1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348
// -*- mode: rust; -*-
//
// This file is part of schnorrkel.
// Copyright (c) 2019 Web 3 Foundation
// See LICENSE for licensing information.
//
// Authors:
// - Jeffrey Burdges <jeff@web3.foundation>
//! ### Implementation of "hierarchical deterministic key derivation" (HDKD) for Schnorr signatures on Ristretto
//!
//! *Warning* We warn that our VRF construction in vrf.rs supports
//! malleable VRF outputs via the `Malleable` type, which becomes
//! insecure when used in conjunction with our hierarchical key
//! derivation methods here.
//! Attackers could translate malleable VRF outputs from one soft subkey
//! to another soft subkey, gaining early knowledge of the VRF output.
//! We think most VRF applicaitons for which HDKH sounds suitable
//! benefit from using implicit certificates insead of HDKD anyways,
//! which should also be secure in combination with HDKH.
//! We always use non-malleable VRF inputs in our convenience methods.
//! We suggest using implicit certificates instead of HDKD when
//! using VRFs.
//!
//!
// use curve25519_dalek::digest::generic_array::typenum::U64;
// use curve25519_dalek::digest::Digest;
use curve25519_dalek::constants;
use curve25519_dalek::scalar::Scalar;
use super::*;
use crate::context::{SigningTranscript};
/// Length in bytes of our chain codes.
///
/// In fact, only 16 bytes sounds safe, but this never appears on chain,
/// so no downsides to using 32 bytes.
pub const CHAIN_CODE_LENGTH: usize = 32;
/// We cannot assume the original public key is secret and additional
/// inputs might have low entropy, like `i` in BIP32. As in BIP32,
/// chain codes fill this gap by being a high entropy secret shared
/// between public and private key holders. These are produced by
/// key derivations and can be incorporated into subsequence key
/// derivations.
/// See https://github.com/bitcoin/bips/blob/master/bip-0032.mediawiki#extended-keys
#[derive(Debug, Copy, Clone, PartialEq, Eq, Hash)]
pub struct ChainCode(pub [u8; CHAIN_CODE_LENGTH]);
/// Key types that support "hierarchical deterministic" key derivation
pub trait Derivation : Sized {
/// Derive key with subkey identified by a byte array
/// presented via a `SigningTranscript`, and a chain code.
fn derived_key<T>(&self, t: T, cc: ChainCode) -> (Self, ChainCode)
where T: SigningTranscript;
/// Derive key with subkey identified by a byte array
/// and a chain code. We do not include a context here
/// becuase the chain code could serve this purpose.
fn derived_key_simple<B: AsRef<[u8]>>(&self, cc: ChainCode, i: B) -> (Self, ChainCode) {
let mut t = merlin::Transcript::new(b"SchnorrRistrettoHDKD");
t.append_message(b"sign-bytes", i.as_ref());
self.derived_key(t, cc)
}
/// Derive key with subkey identified by a byte array
/// and a chain code, and with external ranodmnesses.
fn derived_key_simple_rng<B,R>(&self, cc: ChainCode, i: B, rng: R) -> (Self, ChainCode)
where B: AsRef<[u8]>, R: RngCore+CryptoRng
{
let mut t = merlin::Transcript::new(b"SchnorrRistrettoHDKD");
t.append_message(b"sign-bytes", i.as_ref());
self.derived_key(super::context::attach_rng(t,rng), cc)
}
}
impl PublicKey {
/// Derive a mutating scalar and new chain code from a public key and chain code.
///
/// If `i` is the "index", `c` is the chain code, and `pk` the public key,
/// then we compute `H(i ++ c ++ pk)` and define our mutating scalar
/// to be the 512 bits of output reduced mod l, and define the next chain
/// code to be next 256 bits.
///
/// We update the signing transcript as a side effect.
fn derive_scalar_and_chaincode<T>(&self, t: &mut T, cc: ChainCode) -> (Scalar, ChainCode)
where T: SigningTranscript
{
t.commit_bytes(b"chain-code",&cc.0);
t.commit_point(b"public-key",self.as_compressed());
let scalar = t.challenge_scalar(b"HDKD-scalar");
let mut chaincode = [0u8; 32];
t.challenge_bytes(b"HDKD-chaincode", &mut chaincode);
(scalar, ChainCode(chaincode))
}
}
impl SecretKey {
/// Vaguely BIP32-like "hard" derivation of a `MiniSecretKey` from a `SecretKey`
///
/// We do not envision any "good reasons" why these "hard"
/// derivations should ever be used after the soft `Derivation`
/// trait. We similarly do not believe hard derivations
/// make any sense for `ChainCode`s or `ExtendedKey`s types.
/// Yet, some existing BIP32 workflows might do these things,
/// due to BIP32's de facto stnadardization and poor design.
/// In consequence, we provide this method to do "hard" derivations
/// in a way that should work with all BIP32 workflows and any
/// permissible mutations of `SecretKey`. This means only that
/// we hash the `SecretKey`'s scalar, but not its nonce becuase
/// the secret key remains valid if the nonce is changed.
pub fn hard_derive_mini_secret_key<B: AsRef<[u8]>>(&self, cc: Option<ChainCode>, i: B)
-> (MiniSecretKey,ChainCode)
{
let mut t = merlin::Transcript::new(b"SchnorrRistrettoHDKD");
t.append_message(b"sign-bytes", i.as_ref());
if let Some(c) = cc { t.append_message(b"chain-code", &c.0); }
t.append_message(b"secret-key",& self.key.to_bytes() as &[u8]);
let mut msk = [0u8; MINI_SECRET_KEY_LENGTH];
t.challenge_bytes(b"HDKD-hard",&mut msk);
let mut chaincode = [0u8; 32];
t.challenge_bytes(b"HDKD-chaincode", &mut chaincode);
(MiniSecretKey(msk), ChainCode(chaincode))
}
}
impl MiniSecretKey {
/// Vaguely BIP32-like "hard" derivation of a `MiniSecretKey` from a `SecretKey`
///
/// We do not envision any "good reasons" why these "hard"
/// derivations should ever be used after the soft `Derivation`
/// trait. We similarly do not believe hard derivations
/// make any sense for `ChainCode`s or `ExtendedKey`s types.
/// Yet, some existing BIP32 workflows might do these things,
/// due to BIP32's de facto stnadardization and poor design.
/// In consequence, we provide this method to do "hard" derivations
/// in a way that should work with all BIP32 workflows and any
/// permissible mutations of `SecretKey`. This means only that
/// we hash the `SecretKey`'s scalar, but not its nonce becuase
/// the secret key remains valid if the nonce is changed.
pub fn hard_derive_mini_secret_key<B: AsRef<[u8]>>(&self, cc: Option<ChainCode>, i: B, mode: ExpansionMode)
-> (MiniSecretKey,ChainCode)
{
self.expand(mode).hard_derive_mini_secret_key(cc,i)
}
}
impl Keypair {
/// Vaguely BIP32-like "hard" derivation of a `MiniSecretKey` from a `SecretKey`
///
/// We do not envision any "good reasons" why these "hard"
/// derivations should ever be used after the soft `Derivation`
/// trait. We similarly do not believe hard derivations
/// make any sense for `ChainCode`s or `ExtendedKey`s types.
/// Yet, some existing BIP32 workflows might do these things,
/// due to BIP32's de facto stnadardization and poor design.
/// In consequence, we provide this method to do "hard" derivations
/// in a way that should work with all BIP32 workflows and any
/// permissible mutations of `SecretKey`. This means only that
/// we hash the `SecretKey`'s scalar, but not its nonce becuase
/// the secret key remains valid if the nonce is changed.
pub fn hard_derive_mini_secret_key<B: AsRef<[u8]>>(&self, cc: Option<ChainCode>, i: B)
-> (MiniSecretKey,ChainCode) {
self.secret.hard_derive_mini_secret_key(cc,i)
}
/// Derive a secret key and new chain code from a key pair and chain code.
///
/// We expect the trait methods of `Keypair as Derivation` to be
/// more useful since signing anything requires the public key too.
pub fn derive_secret_key<T>(&self, mut t: T, cc: ChainCode) -> (SecretKey, ChainCode)
where T: SigningTranscript
{
let (scalar, chaincode) = self.public.derive_scalar_and_chaincode(&mut t, cc);
// We can define the nonce however we like here since it only protects
// the signature from bad random number generators. It need not be
// specified by any spcification or standard. It must however be
// independent from the mutating scalar and new chain code.
// We employ the witness mechanism here so that CSPRNG associated to our
// `SigningTranscript` makes our new nonce seed independent from everything.
let mut nonce = [0u8; 32];
t.witness_bytes(b"HDKD-nonce", &mut nonce, &[&self.secret.nonce, &self.secret.to_bytes() as &[u8]]);
(SecretKey {
key: self.secret.key + scalar,
nonce,
}, chaincode)
}
}
impl Derivation for Keypair {
fn derived_key<T>(&self, t: T, cc: ChainCode) -> (Keypair, ChainCode)
where T: SigningTranscript
{
let (secret, chaincode) = self.derive_secret_key(t, cc);
let public = secret.to_public();
(Keypair { secret, public }, chaincode)
}
}
impl Derivation for SecretKey {
fn derived_key<T>(&self, t: T, cc: ChainCode) -> (SecretKey, ChainCode)
where T: SigningTranscript
{
self.clone().to_keypair().derive_secret_key(t, cc)
}
}
impl Derivation for PublicKey {
fn derived_key<T>(&self, mut t: T, cc: ChainCode) -> (PublicKey, ChainCode)
where T: SigningTranscript
{
let (scalar, chaincode) = self.derive_scalar_and_chaincode(&mut t, cc);
let point = self.as_point() + (&scalar * &constants::RISTRETTO_BASEPOINT_TABLE);
(PublicKey::from_point(point), chaincode)
}
}
/// A convenience wraper that combines derivable key and a chain code.
#[derive(Debug, Copy, Clone, PartialEq, Eq, Hash)]
pub struct ExtendedKey<K> {
/// Appropriate key type
pub key: K,
/// We cannot assume the original public key is secret and additional
/// inputs might have low entropy, like `i` in BIP32. As in BIP32,
/// chain codes fill this gap by being a high entropy secret shared
/// between public and private key holders. These are produced by
/// key derivations and can be incorporated into subsequence key
/// derivations.
pub chaincode: ChainCode,
}
// TODO: Serialization
impl<K: Derivation> ExtendedKey<K> {
/// Derive key with subkey identified by a byte array
/// presented as a hash, and a chain code.
pub fn derived_key<T>(&self, t: T) -> ExtendedKey<K>
where T: SigningTranscript
{
let (key, chaincode) = self.key.derived_key(t, self.chaincode.clone());
ExtendedKey { key, chaincode }
}
/// Derive key with subkey identified by a byte array and
/// a chain code in the extended key.
pub fn derived_key_simple<B: AsRef<[u8]>>(&self, i: B) -> ExtendedKey<K>
{
let (key, chaincode) = self.key.derived_key_simple(self.chaincode.clone(), i);
ExtendedKey { key, chaincode }
}
}
impl ExtendedKey<SecretKey> {
/// Vaguely BIP32-like "hard" derivation of a `MiniSecretKey` from a `SecretKey`
///
/// We do not envision any "good reasons" why these "hard"
/// derivations should ever be used after the soft `Derivation`
/// trait. We similarly do not believe hard derivations
/// make any sense for `ChainCode`s or `ExtendedKey`s types.
/// Yet, some existing BIP32 workflows might do these things,
/// due to BIP32's de facto stnadardization and poor design.
/// In consequence, we provide this method to do "hard" derivations
/// in a way that should work with all BIP32 workflows and any
/// permissible mutations of `SecretKey`. This means only that
/// we hash the `SecretKey`'s scalar, but not its nonce becuase
/// the secret key remains valid if the nonce is changed.
pub fn hard_derive_mini_secret_key<B: AsRef<[u8]>>(&self, i: B, mode: ExpansionMode)
-> ExtendedKey<SecretKey>
{
let (key,chaincode) = self.key.hard_derive_mini_secret_key(Some(self.chaincode), i);
let key = key.expand(mode);
ExtendedKey { key, chaincode }
}
}
#[cfg(test)]
mod tests {
use sha3::digest::{Input}; // ExtendableOutput,XofReader
use sha3::{Shake128};
use super::*;
#[test]
fn derive_key_public_vs_private_paths() {
let chaincode = ChainCode([0u8; CHAIN_CODE_LENGTH]);
let msg : &'static [u8] = b"Just some test message!";
let mut h = Shake128::default().chain(msg);
// #[cfg(feature = "getrandom")]
let mut csprng = ::rand_core::OsRng;
let key = Keypair::generate_with(&mut csprng);
let mut extended_public_key = ExtendedKey {
key: key.public.clone(),
chaincode,
};
let mut extended_keypair = ExtendedKey { key, chaincode, };
let ctx = signing_context(b"testing testing 1 2 3");
for i in 0..30 {
let extended_keypair1 = extended_keypair.derived_key_simple(msg);
let extended_public_key1 = extended_public_key.derived_key_simple(msg);
assert_eq!(
extended_keypair1.chaincode, extended_public_key1.chaincode,
"Chain code derivation failed!"
);
assert_eq!(
extended_keypair1.key.public, extended_public_key1.key,
"Public and secret key derivation missmatch!"
);
extended_keypair = extended_keypair1;
extended_public_key = extended_public_key1;
h.input(b"Another");
if i % 5 == 0 {
let good_sig = extended_keypair.key.sign(ctx.xof(h.clone()));
let h_bad = h.clone().chain(b"oops");
let bad_sig = extended_keypair.key.sign(ctx.xof(h_bad.clone()));
assert!(
extended_public_key.key.verify(ctx.xof(h.clone()), &good_sig).is_ok(),
"Verification of a valid signature failed!"
);
assert!(
! extended_public_key.key.verify(ctx.xof(h.clone()), &bad_sig).is_ok(),
"Verification of a signature on a different message passed!"
);
assert!(
! extended_public_key.key.verify(ctx.xof(h_bad), &good_sig).is_ok(),
"Verification of a signature on a different message passed!"
);
}
}
}
}