1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
use crate::common::{DebugArangesOffset, DebugInfoOffset, Encoding, SectionId};
use crate::endianity::Endianity;
use crate::read::{EndianSlice, Error, Range, Reader, ReaderOffset, Result, Section};

/// The `DebugAranges` struct represents the DWARF address range information
/// found in the `.debug_aranges` section.
#[derive(Debug, Default, Clone, Copy)]
pub struct DebugAranges<R> {
    section: R,
}

impl<'input, Endian> DebugAranges<EndianSlice<'input, Endian>>
where
    Endian: Endianity,
{
    /// Construct a new `DebugAranges` instance from the data in the `.debug_aranges`
    /// section.
    ///
    /// It is the caller's responsibility to read the `.debug_aranges` section and
    /// present it as a `&[u8]` slice. That means using some ELF loader on
    /// Linux, a Mach-O loader on macOS, etc.
    ///
    /// ```
    /// use gimli::{DebugAranges, LittleEndian};
    ///
    /// # let buf = [];
    /// # let read_debug_aranges_section = || &buf;
    /// let debug_aranges =
    ///     DebugAranges::new(read_debug_aranges_section(), LittleEndian);
    /// ```
    pub fn new(section: &'input [u8], endian: Endian) -> Self {
        DebugAranges {
            section: EndianSlice::new(section, endian),
        }
    }
}

impl<R: Reader> DebugAranges<R> {
    /// Iterate the sets of entries in the `.debug_aranges` section.
    ///
    /// Each set of entries belongs to a single unit.
    pub fn headers(&self) -> ArangeHeaderIter<R> {
        ArangeHeaderIter {
            input: self.section.clone(),
            offset: DebugArangesOffset(R::Offset::from_u8(0)),
        }
    }

    /// Get the header at the given offset.
    pub fn header(&self, offset: DebugArangesOffset<R::Offset>) -> Result<ArangeHeader<R>> {
        let mut input = self.section.clone();
        input.skip(offset.0)?;
        ArangeHeader::parse(&mut input, offset)
    }
}

impl<T> DebugAranges<T> {
    /// Create a `DebugAranges` section that references the data in `self`.
    ///
    /// This is useful when `R` implements `Reader` but `T` does not.
    ///
    /// ## Example Usage
    ///
    /// ```rust,no_run
    /// # let load_section = || unimplemented!();
    /// // Read the DWARF section into a `Vec` with whatever object loader you're using.
    /// let owned_section: gimli::DebugAranges<Vec<u8>> = load_section();
    /// // Create a reference to the DWARF section.
    /// let section = owned_section.borrow(|section| {
    ///     gimli::EndianSlice::new(&section, gimli::LittleEndian)
    /// });
    /// ```
    pub fn borrow<'a, F, R>(&'a self, mut borrow: F) -> DebugAranges<R>
    where
        F: FnMut(&'a T) -> R,
    {
        borrow(&self.section).into()
    }
}

impl<R> Section<R> for DebugAranges<R> {
    fn id() -> SectionId {
        SectionId::DebugAranges
    }

    fn reader(&self) -> &R {
        &self.section
    }
}

impl<R> From<R> for DebugAranges<R> {
    fn from(section: R) -> Self {
        DebugAranges { section }
    }
}

/// An iterator over the headers of a `.debug_aranges` section.
#[derive(Clone, Debug)]
pub struct ArangeHeaderIter<R: Reader> {
    input: R,
    offset: DebugArangesOffset<R::Offset>,
}

impl<R: Reader> ArangeHeaderIter<R> {
    /// Advance the iterator to the next header.
    pub fn next(&mut self) -> Result<Option<ArangeHeader<R>>> {
        if self.input.is_empty() {
            return Ok(None);
        }

        let len = self.input.len();
        match ArangeHeader::parse(&mut self.input, self.offset) {
            Ok(header) => {
                self.offset.0 += len - self.input.len();
                Ok(Some(header))
            }
            Err(e) => {
                self.input.empty();
                Err(e)
            }
        }
    }
}

#[cfg(feature = "fallible-iterator")]
impl<R: Reader> fallible_iterator::FallibleIterator for ArangeHeaderIter<R> {
    type Item = ArangeHeader<R>;
    type Error = Error;

    fn next(&mut self) -> ::core::result::Result<Option<Self::Item>, Self::Error> {
        ArangeHeaderIter::next(self)
    }
}

/// A header for a set of entries in the `.debug_arange` section.
///
/// These entries all belong to a single unit.
#[derive(Debug, Clone, PartialEq, Eq)]
pub struct ArangeHeader<R, Offset = <R as Reader>::Offset>
where
    R: Reader<Offset = Offset>,
    Offset: ReaderOffset,
{
    offset: DebugArangesOffset<Offset>,
    encoding: Encoding,
    length: Offset,
    debug_info_offset: DebugInfoOffset<Offset>,
    segment_size: u8,
    entries: R,
}

impl<R, Offset> ArangeHeader<R, Offset>
where
    R: Reader<Offset = Offset>,
    Offset: ReaderOffset,
{
    fn parse(input: &mut R, offset: DebugArangesOffset<Offset>) -> Result<Self> {
        let (length, format) = input.read_initial_length()?;
        let mut rest = input.split(length)?;

        // Check the version. The DWARF 5 spec says that this is always 2, but version 3
        // has been observed in the wild, potentially due to a bug; see
        // https://github.com/gimli-rs/gimli/issues/559 for more information.
        // lldb allows versions 2 through 5, possibly by mistake.
        let version = rest.read_u16()?;
        if version != 2 && version != 3 {
            return Err(Error::UnknownVersion(u64::from(version)));
        }

        let debug_info_offset = rest.read_offset(format).map(DebugInfoOffset)?;
        let address_size = rest.read_u8()?;
        let segment_size = rest.read_u8()?;

        // unit_length + version + offset + address_size + segment_size
        let header_length = format.initial_length_size() + 2 + format.word_size() + 1 + 1;

        // The first tuple following the header in each set begins at an offset that is
        // a multiple of the size of a single tuple (that is, the size of a segment selector
        // plus twice the size of an address).
        let tuple_length = address_size
            .checked_mul(2)
            .and_then(|x| x.checked_add(segment_size))
            .ok_or(Error::InvalidAddressRange)?;
        if tuple_length == 0 {
            return Err(Error::InvalidAddressRange)?;
        }
        let padding = if header_length % tuple_length == 0 {
            0
        } else {
            tuple_length - header_length % tuple_length
        };
        rest.skip(R::Offset::from_u8(padding))?;

        let encoding = Encoding {
            format,
            version,
            address_size,
            // TODO: segment_size
        };
        Ok(ArangeHeader {
            offset,
            encoding,
            length,
            debug_info_offset,
            segment_size,
            entries: rest,
        })
    }

    /// Return the offset of this header within the `.debug_aranges` section.
    #[inline]
    pub fn offset(&self) -> DebugArangesOffset<Offset> {
        self.offset
    }

    /// Return the length of this set of entries, including the header.
    #[inline]
    pub fn length(&self) -> Offset {
        self.length
    }

    /// Return the encoding parameters for this set of entries.
    #[inline]
    pub fn encoding(&self) -> Encoding {
        self.encoding
    }

    /// Return the segment size for this set of entries.
    #[inline]
    pub fn segment_size(&self) -> u8 {
        self.segment_size
    }

    /// Return the offset into the .debug_info section for this set of arange entries.
    #[inline]
    pub fn debug_info_offset(&self) -> DebugInfoOffset<Offset> {
        self.debug_info_offset
    }

    /// Return the arange entries in this set.
    #[inline]
    pub fn entries(&self) -> ArangeEntryIter<R> {
        ArangeEntryIter {
            input: self.entries.clone(),
            encoding: self.encoding,
            segment_size: self.segment_size,
        }
    }
}

/// An iterator over the aranges from a `.debug_aranges` section.
///
/// Can be [used with
/// `FallibleIterator`](./index.html#using-with-fallibleiterator).
#[derive(Debug, Clone)]
pub struct ArangeEntryIter<R: Reader> {
    input: R,
    encoding: Encoding,
    segment_size: u8,
}

impl<R: Reader> ArangeEntryIter<R> {
    /// Advance the iterator and return the next arange.
    ///
    /// Returns the newly parsed arange as `Ok(Some(arange))`. Returns `Ok(None)`
    /// when iteration is complete and all aranges have already been parsed and
    /// yielded. If an error occurs while parsing the next arange, then this error
    /// is returned as `Err(e)`, and all subsequent calls return `Ok(None)`.
    pub fn next(&mut self) -> Result<Option<ArangeEntry>> {
        if self.input.is_empty() {
            return Ok(None);
        }

        match ArangeEntry::parse(&mut self.input, self.encoding, self.segment_size) {
            Ok(Some(entry)) => Ok(Some(entry)),
            Ok(None) => {
                self.input.empty();
                Ok(None)
            }
            Err(e) => {
                self.input.empty();
                Err(e)
            }
        }
    }
}

#[cfg(feature = "fallible-iterator")]
impl<R: Reader> fallible_iterator::FallibleIterator for ArangeEntryIter<R> {
    type Item = ArangeEntry;
    type Error = Error;

    fn next(&mut self) -> ::core::result::Result<Option<Self::Item>, Self::Error> {
        ArangeEntryIter::next(self)
    }
}

/// A single parsed arange.
#[derive(Debug, Clone, PartialEq, Eq, PartialOrd, Ord)]
pub struct ArangeEntry {
    segment: Option<u64>,
    address: u64,
    length: u64,
}

impl ArangeEntry {
    /// Parse a single arange. Return `None` for the null arange, `Some` for an actual arange.
    fn parse<R: Reader>(
        input: &mut R,
        encoding: Encoding,
        segment_size: u8,
    ) -> Result<Option<Self>> {
        let address_size = encoding.address_size;

        let tuple_length = R::Offset::from_u8(2 * address_size + segment_size);
        if tuple_length > input.len() {
            input.empty();
            return Ok(None);
        }

        let segment = if segment_size != 0 {
            input.read_address(segment_size)?
        } else {
            0
        };
        let address = input.read_address(address_size)?;
        let length = input.read_address(address_size)?;

        match (segment, address, length) {
            // This is meant to be a null terminator, but in practice it can occur
            // before the end, possibly due to a linker omitting a function and
            // leaving an unrelocated entry.
            (0, 0, 0) => Self::parse(input, encoding, segment_size),
            _ => Ok(Some(ArangeEntry {
                segment: if segment_size != 0 {
                    Some(segment)
                } else {
                    None
                },
                address,
                length,
            })),
        }
    }

    /// Return the segment selector of this arange.
    #[inline]
    pub fn segment(&self) -> Option<u64> {
        self.segment
    }

    /// Return the beginning address of this arange.
    #[inline]
    pub fn address(&self) -> u64 {
        self.address
    }

    /// Return the length of this arange.
    #[inline]
    pub fn length(&self) -> u64 {
        self.length
    }

    /// Return the range.
    #[inline]
    pub fn range(&self) -> Range {
        Range {
            begin: self.address,
            end: self.address.wrapping_add(self.length),
        }
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use crate::common::{DebugInfoOffset, Format};
    use crate::endianity::LittleEndian;
    use crate::read::EndianSlice;

    #[test]
    fn test_iterate_headers() {
        #[rustfmt::skip]
        let buf = [
            // 32-bit length = 28.
            0x1c, 0x00, 0x00, 0x00,
            // Version.
            0x02, 0x00,
            // Offset.
            0x01, 0x02, 0x03, 0x04,
            // Address size.
            0x04,
            // Segment size.
            0x00,
            // Dummy padding and arange tuples.
            0x00, 0x00, 0x00, 0x00,
            0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
            0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

            // 32-bit length = 36.
            0x24, 0x00, 0x00, 0x00,
            // Version.
            0x02, 0x00,
            // Offset.
            0x11, 0x12, 0x13, 0x14,
            // Address size.
            0x04,
            // Segment size.
            0x00,
            // Dummy padding and arange tuples.
            0x00, 0x00, 0x00, 0x00,
            0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
            0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
            0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
        ];

        let debug_aranges = DebugAranges::new(&buf, LittleEndian);
        let mut headers = debug_aranges.headers();

        let header = headers
            .next()
            .expect("should parse header ok")
            .expect("should have a header");
        assert_eq!(header.offset(), DebugArangesOffset(0));
        assert_eq!(header.debug_info_offset(), DebugInfoOffset(0x0403_0201));

        let header = headers
            .next()
            .expect("should parse header ok")
            .expect("should have a header");
        assert_eq!(header.offset(), DebugArangesOffset(0x20));
        assert_eq!(header.debug_info_offset(), DebugInfoOffset(0x1413_1211));
    }

    #[test]
    fn test_parse_header_ok() {
        #[rustfmt::skip]
        let buf = [
            // 32-bit length = 32.
            0x20, 0x00, 0x00, 0x00,
            // Version.
            0x02, 0x00,
            // Offset.
            0x01, 0x02, 0x03, 0x04,
            // Address size.
            0x08,
            // Segment size.
            0x04,
            // Length to here = 12, tuple length = 20.
            // Padding to tuple length multiple = 4.
            0x10, 0x00, 0x00, 0x00,
            0x00, 0x00, 0x00, 0x00,

            // Dummy arange tuple data.
            0x20, 0x00, 0x00, 0x00,
            0x00, 0x00, 0x00, 0x00,
            0x00, 0x00, 0x00, 0x00,
            0x00, 0x00, 0x00, 0x00,

            // Dummy next arange.
            0x30, 0x00, 0x00, 0x00,
            0x00, 0x00, 0x00, 0x00,
            0x00, 0x00, 0x00, 0x00,
            0x00, 0x00, 0x00, 0x00,
        ];

        let rest = &mut EndianSlice::new(&buf, LittleEndian);

        let header =
            ArangeHeader::parse(rest, DebugArangesOffset(0x10)).expect("should parse header ok");

        assert_eq!(
            *rest,
            EndianSlice::new(&buf[buf.len() - 16..], LittleEndian)
        );
        assert_eq!(
            header,
            ArangeHeader {
                offset: DebugArangesOffset(0x10),
                encoding: Encoding {
                    format: Format::Dwarf32,
                    version: 2,
                    address_size: 8,
                },
                length: 0x20,
                debug_info_offset: DebugInfoOffset(0x0403_0201),
                segment_size: 4,
                entries: EndianSlice::new(&buf[buf.len() - 32..buf.len() - 16], LittleEndian),
            }
        );
    }

    #[test]
    fn test_parse_header_overflow_error() {
        #[rustfmt::skip]
        let buf = [
            // 32-bit length = 32.
            0x20, 0x00, 0x00, 0x00,
            // Version.
            0x02, 0x00,
            // Offset.
            0x01, 0x02, 0x03, 0x04,
            // Address size.
            0xff,
            // Segment size.
            0xff,
            // Length to here = 12, tuple length = 20.
            // Padding to tuple length multiple = 4.
            0x10, 0x00, 0x00, 0x00,
            0x00, 0x00, 0x00, 0x00,

            // Dummy arange tuple data.
            0x20, 0x00, 0x00, 0x00,
            0x00, 0x00, 0x00, 0x00,
            0x00, 0x00, 0x00, 0x00,
            0x00, 0x00, 0x00, 0x00,

            // Dummy next arange.
            0x30, 0x00, 0x00, 0x00,
            0x00, 0x00, 0x00, 0x00,
            0x00, 0x00, 0x00, 0x00,
            0x00, 0x00, 0x00, 0x00,
        ];

        let rest = &mut EndianSlice::new(&buf, LittleEndian);

        let error = ArangeHeader::parse(rest, DebugArangesOffset(0x10))
            .expect_err("should fail to parse header");
        assert_eq!(error, Error::InvalidAddressRange);
    }

    #[test]
    fn test_parse_header_div_by_zero_error() {
        #[rustfmt::skip]
        let buf = [
            // 32-bit length = 32.
            0x20, 0x00, 0x00, 0x00,
            // Version.
            0x02, 0x00,
            // Offset.
            0x01, 0x02, 0x03, 0x04,
            // Address size = 0. Could cause a division by zero if we aren't
            // careful.
            0x00,
            // Segment size.
            0x00,
            // Length to here = 12, tuple length = 20.
            // Padding to tuple length multiple = 4.
            0x10, 0x00, 0x00, 0x00,
            0x00, 0x00, 0x00, 0x00,

            // Dummy arange tuple data.
            0x20, 0x00, 0x00, 0x00,
            0x00, 0x00, 0x00, 0x00,
            0x00, 0x00, 0x00, 0x00,
            0x00, 0x00, 0x00, 0x00,

            // Dummy next arange.
            0x30, 0x00, 0x00, 0x00,
            0x00, 0x00, 0x00, 0x00,
            0x00, 0x00, 0x00, 0x00,
            0x00, 0x00, 0x00, 0x00,
        ];

        let rest = &mut EndianSlice::new(&buf, LittleEndian);

        let error = ArangeHeader::parse(rest, DebugArangesOffset(0x10))
            .expect_err("should fail to parse header");
        assert_eq!(error, Error::InvalidAddressRange);
    }

    #[test]
    fn test_parse_entry_ok() {
        let encoding = Encoding {
            format: Format::Dwarf32,
            version: 2,
            address_size: 4,
        };
        let segment_size = 0;
        let buf = [0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09];
        let rest = &mut EndianSlice::new(&buf, LittleEndian);
        let entry =
            ArangeEntry::parse(rest, encoding, segment_size).expect("should parse entry ok");
        assert_eq!(*rest, EndianSlice::new(&buf[buf.len() - 1..], LittleEndian));
        assert_eq!(
            entry,
            Some(ArangeEntry {
                segment: None,
                address: 0x0403_0201,
                length: 0x0807_0605,
            })
        );
    }

    #[test]
    fn test_parse_entry_segment() {
        let encoding = Encoding {
            format: Format::Dwarf32,
            version: 2,
            address_size: 4,
        };
        let segment_size = 8;
        #[rustfmt::skip]
        let buf = [
            // Segment.
            0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18,
            // Address.
            0x01, 0x02, 0x03, 0x04,
            // Length.
            0x05, 0x06, 0x07, 0x08,
            // Next tuple.
            0x09
        ];
        let rest = &mut EndianSlice::new(&buf, LittleEndian);
        let entry =
            ArangeEntry::parse(rest, encoding, segment_size).expect("should parse entry ok");
        assert_eq!(*rest, EndianSlice::new(&buf[buf.len() - 1..], LittleEndian));
        assert_eq!(
            entry,
            Some(ArangeEntry {
                segment: Some(0x1817_1615_1413_1211),
                address: 0x0403_0201,
                length: 0x0807_0605,
            })
        );
    }

    #[test]
    fn test_parse_entry_zero() {
        let encoding = Encoding {
            format: Format::Dwarf32,
            version: 2,
            address_size: 4,
        };
        let segment_size = 0;
        #[rustfmt::skip]
        let buf = [
            // Zero tuple.
            0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
            // Address.
            0x01, 0x02, 0x03, 0x04,
            // Length.
            0x05, 0x06, 0x07, 0x08,
            // Next tuple.
            0x09
        ];
        let rest = &mut EndianSlice::new(&buf, LittleEndian);
        let entry =
            ArangeEntry::parse(rest, encoding, segment_size).expect("should parse entry ok");
        assert_eq!(*rest, EndianSlice::new(&buf[buf.len() - 1..], LittleEndian));
        assert_eq!(
            entry,
            Some(ArangeEntry {
                segment: None,
                address: 0x0403_0201,
                length: 0x0807_0605,
            })
        );
    }
}