1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
use crate::distribution::Continuous;
use crate::distribution::Normal;
use crate::statistics::{Max, MeanN, Min, Mode, VarianceN};
use crate::{Result, StatsError};
use nalgebra::{
    base::allocator::Allocator, base::dimension::DimName, Cholesky, DefaultAllocator, Dim, DimMin,
    LU, U1,
};
use nalgebra::{DMatrix, DVector};
use rand::Rng;
use std::f64;
use std::f64::consts::{E, PI};

/// Implements the [Multivariate Normal](https://en.wikipedia.org/wiki/Multivariate_normal_distribution)
/// distribution using the "nalgebra" crate for matrix operations
///
/// # Examples
///
/// ```
/// use statrs::distribution::{MultivariateNormal, Continuous};
/// use nalgebra::{DVector, DMatrix};
/// use statrs::statistics::{MeanN, VarianceN};
///
/// let mvn = MultivariateNormal::new(vec![0., 0.], vec![1., 0., 0., 1.]).unwrap();
/// assert_eq!(mvn.mean().unwrap(), DVector::from_vec(vec![0., 0.]));
/// assert_eq!(mvn.variance().unwrap(), DMatrix::from_vec(2, 2, vec![1., 0., 0., 1.]));
/// assert_eq!(mvn.pdf(&DVector::from_vec(vec![1.,  1.])), 0.05854983152431917);
/// ```
#[derive(Debug, Clone, PartialEq)]
pub struct MultivariateNormal {
    dim: usize,
    cov_chol_decomp: DMatrix<f64>,
    mu: DVector<f64>,
    cov: DMatrix<f64>,
    precision: DMatrix<f64>,
    pdf_const: f64,
}

impl MultivariateNormal {
    ///  Constructs a new multivariate normal distribution with a mean of `mean`
    /// and covariance matrix `cov`
    ///
    /// # Errors
    ///
    /// Returns an error if the given covariance matrix is not
    /// symmetric or positive-definite
    pub fn new(mean: Vec<f64>, cov: Vec<f64>) -> Result<Self> {
        let mean = DVector::from_vec(mean);
        let cov = DMatrix::from_vec(mean.len(), mean.len(), cov);
        let dim = mean.len();
        // Check that the provided covariance matrix is symmetric
        if cov.lower_triangle() != cov.upper_triangle().transpose()
        // Check that mean and covariance do not contain NaN
            || mean.iter().any(|f| f.is_nan())
            || cov.iter().any(|f| f.is_nan())
        // Check that the dimensions match
            || mean.nrows() != cov.nrows() || cov.nrows() != cov.ncols()
        {
            return Err(StatsError::BadParams);
        }
        let cov_det = cov.determinant();
        let pdf_const = ((2. * PI).powi(mean.nrows() as i32) * cov_det.abs())
            .recip()
            .sqrt();
        // Store the Cholesky decomposition of the covariance matrix
        // for sampling
        match Cholesky::new(cov.clone()) {
            None => Err(StatsError::BadParams),
            Some(cholesky_decomp) => {
                let precision = cholesky_decomp.inverse();
                Ok(MultivariateNormal {
                    dim,
                    cov_chol_decomp: cholesky_decomp.unpack(),
                    mu: mean,
                    cov,
                    precision,
                    pdf_const,
                })
            }
        }
    }
    /// Returns the entropy of the multivariate normal distribution
    ///
    /// # Formula
    ///
    /// ```ignore
    /// (1 / 2) * ln(det(2 * π * e * Σ))
    /// ```
    ///
    /// where `Σ` is the covariance matrix and `det` is the determinant
    pub fn entropy(&self) -> Option<f64> {
        Some(
            0.5 * self
                .variance()
                .unwrap()
                .scale(2. * PI * E)
                .determinant()
                .ln(),
        )
    }
}

impl ::rand::distributions::Distribution<DVector<f64>> for MultivariateNormal {
    /// Samples from the multivariate normal distribution
    ///
    /// # Formula
    /// L * Z + μ
    ///
    /// where `L` is the Cholesky decomposition of the covariance matrix,
    /// `Z` is a vector of normally distributed random variables, and
    /// `μ` is the mean vector

    fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> DVector<f64> {
        let d = Normal::new(0., 1.).unwrap();
        let z = DVector::<f64>::from_distribution(self.dim, &d, rng);
        (&self.cov_chol_decomp * z) + &self.mu
    }
}

impl Min<DVector<f64>> for MultivariateNormal {
    /// Returns the minimum value in the domain of the
    /// multivariate normal distribution represented by a real vector
    fn min(&self) -> DVector<f64> {
        DVector::from_vec(vec![f64::NEG_INFINITY; self.dim])
    }
}

impl Max<DVector<f64>> for MultivariateNormal {
    /// Returns the maximum value in the domain of the
    /// multivariate normal distribution represented by a real vector
    fn max(&self) -> DVector<f64> {
        DVector::from_vec(vec![f64::INFINITY; self.dim])
    }
}

impl MeanN<DVector<f64>> for MultivariateNormal {
    /// Returns the mean of the normal distribution
    ///
    /// # Remarks
    ///
    /// This is the same mean used to construct the distribution
    fn mean(&self) -> Option<DVector<f64>> {
        let mut vec = vec![];
        for elt in self.mu.clone().into_iter() {
            vec.push(*elt);
        }
        Some(DVector::from_vec(vec))
    }
}

impl VarianceN<DMatrix<f64>> for MultivariateNormal {
    /// Returns the covariance matrix of the multivariate normal distribution
    fn variance(&self) -> Option<DMatrix<f64>> {
        Some(self.cov.clone())
    }
}

impl Mode<DVector<f64>> for MultivariateNormal {
    /// Returns the mode of the multivariate normal distribution
    ///
    /// # Formula
    ///
    /// ```ignore
    /// μ
    /// ```
    ///
    /// where `μ` is the mean
    fn mode(&self) -> DVector<f64> {
        self.mu.clone()
    }
}

impl<'a> Continuous<&'a DVector<f64>, f64> for MultivariateNormal {
    /// Calculates the probability density function for the multivariate
    /// normal distribution at `x`
    ///
    /// # Formula
    ///
    /// ```ignore
    /// (2 * π) ^ (-k / 2) * det(Σ) ^ (1 / 2) * e ^ ( -(1 / 2) * transpose(x - μ) * inv(Σ) * (x - μ))
    /// ```
    ///
    /// where `μ` is the mean, `inv(Σ)` is the precision matrix, `det(Σ)` is the determinant
    /// of the covariance matrix, and `k` is the dimension of the distribution
    fn pdf(&self, x: &'a DVector<f64>) -> f64 {
        let dv = x - &self.mu;
        let exp_term = -0.5
            * *(&dv.transpose() * &self.precision * &dv)
                .get((0, 0))
                .unwrap();
        self.pdf_const * exp_term.exp()
    }
    /// Calculates the log probability density function for the multivariate
    /// normal distribution at `x`. Equivalent to pdf(x).ln().
    fn ln_pdf(&self, x: &'a DVector<f64>) -> f64 {
        let dv = x - &self.mu;
        let exp_term = -0.5
            * *(&dv.transpose() * &self.precision * &dv)
                .get((0, 0))
                .unwrap();
        self.pdf_const.ln() + exp_term
    }
}

#[rustfmt::skip]
#[cfg(test)]
mod tests  {
    use crate::distribution::{Continuous, MultivariateNormal};
    use crate::statistics::*;
    use crate::consts::ACC;
    use core::fmt::Debug;
    use nalgebra::base::allocator::Allocator;
    use nalgebra::{
        DefaultAllocator, Dim, DimMin, DimName, Matrix2, Matrix3, Vector2, Vector3,
        U1, U2,
    };

    fn try_create(mean: Vec<f64>, covariance: Vec<f64>) -> MultivariateNormal
    {
        let mvn = MultivariateNormal::new(mean, covariance);
        assert!(mvn.is_ok());
        mvn.unwrap()
    }

    fn create_case(mean: Vec<f64>, covariance: Vec<f64>)
    {
        let mvn = try_create(mean.clone(), covariance.clone());
        assert_eq!(DVector::from_vec(mean.clone()), mvn.mean().unwrap());
        assert_eq!(DMatrix::from_vec(mean.len(), mean.len(), covariance), mvn.variance().unwrap());
    }

    fn bad_create_case(mean: Vec<f64>, covariance: Vec<f64>)
    {
        let mvn = MultivariateNormal::new(mean, covariance);
        assert!(mvn.is_err());
    }

    fn test_case<T, F>(mean: Vec<f64>, covariance: Vec<f64>, expected: T, eval: F)
    where
        T: Debug + PartialEq,
        F: FnOnce(MultivariateNormal) -> T,
    {
        let mvn = try_create(mean, covariance);
        let x = eval(mvn);
        assert_eq!(expected, x);
    }

    fn test_almost<F>(
        mean: Vec<f64>,
        covariance: Vec<f64>,
        expected: f64,
        acc: f64,
        eval: F,
    ) where
        F: FnOnce(MultivariateNormal) -> f64,
    {
        let mvn = try_create(mean, covariance);
        let x = eval(mvn);
        assert_almost_eq!(expected, x, acc);
    }

    use super::*;

    macro_rules! dvec {
        ($($x:expr),*) => (DVector::from_vec(vec![$($x),*]));
    }

    macro_rules! mat2 {
        ($x11:expr, $x12:expr, $x21:expr, $x22:expr) => (DMatrix::from_vec(2,2,vec![$x11, $x12, $x21, $x22]));
    }

    // macro_rules! mat3 {
    //     ($x11:expr, $x12:expr, $x13:expr, $x21:expr, $x22:expr, $x23:expr, $x31:expr, $x32:expr, $x33:expr) => (DMatrix::from_vec(3,3,vec![$x11, $x12, $x13, $x21, $x22, $x23, $x31, $x32, $x33]));
    // }

    #[test]
    fn test_create() {
        create_case(vec![0., 0.], vec![1., 0., 0., 1.]);
        create_case(vec![10.,  5.], vec![2., 1., 1., 2.]);
        create_case(vec![4., 5., 6.], vec![2., 1., 0., 1., 2., 1., 0., 1., 2.]);
        create_case(vec![0., f64::INFINITY], vec![1., 0., 0., 1.]);
        create_case(vec![0., 0.], vec![f64::INFINITY, 0., 0., f64::INFINITY]);
    }

    #[test]
    fn test_bad_create() {
        // Covariance not symmetric
        bad_create_case(vec![0., 0.], vec![1., 1., 0., 1.]);
        // Covariance not positive-definite
        bad_create_case(vec![0., 0.], vec![1., 2., 2., 1.]);
        // NaN in mean
        bad_create_case(vec![0., f64::NAN], vec![1., 0., 0., 1.]);
        // NaN in Covariance Matrix
        bad_create_case(vec![0., 0.], vec![1., 0., 0., f64::NAN]);
    }

    #[test]
    fn test_variance() {
        let variance = |x: MultivariateNormal| x.variance().unwrap();
        test_case(vec![0., 0.], vec![1., 0., 0., 1.], mat2![1., 0., 0., 1.], variance);
        test_case(vec![0., 0.], vec![f64::INFINITY, 0., 0., f64::INFINITY], mat2![f64::INFINITY, 0., 0., f64::INFINITY], variance);
    }

    #[test]
    fn test_entropy() {
        let entropy = |x: MultivariateNormal| x.entropy().unwrap();
        test_case(vec![0., 0.], vec![1., 0., 0., 1.], 2.8378770664093453, entropy);
        test_case(vec![0., 0.], vec![1., 0.5, 0.5, 1.], 2.694036030183455, entropy);
        test_case(vec![0., 0.], vec![f64::INFINITY, 0., 0., f64::INFINITY], f64::INFINITY, entropy);
    }

    #[test]
    fn test_mode() {
        let mode = |x: MultivariateNormal| x.mode();
        test_case(vec![0., 0.], vec![1., 0., 0., 1.], dvec![0.,  0.], mode);
        test_case(vec![f64::INFINITY, f64::INFINITY], vec![1., 0., 0., 1.], dvec![f64::INFINITY,  f64::INFINITY], mode);
    }

    #[test]
    fn test_min_max() {
        let min = |x: MultivariateNormal| x.min();
        let max = |x: MultivariateNormal| x.max();
        test_case(vec![0., 0.], vec![1., 0., 0., 1.], dvec![f64::NEG_INFINITY, f64::NEG_INFINITY], min);
        test_case(vec![0., 0.], vec![1., 0., 0., 1.], dvec![f64::INFINITY, f64::INFINITY], max);
        test_case(vec![10., 1.], vec![1., 0., 0., 1.], dvec![f64::NEG_INFINITY, f64::NEG_INFINITY], min);
        test_case(vec![-3., 5.], vec![1., 0., 0., 1.], dvec![f64::INFINITY, f64::INFINITY], max);
    }

    #[test]
    fn test_pdf() {
        let pdf = |arg: DVector<f64>| move |x: MultivariateNormal| x.pdf(&arg);
        test_case(vec![0., 0.], vec![1., 0., 0., 1.], 0.05854983152431917, pdf(dvec![1., 1.]));
        test_almost(vec![0., 0.], vec![1., 0., 0., 1.], 0.013064233284684921, 1e-15, pdf(dvec![1., 2.]));
        test_almost(vec![0., 0.], vec![1., 0., 0., 1.], 1.8618676045881531e-23, 1e-35, pdf(dvec![1., 10.]));
        test_almost(vec![0., 0.], vec![1., 0., 0., 1.], 5.920684802611216e-45, 1e-58, pdf(dvec![10., 10.]));
        test_almost(vec![0., 0.], vec![1., 0.9, 0.9, 1.], 1.6576716577547003e-05, 1e-18, pdf(dvec![1., -1.]));
        test_almost(vec![0., 0.], vec![1., 0.99, 0.99, 1.], 4.1970621773477824e-44, 1e-54, pdf(dvec![1., -1.]));
        test_almost(vec![0.5, -0.2], vec![2.0, 0.3, 0.3,  0.5], 0.0013075203140666656, 1e-15, pdf(dvec![2., 2.]));
        test_case(vec![0., 0.], vec![f64::INFINITY, 0., 0., f64::INFINITY], 0.0, pdf(dvec![10., 10.]));
        test_case(vec![0., 0.], vec![f64::INFINITY, 0., 0., f64::INFINITY], 0.0, pdf(dvec![100., 100.]));
    }

    #[test]
    fn test_ln_pdf() {
        let ln_pdf = |arg: DVector<_>| move |x: MultivariateNormal| x.ln_pdf(&arg);
        test_case(vec![0., 0.], vec![1., 0., 0., 1.], (0.05854983152431917f64).ln(), ln_pdf(dvec![1., 1.]));
        test_almost(vec![0., 0.], vec![1., 0., 0., 1.], (0.013064233284684921f64).ln(), 1e-15, ln_pdf(dvec![1., 2.]));
        test_almost(vec![0., 0.], vec![1., 0., 0., 1.], (1.8618676045881531e-23f64).ln(), 1e-15, ln_pdf(dvec![1., 10.]));
        test_almost(vec![0., 0.], vec![1., 0., 0., 1.], (5.920684802611216e-45f64).ln(), 1e-15, ln_pdf(dvec![10., 10.]));
        test_almost(vec![0., 0.], vec![1., 0.9, 0.9, 1.], (1.6576716577547003e-05f64).ln(), 1e-14, ln_pdf(dvec![1., -1.]));
        test_almost(vec![0., 0.], vec![1., 0.99, 0.99, 1.], (4.1970621773477824e-44f64).ln(), 1e-12, ln_pdf(dvec![1., -1.]));
        test_almost(vec![0.5, -0.2], vec![2.0, 0.3, 0.3, 0.5],  (0.0013075203140666656f64).ln(), 1e-15, ln_pdf(dvec![2., 2.]));
        test_case(vec![0., 0.], vec![f64::INFINITY, 0., 0., f64::INFINITY], f64::NEG_INFINITY, ln_pdf(dvec![10., 10.]));
        test_case(vec![0., 0.], vec![f64::INFINITY, 0., 0., f64::INFINITY], f64::NEG_INFINITY, ln_pdf(dvec![100., 100.]));
    }
}