1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
#[cfg(feature = "serde")]
use serde::{Deserialize, Serialize};
use std::convert::{TryFrom, TryInto};
use std::slice::{Iter, IterMut};
use std::vec;
use thiserror::Error;

/// Non-empty Vec bounded with minimal (L - lower bound) and maximal (U - upper bound) items quantity
#[derive(PartialEq, Eq, Debug, Clone, Hash, PartialOrd, Ord)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize), serde(transparent))]
pub struct BoundedVec<T, const L: usize, const U: usize>
// enable when feature(const_evaluatable_checked) is stable
// where
//     Assert<{ L > 0 }>: IsTrue,
{
    inner: Vec<T>,
}

// enum Assert<const COND: bool> {}

// trait IsTrue {}

// impl IsTrue for Assert<true> {}

/// BoundedVec errors
#[derive(Error, PartialEq, Eq, Debug, Clone)]
pub enum BoundedVecOutOfBounds {
    /// Items quantity is less than L (lower bound)
    #[error("Lower bound violation: got {got} (expected >= {lower_bound})")]
    LowerBoundError {
        /// L (lower bound)
        lower_bound: usize,
        /// provided value
        got: usize,
    },
    /// Items quantity is more than U (upper bound)
    #[error("Upper bound violation: got {got} (expected <= {upper_bound})")]
    UpperBoundError {
        /// U (upper bound)
        upper_bound: usize,
        /// provided value
        got: usize,
    },
}

impl<T, const L: usize, const U: usize> BoundedVec<T, L, U> {
    /// Creates new BoundedVec or returns error if items count is out of bounds
    ///
    /// # Example
    /// ```
    /// use bounded_vec::BoundedVec;
    /// let data: BoundedVec<_, 2, 8> = BoundedVec::from_vec(vec![1u8, 2]).unwrap();
    /// ```
    pub fn from_vec(items: Vec<T>) -> Result<Self, BoundedVecOutOfBounds> {
        // remove when feature(const_evaluatable_checked) is stable
        // and this requirement is encoded in type sig
        assert!(L > 0);
        let len = items.len();
        if len < L {
            Err(BoundedVecOutOfBounds::LowerBoundError {
                lower_bound: L,
                got: len,
            })
        } else if len > U {
            Err(BoundedVecOutOfBounds::UpperBoundError {
                upper_bound: U,
                got: len,
            })
        } else {
            Ok(BoundedVec { inner: items })
        }
    }

    /// Returns a reference to underlying `Vec``
    ///
    /// # Example
    /// ```
    /// use bounded_vec::BoundedVec;
    /// use std::convert::TryInto;
    ///
    /// let data: BoundedVec<_, 2, 8> = vec![1u8, 2].try_into().unwrap();
    /// assert_eq!(data.as_vec(), &vec![1u8,2]);
    /// ```
    pub fn as_vec(&self) -> &Vec<T> {
        &self.inner
    }

    /// Returns the number of elements in the vector
    ///
    /// # Example
    /// ```
    /// use bounded_vec::BoundedVec;
    /// use std::convert::TryInto;
    ///
    /// let data: BoundedVec<u8, 2, 4> = vec![1u8,2].try_into().unwrap();
    /// assert_eq!(data.len(), 2);
    /// ```
    pub fn len(&self) -> usize {
        self.inner.len()
    }

    /// Always returns `false` (cannot be empty)
    ///
    /// # Example
    /// ```
    /// use bounded_vec::BoundedVec;
    /// use std::convert::TryInto;
    ///
    /// let data: BoundedVec<_, 2, 8> = vec![1u8, 2].try_into().unwrap();
    /// assert_eq!(data.is_empty(), false);
    /// ```
    pub fn is_empty(&self) -> bool {
        false
    }

    /// Extracts a slice containing the entire vector.
    ///
    /// # Example
    /// ```
    /// use bounded_vec::BoundedVec;
    /// use std::convert::TryInto;
    ///
    /// let data: BoundedVec<_, 2, 8> = vec![1u8, 2].try_into().unwrap();
    /// assert_eq!(data.as_slice(), &[1u8,2]);
    /// ```
    pub fn as_slice(&self) -> &[T] {
        self.inner.as_slice()
    }

    /// Returns the first element of non-empty Vec
    ///
    /// # Example
    /// ```
    /// use bounded_vec::BoundedVec;
    /// use std::convert::TryInto;
    ///
    /// let data: BoundedVec<_, 2, 8> = vec![1u8, 2].try_into().unwrap();
    /// assert_eq!(*data.first(), 1);
    /// ```
    pub fn first(&self) -> &T {
        #[allow(clippy::unwrap_used)]
        self.inner.first().unwrap()
    }

    /// Returns the last element of non-empty Vec
    ///
    /// # Example
    /// ```
    /// use bounded_vec::BoundedVec;
    /// use std::convert::TryInto;
    ///
    /// let data: BoundedVec<_, 2, 8> = vec![1u8, 2].try_into().unwrap();
    /// assert_eq!(*data.last(), 2);
    /// ```
    pub fn last(&self) -> &T {
        #[allow(clippy::unwrap_used)]
        self.inner.last().unwrap()
    }

    /// Create a new `BoundedVec` by consuming `self` and mapping each element.
    ///
    /// This is useful as it keeps the knowledge that the length is >= U, <= L,
    /// even through the old `BoundedVec` is consumed and turned into an iterator.
    ///
    /// # Example
    ///
    /// ```
    /// use bounded_vec::BoundedVec;
    /// let data: BoundedVec<u8, 2, 8> = [1u8,2].into();
    /// let data = data.mapped(|x|x*2);
    /// assert_eq!(data, [2u8,4].into());
    /// ```
    pub fn mapped<F, N>(self, map_fn: F) -> BoundedVec<N, L, U>
    where
        F: FnMut(T) -> N,
    {
        BoundedVec {
            inner: self.inner.into_iter().map(map_fn).collect::<Vec<_>>(),
        }
    }

    /// Create a new `BoundedVec` by mapping references to the elements of self
    ///
    /// This is useful as it keeps the knowledge that the length is >= U, <= L,
    /// will still hold for new `BoundedVec`
    ///
    /// # Example
    ///
    /// ```
    /// use bounded_vec::BoundedVec;
    /// let data: BoundedVec<u8, 2, 8> = [1u8,2].into();
    /// let data = data.mapped_ref(|x|x*2);
    /// assert_eq!(data, [2u8,4].into());
    /// ```
    pub fn mapped_ref<F, N>(&self, map_fn: F) -> BoundedVec<N, L, U>
    where
        F: FnMut(&T) -> N,
    {
        BoundedVec {
            inner: self.inner.iter().map(map_fn).collect::<Vec<_>>(),
        }
    }

    /// Create a new `BoundedVec` by consuming `self` and mapping each element
    /// to a `Result`.
    ///
    /// This is useful as it keeps the knowledge that the length is preserved
    /// even through the old `BoundedVec` is consumed and turned into an iterator.
    ///
    /// As this method consumes self, returning an error means that this
    /// vec is dropped. I.e. this method behaves roughly like using a
    /// chain of `into_iter()`, `map`, `collect::<Result<Vec<N>,E>>` and
    /// then converting the `Vec` back to a `Vec1`.
    ///
    ///
    /// # Errors
    ///
    /// Once any call to `map_fn` returns a error that error is directly
    /// returned by this method.
    ///
    /// # Example
    ///
    /// ```
    /// use bounded_vec::BoundedVec;
    /// let data: BoundedVec<u8, 2, 8> = [1u8,2].into();
    /// let data: Result<BoundedVec<u8, 2, 8>, _> = data.try_mapped(|x| Err("failed"));
    /// assert_eq!(data, Err("failed"));
    /// ```
    pub fn try_mapped<F, N, E>(self, map_fn: F) -> Result<BoundedVec<N, L, U>, E>
    where
        F: FnMut(T) -> Result<N, E>,
    {
        let mut map_fn = map_fn;
        let mut out = Vec::with_capacity(self.len());
        for element in self.inner.into_iter() {
            out.push(map_fn(element)?);
        }
        #[allow(clippy::unwrap_used)]
        Ok(BoundedVec::from_vec(out).unwrap())
    }

    /// Create a new `BoundedVec` by mapping references of `self` elements
    /// to a `Result`.
    ///
    /// This is useful as it keeps the knowledge that the length is preserved
    /// even through the old `BoundedVec` is consumed and turned into an iterator.
    ///
    /// # Errors
    ///
    /// Once any call to `map_fn` returns a error that error is directly
    /// returned by this method.
    ///
    /// # Example
    ///
    /// ```
    /// use bounded_vec::BoundedVec;
    /// let data: BoundedVec<u8, 2, 8> = [1u8,2].into();
    /// let data: Result<BoundedVec<u8, 2, 8>, _> = data.try_mapped_ref(|x| Err("failed"));
    /// assert_eq!(data, Err("failed"));
    /// ```
    pub fn try_mapped_ref<F, N, E>(&self, map_fn: F) -> Result<BoundedVec<N, L, U>, E>
    where
        F: FnMut(&T) -> Result<N, E>,
    {
        let mut map_fn = map_fn;
        let mut out = Vec::with_capacity(self.len());
        for element in self.inner.iter() {
            out.push(map_fn(element)?);
        }
        #[allow(clippy::unwrap_used)]
        Ok(BoundedVec::from_vec(out).unwrap())
    }

    /// Returns a reference for an element at index or `None` if out of bounds
    ///
    /// # Example
    ///
    /// ```
    /// use bounded_vec::BoundedVec;
    /// let data: BoundedVec<u8, 2, 8> = [1u8,2].into();
    /// let elem = *data.get(1).unwrap();
    /// assert_eq!(elem, 2);
    /// ```
    pub fn get(&self, index: usize) -> Option<&T> {
        self.inner.get(index)
    }

    /// Returns an iterator
    pub fn iter(&self) -> Iter<T> {
        self.inner.iter()
    }

    /// Returns an iterator that allows to modify each value
    pub fn iter_mut(&mut self) -> IterMut<T> {
        self.inner.iter_mut()
    }

    /// Returns the last and all the rest of the elements
    pub fn split_last(&self) -> (&T, &[T]) {
        #[allow(clippy::unwrap_used)]
        self.inner.split_last().unwrap()
    }

    /// Return a new BoundedVec with indices included
    pub fn enumerated(self) -> BoundedVec<(usize, T), L, U> {
        #[allow(clippy::unwrap_used)]
        self.inner
            .into_iter()
            .enumerate()
            .collect::<Vec<(usize, T)>>()
            .try_into()
            .unwrap()
    }
}

/// A non-empty Vec with no effective upper-bound on its length
pub type NonEmptyVec<T> = BoundedVec<T, 1, { usize::MAX }>;

impl<T, const L: usize, const U: usize> TryFrom<Vec<T>> for BoundedVec<T, L, U> {
    type Error = BoundedVecOutOfBounds;

    fn try_from(value: Vec<T>) -> Result<Self, Self::Error> {
        BoundedVec::from_vec(value)
    }
}

// when feature(const_evaluatable_checked) is stable cover all array sizes (L..=U)
impl<T, const L: usize, const U: usize> From<[T; L]> for BoundedVec<T, L, U> {
    fn from(arr: [T; L]) -> Self {
        BoundedVec { inner: arr.into() }
    }
}

impl<T, const L: usize, const U: usize> From<BoundedVec<T, L, U>> for Vec<T> {
    fn from(v: BoundedVec<T, L, U>) -> Self {
        v.inner
    }
}

impl<T, const L: usize, const U: usize> IntoIterator for BoundedVec<T, L, U> {
    type Item = T;
    type IntoIter = vec::IntoIter<T>;

    fn into_iter(self) -> Self::IntoIter {
        self.inner.into_iter()
    }
}

impl<'a, T, const L: usize, const U: usize> IntoIterator for &'a BoundedVec<T, L, U> {
    type Item = &'a T;
    type IntoIter = core::slice::Iter<'a, T>;

    fn into_iter(self) -> Self::IntoIter {
        (&self.inner).iter()
    }
}

impl<'a, T, const L: usize, const U: usize> IntoIterator for &'a mut BoundedVec<T, L, U> {
    type Item = &'a mut T;
    type IntoIter = core::slice::IterMut<'a, T>;

    fn into_iter(self) -> Self::IntoIter {
        (&mut self.inner).iter_mut()
    }
}

impl<T, const L: usize, const U: usize> AsRef<Vec<T>> for BoundedVec<T, L, U> {
    fn as_ref(&self) -> &Vec<T> {
        &self.inner
    }
}

impl<T, const L: usize, const U: usize> AsRef<[T]> for BoundedVec<T, L, U> {
    fn as_ref(&self) -> &[T] {
        self.inner.as_ref()
    }
}

impl<T, const L: usize, const U: usize> AsMut<Vec<T>> for BoundedVec<T, L, U> {
    fn as_mut(&mut self) -> &mut Vec<T> {
        self.inner.as_mut()
    }
}

impl<T, const L: usize, const U: usize> AsMut<[T]> for BoundedVec<T, L, U> {
    fn as_mut(&mut self) -> &mut [T] {
        self.inner.as_mut()
    }
}

#[allow(clippy::unwrap_used)]
#[cfg(test)]
mod tests {
    use std::convert::TryInto;

    use super::*;

    #[test]
    fn from_vec() {
        assert!(BoundedVec::<u8, 2, 8>::from_vec(vec![1, 2]).is_ok());
        assert!(BoundedVec::<u8, 2, 8>::from_vec(vec![]).is_err());
        assert!(BoundedVec::<u8, 3, 8>::from_vec(vec![1, 2]).is_err());
        assert!(BoundedVec::<u8, 1, 2>::from_vec(vec![1, 2, 3]).is_err());
    }

    #[test]
    fn is_empty() {
        let data: BoundedVec<_, 2, 8> = vec![1u8, 2].try_into().unwrap();
        assert!(!data.is_empty());
    }

    #[test]
    fn as_vec() {
        let data: BoundedVec<_, 2, 8> = vec![1u8, 2].try_into().unwrap();
        assert_eq!(data.as_vec(), &vec![1u8, 2]);
    }

    #[test]
    fn as_slice() {
        let data: BoundedVec<_, 2, 8> = vec![1u8, 2].try_into().unwrap();
        assert_eq!(data.as_slice(), &[1u8, 2]);
    }

    #[test]
    fn len() {
        let data: BoundedVec<_, 2, 8> = vec![1u8, 2].try_into().unwrap();
        assert_eq!(data.len(), 2);
    }

    #[test]
    fn first() {
        let data: BoundedVec<_, 2, 8> = vec![1u8, 2].try_into().unwrap();
        assert_eq!(data.first(), &1u8);
    }

    #[test]
    fn last() {
        let data: BoundedVec<_, 2, 8> = vec![1u8, 2].try_into().unwrap();
        assert_eq!(data.last(), &2u8);
    }

    #[test]
    fn mapped() {
        let data: BoundedVec<u8, 2, 8> = [1u8, 2].into();
        let data = data.mapped(|x| x * 2);
        assert_eq!(data, [2u8, 4].into());
    }

    #[test]
    fn mapped_ref() {
        let data: BoundedVec<u8, 2, 8> = [1u8, 2].into();
        let data = data.mapped_ref(|x| x * 2);
        assert_eq!(data, [2u8, 4].into());
    }

    #[test]
    fn get() {
        let data: BoundedVec<_, 2, 8> = vec![1u8, 2].try_into().unwrap();
        assert_eq!(data.get(1).unwrap(), &2u8);
        assert!(data.get(3).is_none());
    }

    #[test]
    fn try_mapped() {
        let data: BoundedVec<u8, 2, 8> = [1u8, 2].into();
        let data = data.try_mapped(|x| 100u8.checked_div(x).ok_or("error"));
        assert_eq!(data, Ok([100u8, 50].into()));
    }

    #[test]
    fn try_mapped_error() {
        let data: BoundedVec<u8, 2, 8> = [0u8, 2].into();
        let data = data.try_mapped(|x| 100u8.checked_div(x).ok_or("error"));
        assert_eq!(data, Err("error"));
    }

    #[test]
    fn try_mapped_ref() {
        let data: BoundedVec<u8, 2, 8> = [1u8, 2].into();
        let data = data.try_mapped_ref(|x| 100u8.checked_div(*x).ok_or("error"));
        assert_eq!(data, Ok([100u8, 50].into()));
    }

    #[test]
    fn try_mapped_ref_error() {
        let data: BoundedVec<u8, 2, 8> = [0u8, 2].into();
        let data = data.try_mapped_ref(|x| 100u8.checked_div(*x).ok_or("error"));
        assert_eq!(data, Err("error"));
    }

    #[test]
    fn split_last() {
        let data: BoundedVec<_, 2, 8> = vec![1u8, 2].try_into().unwrap();
        assert_eq!(data.split_last(), (&2u8, [1u8].as_ref()));
        let data1: BoundedVec<_, 1, 8> = vec![1u8].try_into().unwrap();
        assert_eq!(data1.split_last(), (&1u8, Vec::new().as_ref()));
    }

    #[test]
    fn enumerated() {
        let data: BoundedVec<_, 2, 8> = vec![1u8, 2].try_into().unwrap();
        let expected: BoundedVec<_, 2, 8> = vec![(0, 1u8), (1, 2)].try_into().unwrap();
        assert_eq!(data.enumerated(), expected);
    }

    #[test]
    fn into_iter() {
        let mut vec = vec![1u8, 2];
        let mut data: BoundedVec<_, 2, 8> = vec.clone().try_into().unwrap();
        assert_eq!(data.clone().into_iter().collect::<Vec<u8>>(), vec);
        assert_eq!(
            data.iter().collect::<Vec<&u8>>(),
            vec.iter().collect::<Vec<&u8>>()
        );
        assert_eq!(
            data.iter_mut().collect::<Vec<&mut u8>>(),
            vec.iter_mut().collect::<Vec<&mut u8>>()
        );
    }
}