1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
//! Public key recovery support.
use crate::{Error, Result};
/// Recovery IDs, a.k.a. "recid".
///
/// This is an integer value `0`, `1`, `2`, or `3` included along with a
/// signature which is used during the recovery process to select the correct
/// public key from the signature.
///
/// It consists of two bits of information:
///
/// - low bit (0/1): was the y-coordinate of the affine point resulting from
/// the fixed-base multiplication 𝑘×𝑮 odd? This part of the algorithm
/// functions similar to point decompression.
/// - hi bit (3/4): did the affine x-coordinate of 𝑘×𝑮 overflow the order of
/// the scalar field, requiring a reduction when computing `r`?
#[derive(Copy, Clone, Debug, Eq, PartialEq, PartialOrd, Ord)]
pub struct RecoveryId(u8);
impl RecoveryId {
/// Maximum supported value for the recovery ID (inclusive).
pub const MAX: u8 = 3;
/// Create a new [`RecoveryId`] from the following 1-bit arguments:
///
/// - `is_y_odd`: is the affine y-coordinate of 𝑘×𝑮 odd?
/// - `is_x_reduced`: did the affine x-coordinate of 𝑘×𝑮 overflow the curve order?
pub const fn new(is_y_odd: bool, is_x_reduced: bool) -> Self {
Self((is_x_reduced as u8) << 1 | (is_y_odd as u8))
}
/// Did the affine x-coordinate of 𝑘×𝑮 overflow the curve order?
pub const fn is_x_reduced(self) -> bool {
(self.0 & 0b10) != 0
}
/// Is the affine y-coordinate of 𝑘×𝑮 odd?
pub const fn is_y_odd(self) -> bool {
(self.0 & 1) != 0
}
/// Convert a `u8` into a [`RecoveryId`].
pub const fn from_byte(byte: u8) -> Option<Self> {
if byte <= Self::MAX {
Some(Self(byte))
} else {
None
}
}
/// Convert this [`RecoveryId`] into a `u8`.
pub const fn to_byte(self) -> u8 {
self.0
}
}
impl TryFrom<u8> for RecoveryId {
type Error = Error;
fn try_from(byte: u8) -> Result<Self> {
Self::from_byte(byte).ok_or_else(Error::new)
}
}
impl From<RecoveryId> for u8 {
fn from(id: RecoveryId) -> u8 {
id.0
}
}
#[cfg(test)]
mod tests {
use super::RecoveryId;
#[test]
fn new() {
assert_eq!(RecoveryId::new(false, false).to_byte(), 0);
assert_eq!(RecoveryId::new(true, false).to_byte(), 1);
assert_eq!(RecoveryId::new(false, true).to_byte(), 2);
assert_eq!(RecoveryId::new(true, true).to_byte(), 3);
}
#[test]
fn try_from() {
for n in 0u8..=3 {
assert_eq!(RecoveryId::try_from(n).unwrap().to_byte(), n);
}
for n in 4u8..=255 {
assert!(RecoveryId::try_from(n).is_err());
}
}
#[test]
fn is_x_reduced() {
assert_eq!(RecoveryId::try_from(0).unwrap().is_x_reduced(), false);
assert_eq!(RecoveryId::try_from(1).unwrap().is_x_reduced(), false);
assert_eq!(RecoveryId::try_from(2).unwrap().is_x_reduced(), true);
assert_eq!(RecoveryId::try_from(3).unwrap().is_x_reduced(), true);
}
#[test]
fn is_y_odd() {
assert_eq!(RecoveryId::try_from(0).unwrap().is_y_odd(), false);
assert_eq!(RecoveryId::try_from(1).unwrap().is_y_odd(), true);
assert_eq!(RecoveryId::try_from(2).unwrap().is_y_odd(), false);
assert_eq!(RecoveryId::try_from(3).unwrap().is_y_odd(), true);
}
}