1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
// -*- mode: rust; -*-
//
// This file is part of schnorrkel.
// Copyright (c) 2019 Web 3 Foundation
// See LICENSE for licensing information.
//
// Authors:
// - Jeffrey Burdges <jeff@web3.foundation>

//! ### Implementation of "hierarchical deterministic key derivation" (HDKD) for Schnorr signatures on Ristretto 
//! 
//! *Warning*  We warn that our VRF construction in vrf.rs supports
//! malleable VRF outputs via the `Malleable` type, which becomes
//! insecure when used in conjunction with our hierarchical key
//! derivation methods here.
//! Attackers could translate malleable VRF outputs from one soft subkey 
//! to another soft subkey, gaining early knowledge of the VRF output.
//! We think most VRF applicaitons for which HDKH sounds suitable
//! benefit from using implicit certificates insead of HDKD anyways,
//! which should also be secure in combination with HDKH.
//! We always use non-malleable VRF inputs in our convenience methods.

//! We suggest using implicit certificates instead of HDKD when 
//! using VRFs.
//!
//! 

// use curve25519_dalek::digest::generic_array::typenum::U64;
// use curve25519_dalek::digest::Digest;

use curve25519_dalek::constants;
use curve25519_dalek::scalar::Scalar;

use super::*;
use crate::context::{SigningTranscript};

/// Length in bytes of our chain codes.
///
/// In fact, only 16 bytes sounds safe, but this never appears on chain,
/// so no downsides to using 32 bytes.
pub const CHAIN_CODE_LENGTH: usize = 32;

/// We cannot assume the original public key is secret and additional
/// inputs might have low entropy, like `i` in BIP32.  As in BIP32,
/// chain codes fill this gap by being a high entropy secret shared
/// between public and private key holders.  These are produced by
/// key derivations and can be incorporated into subsequence key
/// derivations. 
/// See https://github.com/bitcoin/bips/blob/master/bip-0032.mediawiki#extended-keys
#[derive(Debug, Copy, Clone, PartialEq, Eq, Hash)]
pub struct ChainCode(pub [u8; CHAIN_CODE_LENGTH]);

/// Key types that support "hierarchical deterministic" key derivation
pub trait Derivation : Sized {
    /// Derive key with subkey identified by a byte array
    /// presented via a `SigningTranscript`, and a chain code.
    fn derived_key<T>(&self, t: T, cc: ChainCode) -> (Self, ChainCode)
    where T: SigningTranscript;

    /// Derive key with subkey identified by a byte array 
    /// and a chain code.  We do not include a context here
    /// becuase the chain code could serve this purpose.
    fn derived_key_simple<B: AsRef<[u8]>>(&self, cc: ChainCode, i: B) -> (Self, ChainCode) {
        let mut t = merlin::Transcript::new(b"SchnorrRistrettoHDKD");
        t.append_message(b"sign-bytes", i.as_ref());
        self.derived_key(t, cc)
    }

    /// Derive key with subkey identified by a byte array
    /// and a chain code, and with external ranodmnesses.
    fn derived_key_simple_rng<B,R>(&self, cc: ChainCode, i: B, rng: R) -> (Self, ChainCode)
    where B: AsRef<[u8]>, R: RngCore+CryptoRng
    {
        let mut t = merlin::Transcript::new(b"SchnorrRistrettoHDKD");
        t.append_message(b"sign-bytes", i.as_ref());
        self.derived_key(super::context::attach_rng(t,rng), cc)
    }
}

impl PublicKey {
    /// Derive a mutating scalar and new chain code from a public key and chain code.
    ///
    /// If `i` is the "index", `c` is the chain code, and `pk` the public key,
    /// then we compute `H(i ++ c ++ pk)` and define our mutating scalar
    /// to be the 512 bits of output reduced mod l, and define the next chain
    /// code to be next 256 bits.  
    ///
    /// We update the signing transcript as a side effect.
    fn derive_scalar_and_chaincode<T>(&self, t: &mut T, cc: ChainCode) -> (Scalar, ChainCode)
    where T: SigningTranscript
    {
        t.commit_bytes(b"chain-code",&cc.0);
        t.commit_point(b"public-key",self.as_compressed());

        let scalar = t.challenge_scalar(b"HDKD-scalar");

        let mut chaincode = [0u8; 32];
        t.challenge_bytes(b"HDKD-chaincode", &mut chaincode);

        (scalar, ChainCode(chaincode))
    }
}

impl SecretKey {
    /// Vaguely BIP32-like "hard" derivation of a `MiniSecretKey` from a `SecretKey`
    ///
    /// We do not envision any "good reasons" why these "hard"
    /// derivations should ever be used after the soft `Derivation`
    /// trait.  We similarly do not believe hard derivations
    /// make any sense for `ChainCode`s or `ExtendedKey`s types.
    /// Yet, some existing BIP32 workflows might do these things,
    /// due to BIP32's de facto stnadardization and poor design.
    /// In consequence, we provide this method to do "hard" derivations
    /// in a way that should work with all BIP32 workflows and any
    /// permissible mutations of `SecretKey`.  This means only that
    /// we hash the `SecretKey`'s scalar, but not its nonce becuase
    /// the secret key remains valid if the nonce is changed.
    pub fn hard_derive_mini_secret_key<B: AsRef<[u8]>>(&self, cc: Option<ChainCode>, i: B)
     -> (MiniSecretKey,ChainCode)
    {
        let mut t = merlin::Transcript::new(b"SchnorrRistrettoHDKD");
        t.append_message(b"sign-bytes", i.as_ref());

        if let Some(c) = cc { t.append_message(b"chain-code", &c.0); }
        t.append_message(b"secret-key",& self.key.to_bytes() as &[u8]);

        let mut msk = [0u8; MINI_SECRET_KEY_LENGTH]; 
        t.challenge_bytes(b"HDKD-hard",&mut msk);

        let mut chaincode = [0u8; 32];
        t.challenge_bytes(b"HDKD-chaincode", &mut chaincode);

        (MiniSecretKey(msk), ChainCode(chaincode))
    }
}

impl MiniSecretKey {
    /// Vaguely BIP32-like "hard" derivation of a `MiniSecretKey` from a `SecretKey`
    ///
    /// We do not envision any "good reasons" why these "hard"
    /// derivations should ever be used after the soft `Derivation`
    /// trait.  We similarly do not believe hard derivations
    /// make any sense for `ChainCode`s or `ExtendedKey`s types.
    /// Yet, some existing BIP32 workflows might do these things,
    /// due to BIP32's de facto stnadardization and poor design.
    /// In consequence, we provide this method to do "hard" derivations
    /// in a way that should work with all BIP32 workflows and any
    /// permissible mutations of `SecretKey`.  This means only that
    /// we hash the `SecretKey`'s scalar, but not its nonce becuase
    /// the secret key remains valid if the nonce is changed.
    pub fn hard_derive_mini_secret_key<B: AsRef<[u8]>>(&self, cc: Option<ChainCode>, i: B, mode: ExpansionMode)
     -> (MiniSecretKey,ChainCode)
    {
        self.expand(mode).hard_derive_mini_secret_key(cc,i)
    }
}

impl Keypair {
    /// Vaguely BIP32-like "hard" derivation of a `MiniSecretKey` from a `SecretKey`
    ///
    /// We do not envision any "good reasons" why these "hard"
    /// derivations should ever be used after the soft `Derivation`
    /// trait.  We similarly do not believe hard derivations
    /// make any sense for `ChainCode`s or `ExtendedKey`s types.
    /// Yet, some existing BIP32 workflows might do these things,
    /// due to BIP32's de facto stnadardization and poor design.
    /// In consequence, we provide this method to do "hard" derivations
    /// in a way that should work with all BIP32 workflows and any
    /// permissible mutations of `SecretKey`.  This means only that
    /// we hash the `SecretKey`'s scalar, but not its nonce becuase
    /// the secret key remains valid if the nonce is changed.
    pub fn hard_derive_mini_secret_key<B: AsRef<[u8]>>(&self, cc: Option<ChainCode>, i: B)
     -> (MiniSecretKey,ChainCode) {
        self.secret.hard_derive_mini_secret_key(cc,i)
    }

    /// Derive a secret key and new chain code from a key pair and chain code.
    ///
    /// We expect the trait methods of `Keypair as Derivation` to be
    /// more useful since signing anything requires the public key too.
    pub fn derive_secret_key<T>(&self, mut t: T, cc: ChainCode) -> (SecretKey, ChainCode)
    where T: SigningTranscript
    {
        let (scalar, chaincode) = self.public.derive_scalar_and_chaincode(&mut t, cc);

        // We can define the nonce however we like here since it only protects
        // the signature from bad random number generators.  It need not be
        // specified by any spcification or standard.  It must however be
        // independent from the mutating scalar and new chain code.
        // We employ the witness mechanism here so that CSPRNG associated to our
        // `SigningTranscript` makes our new nonce seed independent from everything.
        let mut nonce = [0u8; 32];
        t.witness_bytes(b"HDKD-nonce", &mut nonce, &[&self.secret.nonce, &self.secret.to_bytes() as &[u8]]);

        (SecretKey {
            key: self.secret.key + scalar,
            nonce,
        }, chaincode)
    }
}

impl Derivation for Keypair {
    fn derived_key<T>(&self, t: T, cc: ChainCode) -> (Keypair, ChainCode)
    where T: SigningTranscript
    {
        let (secret, chaincode) = self.derive_secret_key(t, cc);
        let public = secret.to_public();
        (Keypair { secret, public }, chaincode)
    }
}

impl Derivation for SecretKey {
    fn derived_key<T>(&self, t: T, cc: ChainCode) -> (SecretKey, ChainCode)
    where T: SigningTranscript
    {
        self.clone().to_keypair().derive_secret_key(t, cc)
    }
}

impl Derivation for PublicKey {
    fn derived_key<T>(&self, mut t: T, cc: ChainCode) -> (PublicKey, ChainCode)
    where T: SigningTranscript
    {
        let (scalar, chaincode) = self.derive_scalar_and_chaincode(&mut t, cc);
        let point = self.as_point() + (&scalar * &constants::RISTRETTO_BASEPOINT_TABLE);
        (PublicKey::from_point(point), chaincode)
    }
}

/// A convenience wraper that combines derivable key and a chain code.
#[derive(Debug, Copy, Clone, PartialEq, Eq, Hash)]
pub struct ExtendedKey<K> {
    /// Appropriate key type
    pub key: K,
    /// We cannot assume the original public key is secret and additional
    /// inputs might have low entropy, like `i` in BIP32.  As in BIP32,
    /// chain codes fill this gap by being a high entropy secret shared
    /// between public and private key holders.  These are produced by
    /// key derivations and can be incorporated into subsequence key
    /// derivations.  
    pub chaincode: ChainCode,
}
// TODO: Serialization

impl<K: Derivation> ExtendedKey<K> {
    /// Derive key with subkey identified by a byte array
    /// presented as a hash, and a chain code.
    pub fn derived_key<T>(&self, t: T) -> ExtendedKey<K>
    where T: SigningTranscript
    {
        let (key, chaincode) = self.key.derived_key(t, self.chaincode.clone());
        ExtendedKey { key, chaincode }
    }

    /// Derive key with subkey identified by a byte array and 
    /// a chain code in the extended key.
    pub fn derived_key_simple<B: AsRef<[u8]>>(&self, i: B) -> ExtendedKey<K>
    {
        let (key, chaincode) = self.key.derived_key_simple(self.chaincode.clone(), i);
        ExtendedKey { key, chaincode }
    }
}

impl ExtendedKey<SecretKey> {
    /// Vaguely BIP32-like "hard" derivation of a `MiniSecretKey` from a `SecretKey`
    ///
    /// We do not envision any "good reasons" why these "hard"
    /// derivations should ever be used after the soft `Derivation`
    /// trait.  We similarly do not believe hard derivations
    /// make any sense for `ChainCode`s or `ExtendedKey`s types.
    /// Yet, some existing BIP32 workflows might do these things,
    /// due to BIP32's de facto stnadardization and poor design.
    /// In consequence, we provide this method to do "hard" derivations
    /// in a way that should work with all BIP32 workflows and any
    /// permissible mutations of `SecretKey`.  This means only that
    /// we hash the `SecretKey`'s scalar, but not its nonce becuase
    /// the secret key remains valid if the nonce is changed.
    pub fn hard_derive_mini_secret_key<B: AsRef<[u8]>>(&self, i: B, mode: ExpansionMode)
     -> ExtendedKey<SecretKey> 
     {
        let (key,chaincode) = self.key.hard_derive_mini_secret_key(Some(self.chaincode), i);
        let key = key.expand(mode);
        ExtendedKey { key, chaincode }
    }
}

#[cfg(test)]
mod tests {
    use sha3::digest::{Input}; // ExtendableOutput,XofReader
    use sha3::{Shake128};

    use super::*;

    #[test]
    fn derive_key_public_vs_private_paths() {
        let chaincode = ChainCode([0u8; CHAIN_CODE_LENGTH]);
        let msg : &'static [u8] = b"Just some test message!";
        let mut h = Shake128::default().chain(msg);

        // #[cfg(feature = "getrandom")]
        let mut csprng = ::rand_core::OsRng;
        let key = Keypair::generate_with(&mut csprng);

        let mut extended_public_key = ExtendedKey {
            key: key.public.clone(),
            chaincode,
        };
        let mut extended_keypair = ExtendedKey { key, chaincode, };

        let ctx = signing_context(b"testing testing 1 2 3");

        for i in 0..30 {
            let extended_keypair1 = extended_keypair.derived_key_simple(msg);
            let extended_public_key1 = extended_public_key.derived_key_simple(msg);
            assert_eq!(
                extended_keypair1.chaincode, extended_public_key1.chaincode,
                "Chain code derivation failed!"
            );
            assert_eq!(
                extended_keypair1.key.public, extended_public_key1.key,
                "Public and secret key derivation missmatch!"
            );
            extended_keypair = extended_keypair1;
            extended_public_key = extended_public_key1;

            h.input(b"Another");

            if i % 5 == 0 {
                let good_sig = extended_keypair.key.sign(ctx.xof(h.clone()));
                let h_bad = h.clone().chain(b"oops");
                let bad_sig = extended_keypair.key.sign(ctx.xof(h_bad.clone()));

                assert!(
                    extended_public_key.key.verify(ctx.xof(h.clone()), &good_sig).is_ok(),
                    "Verification of a valid signature failed!"
                );
                assert!(
                    ! extended_public_key.key.verify(ctx.xof(h.clone()), &bad_sig).is_ok(),
                    "Verification of a signature on a different message passed!"
                );
                assert!(
                    ! extended_public_key.key.verify(ctx.xof(h_bad), &good_sig).is_ok(),
                    "Verification of a signature on a different message passed!"
                );
            }
        }
    }
}