1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539
// Copyright 2018 Developers of the Rand project.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! The `BlockRngCore` trait and implementation helpers
//!
//! The [`BlockRngCore`] trait exists to assist in the implementation of RNGs
//! which generate a block of data in a cache instead of returning generated
//! values directly.
//!
//! Usage of this trait is optional, but provides two advantages:
//! implementations only need to concern themselves with generation of the
//! block, not the various [`RngCore`] methods (especially [`fill_bytes`], where
//! the optimal implementations are not trivial), and this allows
//! `ReseedingRng` (see [`rand`](https://docs.rs/rand) crate) perform periodic
//! reseeding with very low overhead.
//!
//! # Example
//!
//! ```no_run
//! use rand_core::{RngCore, SeedableRng};
//! use rand_core::block::{BlockRngCore, BlockRng};
//!
//! struct MyRngCore;
//!
//! impl BlockRngCore for MyRngCore {
//! type Item = u32;
//! type Results = [u32; 16];
//!
//! fn generate(&mut self, results: &mut Self::Results) {
//! unimplemented!()
//! }
//! }
//!
//! impl SeedableRng for MyRngCore {
//! type Seed = [u8; 32];
//! fn from_seed(seed: Self::Seed) -> Self {
//! unimplemented!()
//! }
//! }
//!
//! // optionally, also implement CryptoRng for MyRngCore
//!
//! // Final RNG.
//! let mut rng = BlockRng::<MyRngCore>::seed_from_u64(0);
//! println!("First value: {}", rng.next_u32());
//! ```
//!
//! [`BlockRngCore`]: crate::block::BlockRngCore
//! [`fill_bytes`]: RngCore::fill_bytes
use crate::impls::{fill_via_u32_chunks, fill_via_u64_chunks};
use crate::{CryptoRng, Error, RngCore, SeedableRng};
use core::convert::AsRef;
use core::fmt;
#[cfg(feature = "serde1")]
use serde::{Deserialize, Serialize};
/// A trait for RNGs which do not generate random numbers individually, but in
/// blocks (typically `[u32; N]`). This technique is commonly used by
/// cryptographic RNGs to improve performance.
///
/// See the [module][crate::block] documentation for details.
pub trait BlockRngCore {
/// Results element type, e.g. `u32`.
type Item;
/// Results type. This is the 'block' an RNG implementing `BlockRngCore`
/// generates, which will usually be an array like `[u32; 16]`.
type Results: AsRef<[Self::Item]> + AsMut<[Self::Item]> + Default;
/// Generate a new block of results.
fn generate(&mut self, results: &mut Self::Results);
}
/// A wrapper type implementing [`RngCore`] for some type implementing
/// [`BlockRngCore`] with `u32` array buffer; i.e. this can be used to implement
/// a full RNG from just a `generate` function.
///
/// The `core` field may be accessed directly but the results buffer may not.
/// PRNG implementations can simply use a type alias
/// (`pub type MyRng = BlockRng<MyRngCore>;`) but might prefer to use a
/// wrapper type (`pub struct MyRng(BlockRng<MyRngCore>);`); the latter must
/// re-implement `RngCore` but hides the implementation details and allows
/// extra functionality to be defined on the RNG
/// (e.g. `impl MyRng { fn set_stream(...){...} }`).
///
/// `BlockRng` has heavily optimized implementations of the [`RngCore`] methods
/// reading values from the results buffer, as well as
/// calling [`BlockRngCore::generate`] directly on the output array when
/// [`fill_bytes`] / [`try_fill_bytes`] is called on a large array. These methods
/// also handle the bookkeeping of when to generate a new batch of values.
///
/// No whole generated `u32` values are thrown away and all values are consumed
/// in-order. [`next_u32`] simply takes the next available `u32` value.
/// [`next_u64`] is implemented by combining two `u32` values, least
/// significant first. [`fill_bytes`] and [`try_fill_bytes`] consume a whole
/// number of `u32` values, converting each `u32` to a byte slice in
/// little-endian order. If the requested byte length is not a multiple of 4,
/// some bytes will be discarded.
///
/// See also [`BlockRng64`] which uses `u64` array buffers. Currently there is
/// no direct support for other buffer types.
///
/// For easy initialization `BlockRng` also implements [`SeedableRng`].
///
/// [`next_u32`]: RngCore::next_u32
/// [`next_u64`]: RngCore::next_u64
/// [`fill_bytes`]: RngCore::fill_bytes
/// [`try_fill_bytes`]: RngCore::try_fill_bytes
#[derive(Clone)]
#[cfg_attr(feature = "serde1", derive(Serialize, Deserialize))]
#[cfg_attr(
feature = "serde1",
serde(
bound = "for<'x> R: Serialize + Deserialize<'x> + Sized, for<'x> R::Results: Serialize + Deserialize<'x>"
)
)]
pub struct BlockRng<R: BlockRngCore + ?Sized> {
results: R::Results,
index: usize,
/// The *core* part of the RNG, implementing the `generate` function.
pub core: R,
}
// Custom Debug implementation that does not expose the contents of `results`.
impl<R: BlockRngCore + fmt::Debug> fmt::Debug for BlockRng<R> {
fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
fmt.debug_struct("BlockRng")
.field("core", &self.core)
.field("result_len", &self.results.as_ref().len())
.field("index", &self.index)
.finish()
}
}
impl<R: BlockRngCore> BlockRng<R> {
/// Create a new `BlockRng` from an existing RNG implementing
/// `BlockRngCore`. Results will be generated on first use.
#[inline]
pub fn new(core: R) -> BlockRng<R> {
let results_empty = R::Results::default();
BlockRng {
core,
index: results_empty.as_ref().len(),
results: results_empty,
}
}
/// Get the index into the result buffer.
///
/// If this is equal to or larger than the size of the result buffer then
/// the buffer is "empty" and `generate()` must be called to produce new
/// results.
#[inline(always)]
pub fn index(&self) -> usize {
self.index
}
/// Reset the number of available results.
/// This will force a new set of results to be generated on next use.
#[inline]
pub fn reset(&mut self) {
self.index = self.results.as_ref().len();
}
/// Generate a new set of results immediately, setting the index to the
/// given value.
#[inline]
pub fn generate_and_set(&mut self, index: usize) {
assert!(index < self.results.as_ref().len());
self.core.generate(&mut self.results);
self.index = index;
}
}
impl<R: BlockRngCore<Item = u32>> RngCore for BlockRng<R>
where
<R as BlockRngCore>::Results: AsRef<[u32]> + AsMut<[u32]>,
{
#[inline]
fn next_u32(&mut self) -> u32 {
if self.index >= self.results.as_ref().len() {
self.generate_and_set(0);
}
let value = self.results.as_ref()[self.index];
self.index += 1;
value
}
#[inline]
fn next_u64(&mut self) -> u64 {
let read_u64 = |results: &[u32], index| {
let data = &results[index..=index + 1];
u64::from(data[1]) << 32 | u64::from(data[0])
};
let len = self.results.as_ref().len();
let index = self.index;
if index < len - 1 {
self.index += 2;
// Read an u64 from the current index
read_u64(self.results.as_ref(), index)
} else if index >= len {
self.generate_and_set(2);
read_u64(self.results.as_ref(), 0)
} else {
let x = u64::from(self.results.as_ref()[len - 1]);
self.generate_and_set(1);
let y = u64::from(self.results.as_ref()[0]);
(y << 32) | x
}
}
#[inline]
fn fill_bytes(&mut self, dest: &mut [u8]) {
let mut read_len = 0;
while read_len < dest.len() {
if self.index >= self.results.as_ref().len() {
self.generate_and_set(0);
}
let (consumed_u32, filled_u8) =
fill_via_u32_chunks(&self.results.as_ref()[self.index..], &mut dest[read_len..]);
self.index += consumed_u32;
read_len += filled_u8;
}
}
#[inline(always)]
fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), Error> {
self.fill_bytes(dest);
Ok(())
}
}
impl<R: BlockRngCore + SeedableRng> SeedableRng for BlockRng<R> {
type Seed = R::Seed;
#[inline(always)]
fn from_seed(seed: Self::Seed) -> Self {
Self::new(R::from_seed(seed))
}
#[inline(always)]
fn seed_from_u64(seed: u64) -> Self {
Self::new(R::seed_from_u64(seed))
}
#[inline(always)]
fn from_rng<S: RngCore>(rng: S) -> Result<Self, Error> {
Ok(Self::new(R::from_rng(rng)?))
}
}
/// A wrapper type implementing [`RngCore`] for some type implementing
/// [`BlockRngCore`] with `u64` array buffer; i.e. this can be used to implement
/// a full RNG from just a `generate` function.
///
/// This is similar to [`BlockRng`], but specialized for algorithms that operate
/// on `u64` values.
///
/// No whole generated `u64` values are thrown away and all values are consumed
/// in-order. [`next_u64`] simply takes the next available `u64` value.
/// [`next_u32`] is however a bit special: half of a `u64` is consumed, leaving
/// the other half in the buffer. If the next function called is [`next_u32`]
/// then the other half is then consumed, however both [`next_u64`] and
/// [`fill_bytes`] discard the rest of any half-consumed `u64`s when called.
///
/// [`fill_bytes`] and [`try_fill_bytes`] consume a whole number of `u64`
/// values. If the requested length is not a multiple of 8, some bytes will be
/// discarded.
///
/// [`next_u32`]: RngCore::next_u32
/// [`next_u64`]: RngCore::next_u64
/// [`fill_bytes`]: RngCore::fill_bytes
/// [`try_fill_bytes`]: RngCore::try_fill_bytes
#[derive(Clone)]
#[cfg_attr(feature = "serde1", derive(Serialize, Deserialize))]
pub struct BlockRng64<R: BlockRngCore + ?Sized> {
results: R::Results,
index: usize,
half_used: bool, // true if only half of the previous result is used
/// The *core* part of the RNG, implementing the `generate` function.
pub core: R,
}
// Custom Debug implementation that does not expose the contents of `results`.
impl<R: BlockRngCore + fmt::Debug> fmt::Debug for BlockRng64<R> {
fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
fmt.debug_struct("BlockRng64")
.field("core", &self.core)
.field("result_len", &self.results.as_ref().len())
.field("index", &self.index)
.field("half_used", &self.half_used)
.finish()
}
}
impl<R: BlockRngCore> BlockRng64<R> {
/// Create a new `BlockRng` from an existing RNG implementing
/// `BlockRngCore`. Results will be generated on first use.
#[inline]
pub fn new(core: R) -> BlockRng64<R> {
let results_empty = R::Results::default();
BlockRng64 {
core,
index: results_empty.as_ref().len(),
half_used: false,
results: results_empty,
}
}
/// Get the index into the result buffer.
///
/// If this is equal to or larger than the size of the result buffer then
/// the buffer is "empty" and `generate()` must be called to produce new
/// results.
#[inline(always)]
pub fn index(&self) -> usize {
self.index
}
/// Reset the number of available results.
/// This will force a new set of results to be generated on next use.
#[inline]
pub fn reset(&mut self) {
self.index = self.results.as_ref().len();
self.half_used = false;
}
/// Generate a new set of results immediately, setting the index to the
/// given value.
#[inline]
pub fn generate_and_set(&mut self, index: usize) {
assert!(index < self.results.as_ref().len());
self.core.generate(&mut self.results);
self.index = index;
self.half_used = false;
}
}
impl<R: BlockRngCore<Item = u64>> RngCore for BlockRng64<R>
where
<R as BlockRngCore>::Results: AsRef<[u64]> + AsMut<[u64]>,
{
#[inline]
fn next_u32(&mut self) -> u32 {
let mut index = self.index - self.half_used as usize;
if index >= self.results.as_ref().len() {
self.core.generate(&mut self.results);
self.index = 0;
index = 0;
// `self.half_used` is by definition `false`
self.half_used = false;
}
let shift = 32 * (self.half_used as usize);
self.half_used = !self.half_used;
self.index += self.half_used as usize;
(self.results.as_ref()[index] >> shift) as u32
}
#[inline]
fn next_u64(&mut self) -> u64 {
if self.index >= self.results.as_ref().len() {
self.core.generate(&mut self.results);
self.index = 0;
}
let value = self.results.as_ref()[self.index];
self.index += 1;
self.half_used = false;
value
}
#[inline]
fn fill_bytes(&mut self, dest: &mut [u8]) {
let mut read_len = 0;
self.half_used = false;
while read_len < dest.len() {
if self.index as usize >= self.results.as_ref().len() {
self.core.generate(&mut self.results);
self.index = 0;
}
let (consumed_u64, filled_u8) = fill_via_u64_chunks(
&self.results.as_ref()[self.index as usize..],
&mut dest[read_len..],
);
self.index += consumed_u64;
read_len += filled_u8;
}
}
#[inline(always)]
fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), Error> {
self.fill_bytes(dest);
Ok(())
}
}
impl<R: BlockRngCore + SeedableRng> SeedableRng for BlockRng64<R> {
type Seed = R::Seed;
#[inline(always)]
fn from_seed(seed: Self::Seed) -> Self {
Self::new(R::from_seed(seed))
}
#[inline(always)]
fn seed_from_u64(seed: u64) -> Self {
Self::new(R::seed_from_u64(seed))
}
#[inline(always)]
fn from_rng<S: RngCore>(rng: S) -> Result<Self, Error> {
Ok(Self::new(R::from_rng(rng)?))
}
}
impl<R: BlockRngCore + CryptoRng> CryptoRng for BlockRng<R> {}
#[cfg(test)]
mod test {
use crate::{SeedableRng, RngCore};
use crate::block::{BlockRng, BlockRng64, BlockRngCore};
#[derive(Debug, Clone)]
struct DummyRng {
counter: u32,
}
impl BlockRngCore for DummyRng {
type Item = u32;
type Results = [u32; 16];
fn generate(&mut self, results: &mut Self::Results) {
for r in results {
*r = self.counter;
self.counter = self.counter.wrapping_add(3511615421);
}
}
}
impl SeedableRng for DummyRng {
type Seed = [u8; 4];
fn from_seed(seed: Self::Seed) -> Self {
DummyRng { counter: u32::from_le_bytes(seed) }
}
}
#[test]
fn blockrng_next_u32_vs_next_u64() {
let mut rng1 = BlockRng::<DummyRng>::from_seed([1, 2, 3, 4]);
let mut rng2 = rng1.clone();
let mut rng3 = rng1.clone();
let mut a = [0; 16];
(&mut a[..4]).copy_from_slice(&rng1.next_u32().to_le_bytes());
(&mut a[4..12]).copy_from_slice(&rng1.next_u64().to_le_bytes());
(&mut a[12..]).copy_from_slice(&rng1.next_u32().to_le_bytes());
let mut b = [0; 16];
(&mut b[..4]).copy_from_slice(&rng2.next_u32().to_le_bytes());
(&mut b[4..8]).copy_from_slice(&rng2.next_u32().to_le_bytes());
(&mut b[8..]).copy_from_slice(&rng2.next_u64().to_le_bytes());
assert_eq!(a, b);
let mut c = [0; 16];
(&mut c[..8]).copy_from_slice(&rng3.next_u64().to_le_bytes());
(&mut c[8..12]).copy_from_slice(&rng3.next_u32().to_le_bytes());
(&mut c[12..]).copy_from_slice(&rng3.next_u32().to_le_bytes());
assert_eq!(a, c);
}
#[derive(Debug, Clone)]
struct DummyRng64 {
counter: u64,
}
impl BlockRngCore for DummyRng64 {
type Item = u64;
type Results = [u64; 8];
fn generate(&mut self, results: &mut Self::Results) {
for r in results {
*r = self.counter;
self.counter = self.counter.wrapping_add(2781463553396133981);
}
}
}
impl SeedableRng for DummyRng64 {
type Seed = [u8; 8];
fn from_seed(seed: Self::Seed) -> Self {
DummyRng64 { counter: u64::from_le_bytes(seed) }
}
}
#[test]
fn blockrng64_next_u32_vs_next_u64() {
let mut rng1 = BlockRng64::<DummyRng64>::from_seed([1, 2, 3, 4, 5, 6, 7, 8]);
let mut rng2 = rng1.clone();
let mut rng3 = rng1.clone();
let mut a = [0; 16];
(&mut a[..4]).copy_from_slice(&rng1.next_u32().to_le_bytes());
(&mut a[4..12]).copy_from_slice(&rng1.next_u64().to_le_bytes());
(&mut a[12..]).copy_from_slice(&rng1.next_u32().to_le_bytes());
let mut b = [0; 16];
(&mut b[..4]).copy_from_slice(&rng2.next_u32().to_le_bytes());
(&mut b[4..8]).copy_from_slice(&rng2.next_u32().to_le_bytes());
(&mut b[8..]).copy_from_slice(&rng2.next_u64().to_le_bytes());
assert_ne!(a, b);
assert_eq!(&a[..4], &b[..4]);
assert_eq!(&a[4..12], &b[8..]);
let mut c = [0; 16];
(&mut c[..8]).copy_from_slice(&rng3.next_u64().to_le_bytes());
(&mut c[8..12]).copy_from_slice(&rng3.next_u32().to_le_bytes());
(&mut c[12..]).copy_from_slice(&rng3.next_u32().to_le_bytes());
assert_eq!(b, c);
}
}