1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
// Copyright 2017 Amanieu d'Antras
//
// Licensed under the Apache License, Version 2.0, <LICENSE-APACHE or
// http://apache.org/licenses/LICENSE-2.0> or the MIT license <LICENSE-MIT or
// http://opensource.org/licenses/MIT>, at your option. This file may not be
// copied, modified, or distributed except according to those terms.
use crate::POINTER_WIDTH;
use once_cell::sync::Lazy;
use std::cell::Cell;
use std::cmp::Reverse;
use std::collections::BinaryHeap;
use std::sync::Mutex;
use std::usize;
/// Thread ID manager which allocates thread IDs. It attempts to aggressively
/// reuse thread IDs where possible to avoid cases where a ThreadLocal grows
/// indefinitely when it is used by many short-lived threads.
struct ThreadIdManager {
free_from: usize,
free_list: BinaryHeap<Reverse<usize>>,
}
impl ThreadIdManager {
fn new() -> ThreadIdManager {
ThreadIdManager {
free_from: 0,
free_list: BinaryHeap::new(),
}
}
fn alloc(&mut self) -> usize {
if let Some(id) = self.free_list.pop() {
id.0
} else {
let id = self.free_from;
self.free_from = self
.free_from
.checked_add(1)
.expect("Ran out of thread IDs");
id
}
}
fn free(&mut self, id: usize) {
self.free_list.push(Reverse(id));
}
}
static THREAD_ID_MANAGER: Lazy<Mutex<ThreadIdManager>> =
Lazy::new(|| Mutex::new(ThreadIdManager::new()));
/// Data which is unique to the current thread while it is running.
/// A thread ID may be reused after a thread exits.
#[derive(Clone, Copy)]
pub(crate) struct Thread {
/// The thread ID obtained from the thread ID manager.
pub(crate) id: usize,
/// The bucket this thread's local storage will be in.
pub(crate) bucket: usize,
/// The size of the bucket this thread's local storage will be in.
pub(crate) bucket_size: usize,
/// The index into the bucket this thread's local storage is in.
pub(crate) index: usize,
}
impl Thread {
fn new(id: usize) -> Thread {
let bucket = usize::from(POINTER_WIDTH) - id.leading_zeros() as usize;
let bucket_size = 1 << bucket.saturating_sub(1);
let index = if id != 0 { id ^ bucket_size } else { 0 };
Thread {
id,
bucket,
bucket_size,
index,
}
}
}
cfg_if::cfg_if! {
if #[cfg(feature = "nightly")] {
// This is split into 2 thread-local variables so that we can check whether the
// thread is initialized without having to register a thread-local destructor.
//
// This makes the fast path smaller.
#[thread_local]
static mut THREAD: Option<Thread> = None;
thread_local! { static THREAD_GUARD: ThreadGuard = const { ThreadGuard { id: Cell::new(0) } }; }
// Guard to ensure the thread ID is released on thread exit.
struct ThreadGuard {
// We keep a copy of the thread ID in the ThreadGuard: we can't
// reliably access THREAD in our Drop impl due to the unpredictable
// order of TLS destructors.
id: Cell<usize>,
}
impl Drop for ThreadGuard {
fn drop(&mut self) {
// Release the thread ID. Any further accesses to the thread ID
// will go through get_slow which will either panic or
// initialize a new ThreadGuard.
unsafe {
THREAD = None;
}
THREAD_ID_MANAGER.lock().unwrap().free(self.id.get());
}
}
/// Returns a thread ID for the current thread, allocating one if needed.
#[inline]
pub(crate) fn get() -> Thread {
if let Some(thread) = unsafe { THREAD } {
thread
} else {
get_slow()
}
}
/// Out-of-line slow path for allocating a thread ID.
#[cold]
fn get_slow() -> Thread {
let new = Thread::new(THREAD_ID_MANAGER.lock().unwrap().alloc());
unsafe {
THREAD = Some(new);
}
THREAD_GUARD.with(|guard| guard.id.set(new.id));
new
}
} else {
// This is split into 2 thread-local variables so that we can check whether the
// thread is initialized without having to register a thread-local destructor.
//
// This makes the fast path smaller.
thread_local! { static THREAD: Cell<Option<Thread>> = const { Cell::new(None) }; }
thread_local! { static THREAD_GUARD: ThreadGuard = const { ThreadGuard { id: Cell::new(0) } }; }
// Guard to ensure the thread ID is released on thread exit.
struct ThreadGuard {
// We keep a copy of the thread ID in the ThreadGuard: we can't
// reliably access THREAD in our Drop impl due to the unpredictable
// order of TLS destructors.
id: Cell<usize>,
}
impl Drop for ThreadGuard {
fn drop(&mut self) {
// Release the thread ID. Any further accesses to the thread ID
// will go through get_slow which will either panic or
// initialize a new ThreadGuard.
let _ = THREAD.try_with(|thread| thread.set(None));
THREAD_ID_MANAGER.lock().unwrap().free(self.id.get());
}
}
/// Returns a thread ID for the current thread, allocating one if needed.
#[inline]
pub(crate) fn get() -> Thread {
THREAD.with(|thread| {
if let Some(thread) = thread.get() {
thread
} else {
get_slow(thread)
}
})
}
/// Out-of-line slow path for allocating a thread ID.
#[cold]
fn get_slow(thread: &Cell<Option<Thread>>) -> Thread {
let new = Thread::new(THREAD_ID_MANAGER.lock().unwrap().alloc());
thread.set(Some(new));
THREAD_GUARD.with(|guard| guard.id.set(new.id));
new
}
}
}
#[test]
fn test_thread() {
let thread = Thread::new(0);
assert_eq!(thread.id, 0);
assert_eq!(thread.bucket, 0);
assert_eq!(thread.bucket_size, 1);
assert_eq!(thread.index, 0);
let thread = Thread::new(1);
assert_eq!(thread.id, 1);
assert_eq!(thread.bucket, 1);
assert_eq!(thread.bucket_size, 1);
assert_eq!(thread.index, 0);
let thread = Thread::new(2);
assert_eq!(thread.id, 2);
assert_eq!(thread.bucket, 2);
assert_eq!(thread.bucket_size, 2);
assert_eq!(thread.index, 0);
let thread = Thread::new(3);
assert_eq!(thread.id, 3);
assert_eq!(thread.bucket, 2);
assert_eq!(thread.bucket_size, 2);
assert_eq!(thread.index, 1);
let thread = Thread::new(19);
assert_eq!(thread.id, 19);
assert_eq!(thread.bucket, 5);
assert_eq!(thread.bucket_size, 16);
assert_eq!(thread.index, 3);
}