAL for 64-bit architectures.
//! Adapted from BearSSL's `ghash_ctmul64.c`:
//!
//! <https://bearssl.org/gitweb/?p=BearSSL;a=blob;f=src/hash/ghash_ctmul64.c;hb=4b6046412>
//!
//! Copyright (c) 2016 Thomas Pornin <pornin@bolet.org>

use crate::{Block, Key};
use core::{
    convert::TryInto,
    num::Wrapping,
    ops::{Add, Mul},
};
use universal_hash::{consts::U16, NewUniversalHash, Output, UniversalHash};

#[cfg(feature = "zeroize")]
use zeroize::Zeroize;

/// **POLYVAL**: GHASH-like universal hash over GF(2^128).
#[derive(Clone)]
pub struct Polyval {
    /// GF(2^128) field element input blocks are multiplied by
    h: U64x2,

    /// Field element representing the computed universal hash
    s: U64x2,
}

impl NewUniversalHash for Polyval {
    type KeySize = U16;

    /// Initialize POLYVAL with the given `H` field element
    fn new(h: &Key) -> Self {
        Self {
            h: h.into(),
            s: U64x2::default(),
        }
    }
}

impl UniversalHash for Polyval {
    type BlockSize = U16;

    /// Input a field element `X` to be authenticated
    fn update(&mut self, x: &Block) {
        let x = U64x2::from(x);
        self.s = (self.s + x) * self.h;
    }

    /// Reset internal state
    fn reset(&mut self) {
        self.s = U64x2::default();
    }

    /// Get POLYVAL result (i.e. computed `S` field element)
    fn finalize(self) -> Output<Self> {
        let mut block = Block::default();

        for (chunk, i) in block.chunks_mut(8).zip(&[self.s.0, self.s.1]) {
            chunk.copy_from_slice(&i.to_le_bytes());
        }

        Output::new(block)
    }
}

#[cfg(feature = "zeroize")]
impl Drop for Polyval {
    fn drop(&mut self) {
        self.h.zeroize();
        self.s.zeroize();
    }
}

/// 2 x `u64` values
#[derive(Copy, Clone, Debug, Default, Eq, PartialEq)]
struct U64x2(u64, u64);

impl From<&Block> for U64x2 {
    fn from(bytes: &Block) -> U64x2 {
        U64x2(
            u64::from_le_bytes(bytes[..8].try_into().unwrap()),
            u64::from_le_bytes(bytes[8..].try_into().unwrap()),
        )
    }
}

#[allow(clippy::suspicious_arithmetic_impl)]
impl Add for U64x2 {
    type Output = Self;

    /// Adds two POLYVAL field elements.
    fn add(self, rhs: Self) -> Self::Output {
        U64x2(self.0 ^ rhs.0, self.1 ^ rhs.1)
    }
}

#[allow(clippy::suspicious_arithmetic_impl)]
impl Mul for U64x2 {
    type Output = Self;

    /// Computes carryless POLYVAL multiplication over GF(2^128) in constant time.
    ///
    /// Method described at:
    /// <https://www.bearssl.org/constanttime.html#ghash-for-gcm>
    ///
    /// POLYVAL multiplication is effectively the little endian equivalent of
    /// GHASH multiplication, aside from one small detail described here:
    ///
    /// <https://crypto.stackexchange.com/questions/66448/how-does-bearssls-gcm-modular-reduction-work/66462#66462>
    ///
    /// > The product of two bit-reversed 128-bit polynomials yields the
    /// > bit-reversed result over 255 bits, not 256. The BearSSL code ends up
    /// > with a 256-bit result in zw[], and that value is shifted by one bit,
    /// > because of that reversed convention issue. Thus, the code must
    /// > include a shifting step to put it back where it should
    ///
    /// This shift is unnecessary for POLYVAL and has been removed.
    fn mul(self, rhs: Self) -> Self {
        let h0 = self.0;
        let h1 = self.1;
        let h0r = rev64(h0);
        let h1r = rev64(h1);
        let h2 = h0 ^ h1;
        let h2r = h0r ^ h1r;

        let y0 = rhs.0;
        let y1 = rhs.1;
        let y0r = rev64(y0);
        let y1r = rev64(y1);
        let y2 = y0 ^ y1;
        let y2r = y0r ^ y1r;
        let z0 = bmul64(y0, h0);
        let z1 = bmul64(y1, h1);

        let mut z2 = bmul64(y2, h2);
        let mut z0h = bmul64(y0r, h0r);
        let mut z1h = bmul64(y1r, h1r);
        let mut z2h = bmul64(y2r, h2r);

        z2 ^= z0 ^ z1;
        z2h ^= z0h ^ z1h;
        z0h = rev64(z0h) >> 1;
        z1h = rev64(z1h) >> 1;
        z2h = rev64(z2h) >> 1;

        let v0 = z0;
        let mut v1 = z0h ^ z2;
        let mut v2 = z1 ^ z2h;
        let mut v3 = z1h;

        v2 ^= v0 ^ (v0 >> 1) ^ (v0 >> 2) ^ (v0 >> 7);
        v1 ^= (v0 << 63) ^ (v0 << 62) ^ (v0 << 57);
        v3 ^= v1 ^ (v1 >> 1) ^ (v1 >> 2) ^ (v1 >> 7);
        v2 ^= (v1 << 63) ^ (v1 << 62) ^ (v1 << 57);

        U64x2(v2, v3)
    }
}

#[cfg(feature = "zeroize")]
impl Zeroize for U64x2 {
    fn zeroize(&mut self) {
        self.0.zeroize();
        self.1.zeroize();
    }
}

/// Multiplication in GF(2)[X], truncated to the low 64-bits, with “holes”
/// (sequences of zeroes) to avoid carry spilling.
///
/// When carries do occur, they wind up in a "hole" and are subsequently masked
/// out of the result.
fn bmul64(x: u64, y: u64) -> u64 {
    let x0 = Wrapping(x & 0x1111_1111_1111_1111);
    let x1 = Wrapping(x & 0x2222_2222_2222_2222);
    let x2 = Wrapping(x & 0x4444_4444_4444_4444);
    let x3 = Wrapping(x & 0x8888_8888_8888_8888);
    let y0 = Wrapping(y & 0x1111_1111_1111_1111);
    let y1 = Wrapping(y & 0x2222_2222_2222_2222);
    let y2 = Wrapping(y & 0x4444_4444_4444_4444);
    let y3 = Wrapping(y & 0x8888_8888_8888_8888);

    let mut z0 = ((x0 * y0) ^ (x1 * y3) ^ (x2 * y2) ^ (x3 * y1)).0;
    let mut z1 = ((x0 * y1) ^ (x1 * y0) ^ (x2 * y3) ^ (x3 * y2)).0;
    let mut z2 = ((x0 * y2) ^ (x1 * y1) ^ (x2 * y0) ^ (x3 * y3)).0;
    let mut z3 = ((x0 * y3) ^ (x1 * y2) ^ (x2 * y1) ^ (x3 * y0)).0;

    z0 &= 0x1111_1111_1111_1111;
    z1 &= 0x2222_2222_2222_2222;
    z2 &= 0x4444_4444_4444_4444;
    z3 &= 0x8888_8888_8888_8888;

    z0 | z1 | z2 | z3
}

/// Bit-reverse a `u64` in constant time
fn rev64(mut x: u64) -> u64 {
    x = ((x & 0x5555_5555_5555_5555) << 1) | ((x >> 1) & 0x5555_5555_5555_5555);
    x = ((x & 0x3333_3333_3333_3333) << 2) | ((x >> 2) & 0x3333_3333_3333_3333);
    x = ((x & 0x0f0f_0f0f_0f0f_0f0f) << 4) | ((x >> 4) & 0x0f0f_0f0f_0f0f_0f0f);
    x = ((x & 0x00ff_00ff_00ff_00ff) << 8) | ((x >> 8) & 0x00ff_00ff_00ff_00ff);
    x = ((x & 0xffff_0000_ffff) << 16) | ((x >> 16) & 0xffff_0000_ffff);
    (x << 32) | (x >> 32)
}