1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
// -*- mode: rust; -*-
//
// This file is part of ed25519-dalek.
// Copyright (c) 2017-2019 isis lovecruft
// See LICENSE for licensing information.
//
// Authors:
// - isis agora lovecruft <isis@patternsinthevoid.net>

//! ed25519 secret key types.

use core::fmt::Debug;

use curve25519_dalek::constants;
use curve25519_dalek::digest::generic_array::typenum::U64;
use curve25519_dalek::digest::Digest;
use curve25519_dalek::edwards::CompressedEdwardsY;
use curve25519_dalek::scalar::Scalar;

#[cfg(feature = "rand")]
use rand::{CryptoRng, RngCore};

use sha2::Sha512;

#[cfg(feature = "serde")]
use serde::de::Error as SerdeError;
#[cfg(feature = "serde")]
use serde::{Deserialize, Deserializer, Serialize, Serializer};
#[cfg(feature = "serde")]
use serde_bytes::{Bytes as SerdeBytes, ByteBuf as SerdeByteBuf};

use zeroize::Zeroize;

use crate::constants::*;
use crate::errors::*;
use crate::public::*;
use crate::signature::*;

/// An EdDSA secret key.
///
/// Instances of this secret are automatically overwritten with zeroes when they
/// fall out of scope.
#[derive(Zeroize)]
#[zeroize(drop)] // Overwrite secret key material with null bytes when it goes out of scope.
pub struct SecretKey(pub(crate) [u8; SECRET_KEY_LENGTH]);

impl Debug for SecretKey {
    fn fmt(&self, f: &mut ::core::fmt::Formatter<'_>) -> ::core::fmt::Result {
        write!(f, "SecretKey: {:?}", &self.0[..])
    }
}

impl AsRef<[u8]> for SecretKey {
    fn as_ref(&self) -> &[u8] {
        self.as_bytes()
    }
}

impl SecretKey {
    /// Convert this secret key to a byte array.
    #[inline]
    pub fn to_bytes(&self) -> [u8; SECRET_KEY_LENGTH] {
        self.0
    }

    /// View this secret key as a byte array.
    #[inline]
    pub fn as_bytes<'a>(&'a self) -> &'a [u8; SECRET_KEY_LENGTH] {
        &self.0
    }

    /// Construct a `SecretKey` from a slice of bytes.
    ///
    /// # Example
    ///
    /// ```
    /// # extern crate ed25519_dalek;
    /// #
    /// use ed25519_dalek::SecretKey;
    /// use ed25519_dalek::SECRET_KEY_LENGTH;
    /// use ed25519_dalek::SignatureError;
    ///
    /// # fn doctest() -> Result<SecretKey, SignatureError> {
    /// let secret_key_bytes: [u8; SECRET_KEY_LENGTH] = [
    ///    157, 097, 177, 157, 239, 253, 090, 096,
    ///    186, 132, 074, 244, 146, 236, 044, 196,
    ///    068, 073, 197, 105, 123, 050, 105, 025,
    ///    112, 059, 172, 003, 028, 174, 127, 096, ];
    ///
    /// let secret_key: SecretKey = SecretKey::from_bytes(&secret_key_bytes)?;
    /// #
    /// # Ok(secret_key)
    /// # }
    /// #
    /// # fn main() {
    /// #     let result = doctest();
    /// #     assert!(result.is_ok());
    /// # }
    /// ```
    ///
    /// # Returns
    ///
    /// A `Result` whose okay value is an EdDSA `SecretKey` or whose error value
    /// is an `SignatureError` wrapping the internal error that occurred.
    #[inline]
    pub fn from_bytes(bytes: &[u8]) -> Result<SecretKey, SignatureError> {
        if bytes.len() != SECRET_KEY_LENGTH {
            return Err(InternalError::BytesLengthError {
                name: "SecretKey",
                length: SECRET_KEY_LENGTH,
            }.into());
        }
        let mut bits: [u8; 32] = [0u8; 32];
        bits.copy_from_slice(&bytes[..32]);

        Ok(SecretKey(bits))
    }

    /// Generate a `SecretKey` from a `csprng`.
    ///
    /// # Example
    ///
    /// ```
    /// extern crate rand;
    /// extern crate ed25519_dalek;
    ///
    /// # #[cfg(feature = "std")]
    /// # fn main() {
    /// #
    /// use rand::rngs::OsRng;
    /// use ed25519_dalek::PublicKey;
    /// use ed25519_dalek::SecretKey;
    /// use ed25519_dalek::Signature;
    ///
    /// let mut csprng = OsRng{};
    /// let secret_key: SecretKey = SecretKey::generate(&mut csprng);
    /// # }
    /// #
    /// # #[cfg(not(feature = "std"))]
    /// # fn main() { }
    /// ```
    ///
    /// Afterwards, you can generate the corresponding public:
    ///
    /// ```
    /// # extern crate rand;
    /// # extern crate ed25519_dalek;
    /// #
    /// # fn main() {
    /// #
    /// # use rand::rngs::OsRng;
    /// # use ed25519_dalek::PublicKey;
    /// # use ed25519_dalek::SecretKey;
    /// # use ed25519_dalek::Signature;
    /// #
    /// # let mut csprng = OsRng{};
    /// # let secret_key: SecretKey = SecretKey::generate(&mut csprng);
    ///
    /// let public_key: PublicKey = (&secret_key).into();
    /// # }
    /// ```
    ///
    /// # Input
    ///
    /// A CSPRNG with a `fill_bytes()` method, e.g. `rand::OsRng`
    #[cfg(feature = "rand")]
    pub fn generate<T>(csprng: &mut T) -> SecretKey
    where
        T: CryptoRng + RngCore,
    {
        let mut sk: SecretKey = SecretKey([0u8; 32]);

        csprng.fill_bytes(&mut sk.0);

        sk
    }
}

#[cfg(feature = "serde")]
impl Serialize for SecretKey {
    fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
    where
        S: Serializer,
    {
        SerdeBytes::new(self.as_bytes()).serialize(serializer)
    }
}

#[cfg(feature = "serde")]
impl<'d> Deserialize<'d> for SecretKey {
    fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
    where
        D: Deserializer<'d>,
    {
        let bytes = <SerdeByteBuf>::deserialize(deserializer)?;
        SecretKey::from_bytes(bytes.as_ref()).map_err(SerdeError::custom)
    }
}

/// An "expanded" secret key.
///
/// This is produced by using an hash function with 512-bits output to digest a
/// `SecretKey`.  The output digest is then split in half, the lower half being
/// the actual `key` used to sign messages, after twiddling with some bits.¹ The
/// upper half is used a sort of half-baked, ill-designed² pseudo-domain-separation
/// "nonce"-like thing, which is used during signature production by
/// concatenating it with the message to be signed before the message is hashed.
///
/// Instances of this secret are automatically overwritten with zeroes when they
/// fall out of scope.
//
// ¹ This results in a slight bias towards non-uniformity at one spectrum of
// the range of valid keys.  Oh well: not my idea; not my problem.
//
// ² It is the author's view (specifically, isis agora lovecruft, in the event
// you'd like to complain about me, again) that this is "ill-designed" because
// this doesn't actually provide true hash domain separation, in that in many
// real-world applications a user wishes to have one key which is used in
// several contexts (such as within tor, which does domain separation
// manually by pre-concatenating static strings to messages to achieve more
// robust domain separation).  In other real-world applications, such as
// bitcoind, a user might wish to have one master keypair from which others are
// derived (à la BIP32) and different domain separators between keys derived at
// different levels (and similarly for tree-based key derivation constructions,
// such as hash-based signatures).  Leaving the domain separation to
// application designers, who thus far have produced incompatible,
// slightly-differing, ad hoc domain separation (at least those application
// designers who knew enough cryptographic theory to do so!), is therefore a
// bad design choice on the part of the cryptographer designing primitives
// which should be simple and as foolproof as possible to use for
// non-cryptographers.  Further, later in the ed25519 signature scheme, as
// specified in RFC8032, the public key is added into *another* hash digest
// (along with the message, again); it is unclear to this author why there's
// not only one but two poorly-thought-out attempts at domain separation in the
// same signature scheme, and which both fail in exactly the same way.  For a
// better-designed, Schnorr-based signature scheme, see Trevor Perrin's work on
// "generalised EdDSA" and "VXEdDSA".
#[derive(Zeroize)]
#[zeroize(drop)] // Overwrite secret key material with null bytes when it goes out of scope.
pub struct ExpandedSecretKey {
    pub(crate) key: Scalar,
    pub(crate) nonce: [u8; 32],
}

impl<'a> From<&'a SecretKey> for ExpandedSecretKey {
    /// Construct an `ExpandedSecretKey` from a `SecretKey`.
    ///
    /// # Examples
    ///
    /// ```
    /// # extern crate rand;
    /// # extern crate sha2;
    /// # extern crate ed25519_dalek;
    /// #
    /// # fn main() {
    /// #
    /// use rand::rngs::OsRng;
    /// use ed25519_dalek::{SecretKey, ExpandedSecretKey};
    ///
    /// let mut csprng = OsRng{};
    /// let secret_key: SecretKey = SecretKey::generate(&mut csprng);
    /// let expanded_secret_key: ExpandedSecretKey = ExpandedSecretKey::from(&secret_key);
    /// # }
    /// ```
    fn from(secret_key: &'a SecretKey) -> ExpandedSecretKey {
        let mut h: Sha512 = Sha512::default();
        let mut hash:  [u8; 64] = [0u8; 64];
        let mut lower: [u8; 32] = [0u8; 32];
        let mut upper: [u8; 32] = [0u8; 32];

        h.update(secret_key.as_bytes());
        hash.copy_from_slice(h.finalize().as_slice());

        lower.copy_from_slice(&hash[00..32]);
        upper.copy_from_slice(&hash[32..64]);

        lower[0]  &= 248;
        lower[31] &=  63;
        lower[31] |=  64;

        ExpandedSecretKey{ key: Scalar::from_bits(lower), nonce: upper, }
    }
}

impl ExpandedSecretKey {
    /// Convert this `ExpandedSecretKey` into an array of 64 bytes.
    ///
    /// # Returns
    ///
    /// An array of 64 bytes.  The first 32 bytes represent the "expanded"
    /// secret key, and the last 32 bytes represent the "domain-separation"
    /// "nonce".
    ///
    /// # Examples
    ///
    /// ```
    /// # extern crate rand;
    /// # extern crate sha2;
    /// # extern crate ed25519_dalek;
    /// #
    /// # #[cfg(feature = "std")]
    /// # fn main() {
    /// #
    /// use rand::rngs::OsRng;
    /// use ed25519_dalek::{SecretKey, ExpandedSecretKey};
    ///
    /// let mut csprng = OsRng{};
    /// let secret_key: SecretKey = SecretKey::generate(&mut csprng);
    /// let expanded_secret_key: ExpandedSecretKey = ExpandedSecretKey::from(&secret_key);
    /// let expanded_secret_key_bytes: [u8; 64] = expanded_secret_key.to_bytes();
    ///
    /// assert!(&expanded_secret_key_bytes[..] != &[0u8; 64][..]);
    /// # }
    /// #
    /// # #[cfg(not(feature = "std"))]
    /// # fn main() { }
    /// ```
    #[inline]
    pub fn to_bytes(&self) -> [u8; EXPANDED_SECRET_KEY_LENGTH] {
        let mut bytes: [u8; 64] = [0u8; 64];

        bytes[..32].copy_from_slice(self.key.as_bytes());
        bytes[32..].copy_from_slice(&self.nonce[..]);
        bytes
    }

    /// Construct an `ExpandedSecretKey` from a slice of bytes.
    ///
    /// # Returns
    ///
    /// A `Result` whose okay value is an EdDSA `ExpandedSecretKey` or whose
    /// error value is an `SignatureError` describing the error that occurred.
    ///
    /// # Examples
    ///
    /// ```
    /// # extern crate rand;
    /// # extern crate sha2;
    /// # extern crate ed25519_dalek;
    /// #
    /// # use ed25519_dalek::{ExpandedSecretKey, SignatureError};
    /// #
    /// # #[cfg(feature = "std")]
    /// # fn do_test() -> Result<ExpandedSecretKey, SignatureError> {
    /// #
    /// use rand::rngs::OsRng;
    /// use ed25519_dalek::{SecretKey, ExpandedSecretKey};
    /// use ed25519_dalek::SignatureError;
    ///
    /// let mut csprng = OsRng{};
    /// let secret_key: SecretKey = SecretKey::generate(&mut csprng);
    /// let expanded_secret_key: ExpandedSecretKey = ExpandedSecretKey::from(&secret_key);
    /// let bytes: [u8; 64] = expanded_secret_key.to_bytes();
    /// let expanded_secret_key_again = ExpandedSecretKey::from_bytes(&bytes)?;
    /// #
    /// # Ok(expanded_secret_key_again)
    /// # }
    /// #
    /// # #[cfg(feature = "std")]
    /// # fn main() {
    /// #     let result = do_test();
    /// #     assert!(result.is_ok());
    /// # }
    /// #
    /// # #[cfg(not(feature = "std"))]
    /// # fn main() { }
    /// ```
    #[inline]
    pub fn from_bytes(bytes: &[u8]) -> Result<ExpandedSecretKey, SignatureError> {
        if bytes.len() != EXPANDED_SECRET_KEY_LENGTH {
            return Err(InternalError::BytesLengthError {
                name: "ExpandedSecretKey",
                length: EXPANDED_SECRET_KEY_LENGTH,
            }.into());
        }
        let mut lower: [u8; 32] = [0u8; 32];
        let mut upper: [u8; 32] = [0u8; 32];

        lower.copy_from_slice(&bytes[00..32]);
        upper.copy_from_slice(&bytes[32..64]);

        Ok(ExpandedSecretKey {
            key: Scalar::from_bits(lower),
            nonce: upper,
        })
    }

    /// Sign a message with this `ExpandedSecretKey`.
    #[allow(non_snake_case)]
    pub fn sign(&self, message: &[u8], public_key: &PublicKey) -> ed25519::Signature {
        let mut h: Sha512 = Sha512::new();
        let R: CompressedEdwardsY;
        let r: Scalar;
        let s: Scalar;
        let k: Scalar;

        h.update(&self.nonce);
        h.update(&message);

        r = Scalar::from_hash(h);
        R = (&r * &constants::ED25519_BASEPOINT_TABLE).compress();

        h = Sha512::new();
        h.update(R.as_bytes());
        h.update(public_key.as_bytes());
        h.update(&message);

        k = Scalar::from_hash(h);
        s = &(&k * &self.key) + &r;

        InternalSignature { R, s }.into()
    }

    /// Sign a `prehashed_message` with this `ExpandedSecretKey` using the
    /// Ed25519ph algorithm defined in [RFC8032 §5.1][rfc8032].
    ///
    /// # Inputs
    ///
    /// * `prehashed_message` is an instantiated hash digest with 512-bits of
    ///   output which has had the message to be signed previously fed into its
    ///   state.
    /// * `public_key` is a [`PublicKey`] which corresponds to this secret key.
    /// * `context` is an optional context string, up to 255 bytes inclusive,
    ///   which may be used to provide additional domain separation.  If not
    ///   set, this will default to an empty string.
    ///
    /// # Returns
    ///
    /// A `Result` whose `Ok` value is an Ed25519ph [`Signature`] on the
    /// `prehashed_message` if the context was 255 bytes or less, otherwise
    /// a `SignatureError`.
    ///
    /// [rfc8032]: https://tools.ietf.org/html/rfc8032#section-5.1
    #[allow(non_snake_case)]
    pub fn sign_prehashed<'a, D>(
        &self,
        prehashed_message: D,
        public_key: &PublicKey,
        context: Option<&'a [u8]>,
    ) -> Result<ed25519::Signature, SignatureError>
    where
        D: Digest<OutputSize = U64>,
    {
        let mut h: Sha512;
        let mut prehash: [u8; 64] = [0u8; 64];
        let R: CompressedEdwardsY;
        let r: Scalar;
        let s: Scalar;
        let k: Scalar;

        let ctx: &[u8] = context.unwrap_or(b""); // By default, the context is an empty string.

        if ctx.len() > 255 {
            return Err(SignatureError::from(InternalError::PrehashedContextLengthError));
        }

        let ctx_len: u8 = ctx.len() as u8;

        // Get the result of the pre-hashed message.
        prehash.copy_from_slice(prehashed_message.finalize().as_slice());

        // This is the dumbest, ten-years-late, non-admission of fucking up the
        // domain separation I have ever seen.  Why am I still required to put
        // the upper half "prefix" of the hashed "secret key" in here?  Why
        // can't the user just supply their own nonce and decide for themselves
        // whether or not they want a deterministic signature scheme?  Why does
        // the message go into what's ostensibly the signature domain separation
        // hash?  Why wasn't there always a way to provide a context string?
        //
        // ...
        //
        // This is a really fucking stupid bandaid, and the damned scheme is
        // still bleeding from malleability, for fuck's sake.
        h = Sha512::new()
            .chain(b"SigEd25519 no Ed25519 collisions")
            .chain(&[1]) // Ed25519ph
            .chain(&[ctx_len])
            .chain(ctx)
            .chain(&self.nonce)
            .chain(&prehash[..]);

        r = Scalar::from_hash(h);
        R = (&r * &constants::ED25519_BASEPOINT_TABLE).compress();

        h = Sha512::new()
            .chain(b"SigEd25519 no Ed25519 collisions")
            .chain(&[1]) // Ed25519ph
            .chain(&[ctx_len])
            .chain(ctx)
            .chain(R.as_bytes())
            .chain(public_key.as_bytes())
            .chain(&prehash[..]);

        k = Scalar::from_hash(h);
        s = &(&k * &self.key) + &r;

        Ok(InternalSignature { R, s }.into())
    }
}

#[cfg(feature = "serde")]
impl Serialize for ExpandedSecretKey {
    fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
    where
        S: Serializer,
    {
        let bytes = &self.to_bytes()[..];
        SerdeBytes::new(bytes).serialize(serializer)
    }
}

#[cfg(feature = "serde")]
impl<'d> Deserialize<'d> for ExpandedSecretKey {
    fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
    where
        D: Deserializer<'d>,
    {
        let bytes = <SerdeByteBuf>::deserialize(deserializer)?;
        ExpandedSecretKey::from_bytes(bytes.as_ref()).map_err(SerdeError::custom)
    }
}

#[cfg(test)]
mod test {
    use super::*;

    #[test]
    fn secret_key_zeroize_on_drop() {
        let secret_ptr: *const u8;

        { // scope for the secret to ensure it's been dropped
            let secret = SecretKey::from_bytes(&[0x15u8; 32][..]).unwrap();

            secret_ptr = secret.0.as_ptr();
        }

        let memory: &[u8] = unsafe { ::std::slice::from_raw_parts(secret_ptr, 32) };

        assert!(!memory.contains(&0x15));
    }
}