1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
#![no_std]
#![cfg_attr(docsrs, feature(doc_cfg))]
#![doc = include_str!("../README.md")]
#![doc(html_logo_url = "https://raw.githubusercontent.com/RustCrypto/meta/master/logo_small.png")]
#![forbid(unsafe_code)]
#![warn(
    clippy::unwrap_used,
    missing_docs,
    rust_2018_idioms,
    unused_lifetimes,
    unused_qualifications
)]

//! # Using Ed25519 generically over algorithm implementations/providers
//!
//! By using the `ed25519` crate, you can write code which signs and verifies
//! messages using the Ed25519 signature algorithm generically over any
//! supported Ed25519 implementation (see the next section for available
//! providers).
//!
//! This allows consumers of your code to plug in whatever implementation they
//! want to use without having to add all potential Ed25519 libraries you'd
//! like to support as optional dependencies.
//!
//! ## Example
//!
//! ```
//! use ed25519::signature::{Signer, Verifier};
//!
//! pub struct HelloSigner<S>
//! where
//!     S: Signer<ed25519::Signature>
//! {
//!     pub signing_key: S
//! }
//!
//! impl<S> HelloSigner<S>
//! where
//!     S: Signer<ed25519::Signature>
//! {
//!     pub fn sign(&self, person: &str) -> ed25519::Signature {
//!         // NOTE: use `try_sign` if you'd like to be able to handle
//!         // errors from external signing services/devices (e.g. HSM/KMS)
//!         // <https://docs.rs/signature/latest/signature/trait.Signer.html#tymethod.try_sign>
//!         self.signing_key.sign(format_message(person).as_bytes())
//!     }
//! }
//!
//! pub struct HelloVerifier<V> {
//!     pub verify_key: V
//! }
//!
//! impl<V> HelloVerifier<V>
//! where
//!     V: Verifier<ed25519::Signature>
//! {
//!     pub fn verify(
//!         &self,
//!         person: &str,
//!         signature: &ed25519::Signature
//!     ) -> Result<(), ed25519::Error> {
//!         self.verify_key.verify(format_message(person).as_bytes(), signature)
//!     }
//! }
//!
//! fn format_message(person: &str) -> String {
//!     format!("Hello, {}!", person)
//! }
//! ```
//!
//! ## Using above example with `ed25519-dalek`
//!
//! The [`ed25519-dalek`] crate natively supports the [`ed25519::Signature`][`Signature`]
//! type defined in this crate along with the [`signature::Signer`] and
//! [`signature::Verifier`] traits.
//!
//! Below is an example of how a hypothetical consumer of the code above can
//! instantiate and use the previously defined `HelloSigner` and `HelloVerifier`
//! types with [`ed25519-dalek`] as the signing/verification provider:
//!
//! ```
//! use ed25519_dalek::{Signer, Verifier, Signature};
//! #
//! # pub struct HelloSigner<S>
//! # where
//! #     S: Signer<Signature>
//! # {
//! #     pub signing_key: S
//! # }
//! #
//! # impl<S> HelloSigner<S>
//! # where
//! #     S: Signer<Signature>
//! # {
//! #     pub fn sign(&self, person: &str) -> Signature {
//! #         // NOTE: use `try_sign` if you'd like to be able to handle
//! #         // errors from external signing services/devices (e.g. HSM/KMS)
//! #         // <https://docs.rs/signature/latest/signature/trait.Signer.html#tymethod.try_sign>
//! #         self.signing_key.sign(format_message(person).as_bytes())
//! #     }
//! # }
//! #
//! # pub struct HelloVerifier<V> {
//! #     pub verify_key: V
//! # }
//! #
//! # impl<V> HelloVerifier<V>
//! # where
//! #     V: Verifier<Signature>
//! # {
//! #     pub fn verify(
//! #         &self,
//! #         person: &str,
//! #         signature: &Signature
//! #     ) -> Result<(), ed25519::Error> {
//! #         self.verify_key.verify(format_message(person).as_bytes(), signature)
//! #     }
//! # }
//! #
//! # fn format_message(person: &str) -> String {
//! #     format!("Hello, {}!", person)
//! # }
//! use rand_core::OsRng; // Requires the `std` feature of `rand_core`
//!
//! /// `HelloSigner` defined above instantiated with `ed25519-dalek` as
//! /// the signing provider.
//! pub type DalekHelloSigner = HelloSigner<ed25519_dalek::Keypair>;
//!
//! let signing_key = ed25519_dalek::Keypair::generate(&mut OsRng);
//! let signer = DalekHelloSigner { signing_key };
//! let person = "Joe"; // Message to sign
//! let signature = signer.sign(person);
//!
//! /// `HelloVerifier` defined above instantiated with `ed25519-dalek`
//! /// as the signature verification provider.
//! pub type DalekHelloVerifier = HelloVerifier<ed25519_dalek::PublicKey>;
//!
//! let verify_key: ed25519_dalek::PublicKey = signer.signing_key.public;
//! let verifier = DalekHelloVerifier { verify_key };
//! assert!(verifier.verify(person, &signature).is_ok());
//! ```
//!
//! ## Using above example with `ring-compat`
//!
//! The [`ring-compat`] crate provides wrappers for [*ring*] which implement
//! the [`signature::Signer`] and [`signature::Verifier`] traits for
//! [`ed25519::Signature`][`Signature`].
//!
//! Below is an example of how a hypothetical consumer of the code above can
//! instantiate and use the previously defined `HelloSigner` and `HelloVerifier`
//! types with [`ring-compat`] as the signing/verification provider:
//!
//! ```ignore
//! use ring_compat::signature::{
//!     ed25519::{Signature, SigningKey, VerifyingKey},
//!     Signer, Verifier
//! };
//! #
//! # pub struct HelloSigner<S>
//! # where
//! #     S: Signer<Signature>
//! # {
//! #     pub signing_key: S
//! # }
//! #
//! # impl<S> HelloSigner<S>
//! # where
//! #     S: Signer<Signature>
//! # {
//! #     pub fn sign(&self, person: &str) -> Signature {
//! #         // NOTE: use `try_sign` if you'd like to be able to handle
//! #         // errors from external signing services/devices (e.g. HSM/KMS)
//! #         // <https://docs.rs/signature/latest/signature/trait.Signer.html#tymethod.try_sign>
//! #         self.signing_key.sign(format_message(person).as_bytes())
//! #     }
//! # }
//! #
//! # pub struct HelloVerifier<V> {
//! #     pub verify_key: V
//! # }
//! #
//! # impl<V> HelloVerifier<V>
//! # where
//! #     V: Verifier<Signature>
//! # {
//! #     pub fn verify(
//! #         &self,
//! #         person: &str,
//! #         signature: &Signature
//! #     ) -> Result<(), ed25519::Error> {
//! #         self.verify_key.verify(format_message(person).as_bytes(), signature)
//! #     }
//! # }
//! #
//! # fn format_message(person: &str) -> String {
//! #     format!("Hello, {}!", person)
//! # }
//! use rand_core::{OsRng, RngCore}; // Requires the `std` feature of `rand_core`
//!
//! /// `HelloSigner` defined above instantiated with *ring* as
//! /// the signing provider.
//! pub type RingHelloSigner = HelloSigner<SigningKey>;
//!
//! let mut ed25519_seed = [0u8; 32];
//! OsRng.fill_bytes(&mut ed25519_seed);
//!
//! let signing_key = SigningKey::from_seed(&ed25519_seed).unwrap();
//! let verify_key = signing_key.verify_key();
//!
//! let signer = RingHelloSigner { signing_key };
//! let person = "Joe"; // Message to sign
//! let signature = signer.sign(person);
//!
//! /// `HelloVerifier` defined above instantiated with *ring*
//! /// as the signature verification provider.
//! pub type RingHelloVerifier = HelloVerifier<VerifyingKey>;
//!
//! let verifier = RingHelloVerifier { verify_key };
//! assert!(verifier.verify(person, &signature).is_ok());
//! ```
//!
//! # Available Ed25519 providers
//!
//! The following libraries support the types/traits from the `ed25519` crate:
//!
//! - [`ed25519-dalek`] - mature pure Rust implementation of Ed25519
//! - [`ring-compat`] - compatibility wrapper for [*ring*]
//! - [`yubihsm`] - host-side client library for YubiHSM2 devices from Yubico
//!
//! [`ed25519-dalek`]: https://docs.rs/ed25519-dalek
//! [`ring-compat`]: https://docs.rs/ring-compat
//! [*ring*]: https://github.com/briansmith/ring
//! [`yubihsm`]: https://github.com/iqlusioninc/yubihsm.rs/blob/develop/README.md
//!
//! # Features
//!
//! The following features are presently supported:
//!
//! - `pkcs8`: support for decoding/encoding PKCS#8-formatted private keys using the
//!   [`KeypairBytes`] type.
//! - `std` *(default)*: Enable `std` support in [`signature`], which currently only affects whether
//!   [`signature::Error`] implements `std::error::Error`.
//! - `serde`: Implement `serde::Deserialize` and `serde::Serialize` for [`Signature`]. Signatures
//!   are serialized as their bytes.
//! - `serde_bytes`: Implement `serde_bytes::Deserialize` and `serde_bytes::Serialize` for
//!   [`Signature`]. This enables more compact representations for formats with an efficient byte
//!   array representation. As per the `serde_bytes` documentation, this can most easily be realised
//!   using the `#[serde(with = "serde_bytes")]` annotation, e.g.:
//!
//!   ```ignore
//!   # use ed25519::Signature;
//!   # use serde::{Deserialize, Serialize};
//!   #[derive(Deserialize, Serialize)]
//!   #[serde(transparent)]
//!   struct SignatureAsBytes(#[serde(with = "serde_bytes")] Signature);
//!   ```

#[cfg(feature = "alloc")]
extern crate alloc;

#[cfg(feature = "pkcs8")]
#[cfg_attr(docsrs, doc(cfg(feature = "pkcs8")))]
pub mod pkcs8;

#[cfg(feature = "serde")]
mod serde;

pub use signature::{self, Error};

#[cfg(feature = "pkcs8")]
pub use crate::pkcs8::KeypairBytes;

use core::{fmt, str};

#[cfg(feature = "alloc")]
use alloc::vec::Vec;

/// Length of an Ed25519 signature in bytes.
#[deprecated(since = "1.3.0", note = "use ed25519::Signature::BYTE_SIZE instead")]
pub const SIGNATURE_LENGTH: usize = Signature::BYTE_SIZE;

/// Ed25519 signature.
#[derive(Copy, Clone, Eq, PartialEq)]
pub struct Signature([u8; Signature::BYTE_SIZE]);

impl Signature {
    /// Size of an encoded Ed25519 signature in bytes.
    pub const BYTE_SIZE: usize = 64;

    /// Parse an Ed25519 signature from a byte slice.
    pub fn from_bytes(bytes: &[u8]) -> signature::Result<Self> {
        let result = bytes.try_into().map(Self).map_err(|_| Error::new())?;

        // Perform a partial reduction check on the signature's `s` scalar.
        // When properly reduced, at least the three highest bits of the scalar
        // will be unset so as to fit within the order of ~2^(252.5).
        //
        // This doesn't ensure that `s` is fully reduced (which would require a
        // full reduction check in the event that the 4th most significant bit
        // is set), however it will catch a number of invalid signatures
        // relatively inexpensively.
        if result.0[Signature::BYTE_SIZE - 1] & 0b1110_0000 != 0 {
            return Err(Error::new());
        }

        Ok(result)
    }

    /// Return the inner byte array.
    pub fn to_bytes(self) -> [u8; Self::BYTE_SIZE] {
        self.0
    }

    /// Convert this signature into a byte vector.
    #[cfg(feature = "alloc")]
    #[cfg_attr(docsrs, doc(cfg(feature = "alloc")))]
    pub fn to_vec(&self) -> Vec<u8> {
        self.0.to_vec()
    }

    /// DEPRECATED: Create a new signature from a byte array.
    ///
    /// # Panics
    ///
    /// This method will panic if an invalid signature is encountered.
    ///
    /// Use [`Signature::from_bytes`] or [`Signature::try_from`] instead for
    /// a fallible conversion.
    #[deprecated(since = "1.3.0", note = "use ed25519::Signature::from_bytes instead")]
    pub fn new(bytes: [u8; Self::BYTE_SIZE]) -> Self {
        Self::from_bytes(&bytes[..]).expect("invalid signature")
    }
}

impl signature::Signature for Signature {
    fn from_bytes(bytes: &[u8]) -> signature::Result<Self> {
        Self::from_bytes(bytes)
    }
}

impl AsRef<[u8]> for Signature {
    fn as_ref(&self) -> &[u8] {
        self.0.as_ref()
    }
}

impl From<Signature> for [u8; Signature::BYTE_SIZE] {
    fn from(sig: Signature) -> [u8; Signature::BYTE_SIZE] {
        sig.0
    }
}

impl From<&Signature> for [u8; Signature::BYTE_SIZE] {
    fn from(sig: &Signature) -> [u8; Signature::BYTE_SIZE] {
        sig.0
    }
}

/// DEPRECATED: use `TryFrom<&[u8]>` instead.
///
/// # Warning
///
/// This conversion will panic if a signature is invalid.
// TODO(tarcieri): remove this in the next breaking release
impl From<[u8; Signature::BYTE_SIZE]> for Signature {
    fn from(bytes: [u8; Signature::BYTE_SIZE]) -> Signature {
        #[allow(deprecated)]
        Signature::new(bytes)
    }
}

impl TryFrom<&[u8]> for Signature {
    type Error = Error;

    fn try_from(bytes: &[u8]) -> signature::Result<Self> {
        Self::from_bytes(bytes)
    }
}

impl fmt::Debug for Signature {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(f, "ed25519::Signature({})", self)
    }
}

impl fmt::Display for Signature {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(f, "{:X}", self)
    }
}

impl fmt::LowerHex for Signature {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        for byte in &self.0 {
            write!(f, "{:02x}", byte)?;
        }
        Ok(())
    }
}

impl fmt::UpperHex for Signature {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        for byte in &self.0 {
            write!(f, "{:02X}", byte)?;
        }
        Ok(())
    }
}

/// Decode a signature from hexadecimal.
///
/// Upper and lower case hexadecimal are both accepted, however mixed case is
/// rejected.
// TODO(tarcieri): use `base16ct`?
impl str::FromStr for Signature {
    type Err = Error;

    fn from_str(hex: &str) -> signature::Result<Self> {
        if hex.as_bytes().len() != Signature::BYTE_SIZE * 2 {
            return Err(Error::new());
        }

        let mut upper_case = None;

        // Ensure all characters are valid and case is not mixed
        for &byte in hex.as_bytes() {
            match byte {
                b'0'..=b'9' => (),
                b'a'..=b'z' => match upper_case {
                    Some(true) => return Err(Error::new()),
                    Some(false) => (),
                    None => upper_case = Some(false),
                },
                b'A'..=b'Z' => match upper_case {
                    Some(true) => (),
                    Some(false) => return Err(Error::new()),
                    None => upper_case = Some(true),
                },
                _ => return Err(Error::new()),
            }
        }

        let mut result = [0u8; Self::BYTE_SIZE];
        for (digit, byte) in hex.as_bytes().chunks_exact(2).zip(result.iter_mut()) {
            *byte = str::from_utf8(digit)
                .ok()
                .and_then(|s| u8::from_str_radix(s, 16).ok())
                .ok_or_else(Error::new)?;
        }

        Self::try_from(&result[..])
    }
}