1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
//! Implements module serialization.
//!
//! This module implements the serialization format for `wasmtime::Module`.
//! This includes both the binary format of the final artifact as well as
//! validation on ingestion of artifacts.
//!
//! There are two main pieces of data associated with a binary artifact:
//!
//! 1. The compiled module image, currently an ELF file.
//! 2. Compilation metadata for the module, including the `ModuleTypes`
//!    information. This metadata is validated for compilation settings.
//!
//! Compiled modules are, at this time, represented as an ELF file. This ELF
//! file contains all the necessary data needed to decode a module, and
//! conveniently also handles things like alignment so we can actually directly
//! `mmap` compilation artifacts from disk.
//!
//! With this in mind, the current serialization format is as follows:
//!
//! * First the ELF image for the compiled module starts the artifact. This
//!   helps developers use standard ELF-reading utilities like `objdump` to poke
//!   around and see what's inside the compiled image.
//!
//! * After the ELF file is a number of fields:
//!
//!   1. The `HEADER` value
//!   2. A byte indicating how long the next field is
//!   3. A version string of the length of the previous byte value
//!   4. A `bincode`-encoded `Metadata` structure.
//!
//!   This is hoped to help distinguish easily Wasmtime-based ELF files from
//!   other random ELF files, as well as provide better error messages for
//!   using wasmtime artifacts across versions.
//!
//! Note that the structure of the ELF format is what enables this
//! representation. We can have trailing data after an ELF file which isn't read
//! by any parsing of the ELF itself, which provides a convenient location for
//! the metadata information to go.
//!
//! This format is implemented by the `to_bytes` and `from_mmap` function.

use crate::{Engine, Module, ModuleVersionStrategy};
use anyhow::{anyhow, bail, Context, Result};
use object::read::elf::FileHeader;
use object::Bytes;
use serde::{Deserialize, Serialize};
use std::collections::BTreeMap;
use std::path::Path;
use std::str::FromStr;
use wasmtime_environ::{FlagValue, ModuleTypes, Tunables};
use wasmtime_jit::{subslice_range, CompiledModuleInfo};
use wasmtime_runtime::MmapVec;

const HEADER: &[u8] = b"\0wasmtime-aot";

// This exists because `wasmparser::WasmFeatures` isn't serializable
#[derive(Debug, Copy, Clone, Serialize, Deserialize)]
struct WasmFeatures {
    pub reference_types: bool,
    pub multi_value: bool,
    pub bulk_memory: bool,
    pub component_model: bool,
    pub simd: bool,
    pub threads: bool,
    pub tail_call: bool,
    pub deterministic_only: bool,
    pub multi_memory: bool,
    pub exceptions: bool,
    pub memory64: bool,
    pub relaxed_simd: bool,
    pub extended_const: bool,
}

impl From<&wasmparser::WasmFeatures> for WasmFeatures {
    fn from(other: &wasmparser::WasmFeatures) -> Self {
        let wasmparser::WasmFeatures {
            reference_types,
            multi_value,
            bulk_memory,
            component_model,
            simd,
            threads,
            tail_call,
            deterministic_only,
            multi_memory,
            exceptions,
            memory64,
            relaxed_simd,
            extended_const,

            // Always on; we don't currently have knobs for these.
            mutable_global: _,
            saturating_float_to_int: _,
            sign_extension: _,
        } = *other;

        Self {
            reference_types,
            multi_value,
            bulk_memory,
            component_model,
            simd,
            threads,
            tail_call,
            deterministic_only,
            multi_memory,
            exceptions,
            memory64,
            relaxed_simd,
            extended_const,
        }
    }
}

// This is like `std::borrow::Cow` but it doesn't have a `Clone` bound on `T`
enum MyCow<'a, T> {
    Borrowed(&'a T),
    Owned(T),
}

impl<'a, T> MyCow<'a, T> {
    fn as_ref(&self) -> &T {
        match self {
            MyCow::Owned(val) => val,
            MyCow::Borrowed(val) => val,
        }
    }
    fn unwrap_owned(self) -> T {
        match self {
            MyCow::Owned(val) => val,
            MyCow::Borrowed(_) => unreachable!(),
        }
    }
}

impl<'a, T: Serialize> Serialize for MyCow<'a, T> {
    fn serialize<S>(&self, dst: S) -> Result<S::Ok, S::Error>
    where
        S: serde::ser::Serializer,
    {
        match self {
            MyCow::Borrowed(val) => val.serialize(dst),
            MyCow::Owned(val) => val.serialize(dst),
        }
    }
}

impl<'a, 'b, T: Deserialize<'a>> Deserialize<'a> for MyCow<'b, T> {
    fn deserialize<D>(src: D) -> Result<Self, D::Error>
    where
        D: serde::de::Deserializer<'a>,
    {
        Ok(MyCow::Owned(T::deserialize(src)?))
    }
}

pub struct SerializedModule<'a> {
    artifacts: MyCow<'a, MmapVec>,
    metadata: Metadata<'a>,
}

#[derive(Serialize, Deserialize)]
struct Metadata<'a> {
    target: String,
    shared_flags: BTreeMap<String, FlagValue>,
    isa_flags: BTreeMap<String, FlagValue>,
    tunables: Tunables,
    features: WasmFeatures,
    types: MyCow<'a, ModuleTypes>,
}

impl<'a> SerializedModule<'a> {
    #[cfg(compiler)]
    pub fn new(module: &'a Module) -> Self {
        Self::with_data(
            module.engine(),
            MyCow::Borrowed(module.compiled_module().mmap()),
            MyCow::Borrowed(module.types()),
        )
    }

    #[cfg(compiler)]
    pub fn from_artifacts(engine: &Engine, artifacts: &'a MmapVec, types: &'a ModuleTypes) -> Self {
        Self::with_data(engine, MyCow::Borrowed(artifacts), MyCow::Borrowed(types))
    }

    #[cfg(compiler)]
    fn with_data(
        engine: &Engine,
        artifacts: MyCow<'a, MmapVec>,
        types: MyCow<'a, ModuleTypes>,
    ) -> Self {
        Self {
            artifacts,
            metadata: Metadata {
                target: engine.compiler().triple().to_string(),
                shared_flags: engine.compiler().flags(),
                isa_flags: engine.compiler().isa_flags(),
                tunables: engine.config().tunables.clone(),
                features: (&engine.config().features).into(),
                types,
            },
        }
    }

    pub fn into_module(self, engine: &Engine) -> Result<Module> {
        let (mmap, info, types) = self.into_parts(engine)?;
        Module::from_parts(engine, mmap, info, types)
    }

    pub fn into_parts(
        mut self,
        engine: &Engine,
    ) -> Result<(MmapVec, Option<CompiledModuleInfo>, ModuleTypes)> {
        // Verify that the compilation settings in the engine match the
        // compilation settings of the module that's being loaded.
        self.check_triple(engine)?;
        self.check_shared_flags(engine)?;
        self.check_isa_flags(engine)?;

        self.check_tunables(&engine.config().tunables)?;
        self.check_features(&engine.config().features)?;

        let module = self.artifacts.unwrap_owned();

        Ok((module, None, self.metadata.types.unwrap_owned()))
    }

    pub fn to_bytes(&self, version_strat: &ModuleVersionStrategy) -> Result<Vec<u8>> {
        // Start off with a copy of the ELF image.
        let mut ret = self.artifacts.as_ref().to_vec();

        // Append the bincode-encoded `Metadata` section with a few other guards
        // to help give better error messages during deserialization if
        // something goes wrong.
        ret.extend_from_slice(HEADER);
        let version = match version_strat {
            ModuleVersionStrategy::WasmtimeVersion => env!("CARGO_PKG_VERSION"),
            ModuleVersionStrategy::Custom(c) => &c,
            ModuleVersionStrategy::None => "",
        };
        // This precondition is checked in Config::module_version:
        assert!(
            version.len() < 256,
            "package version must be less than 256 bytes"
        );
        ret.push(version.len() as u8);
        ret.extend_from_slice(version.as_bytes());
        bincode::serialize_into(&mut ret, &self.metadata)?;

        Ok(ret)
    }

    pub fn from_bytes(bytes: &[u8], version_strat: &ModuleVersionStrategy) -> Result<Self> {
        Self::from_mmap(MmapVec::from_slice(bytes)?, version_strat)
    }

    pub fn from_file(path: &Path, version_strat: &ModuleVersionStrategy) -> Result<Self> {
        Self::from_mmap(
            MmapVec::from_file(path).with_context(|| {
                format!("failed to create file mapping for: {}", path.display())
            })?,
            version_strat,
        )
    }

    pub fn from_mmap(mut mmap: MmapVec, version_strat: &ModuleVersionStrategy) -> Result<Self> {
        // First validate that this is at least somewhat an elf file within
        // `mmap` and additionally skip to the end of the elf file to find our
        // metadata.
        let metadata = data_after_elf(&mut mmap)?;

        // The metadata has a few guards up front which we process first, and
        // eventually this bottoms out in a `bincode::deserialize` call.
        let metadata = metadata
            .strip_prefix(HEADER)
            .ok_or_else(|| anyhow!("bytes are not a compatible serialized wasmtime module"))?;
        if metadata.is_empty() {
            bail!("serialized data data is empty");
        }
        let version_len = metadata[0] as usize;
        if metadata.len() < version_len + 1 {
            bail!("serialized data is malformed");
        }

        match version_strat {
            ModuleVersionStrategy::WasmtimeVersion => {
                let version = std::str::from_utf8(&metadata[1..1 + version_len])?;
                if version != env!("CARGO_PKG_VERSION") {
                    bail!(
                        "Module was compiled with incompatible Wasmtime version '{}'",
                        version
                    );
                }
            }
            ModuleVersionStrategy::Custom(v) => {
                let version = std::str::from_utf8(&metadata[1..1 + version_len])?;
                if version != v {
                    bail!(
                        "Module was compiled with incompatible version '{}'",
                        version
                    );
                }
            }
            ModuleVersionStrategy::None => { /* ignore the version info, accept all */ }
        }

        let metadata = bincode::deserialize::<Metadata>(&metadata[1 + version_len..])
            .context("deserialize compilation artifacts")?;

        return Ok(SerializedModule {
            artifacts: MyCow::Owned(mmap),
            metadata,
        });

        /// This function will return the trailing data behind the ELF file
        /// parsed from `data` which is where we find our metadata section.
        fn data_after_elf(mmap: &mut MmapVec) -> Result<MmapVec> {
            use object::NativeEndian as NE;
            // There's not actually a great utility for figuring out where
            // the end of an ELF file is in the `object` crate. In lieu of that
            // we build our own which leverages the format of ELF files, which
            // is that the header comes first, that tells us where the section
            // headers are, and for our ELF files the end of the file is the
            // end of the section headers.
            let data = &mmap[..];
            let mut bytes = Bytes(data);
            let header = bytes
                .read::<object::elf::FileHeader64<NE>>()
                .map_err(|()| anyhow!("artifact truncated, can't read header"))?;
            if !header.is_supported() {
                bail!("invalid elf header");
            }
            let sections = header
                .section_headers(NE, data)
                .context("failed to read section headers")?;
            let range = subslice_range(object::bytes_of_slice(sections), data);
            Ok(mmap.split_off(range.end))
        }
    }

    fn check_triple(&self, engine: &Engine) -> Result<()> {
        let engine_target = engine.target();
        let module_target =
            target_lexicon::Triple::from_str(&self.metadata.target).map_err(|e| anyhow!(e))?;

        if module_target.architecture != engine_target.architecture {
            bail!(
                "Module was compiled for architecture '{}'",
                module_target.architecture
            );
        }

        if module_target.operating_system != engine_target.operating_system {
            bail!(
                "Module was compiled for operating system '{}'",
                module_target.operating_system
            );
        }

        Ok(())
    }

    fn check_shared_flags(&mut self, engine: &Engine) -> Result<()> {
        for (name, val) in self.metadata.shared_flags.iter() {
            engine
                .check_compatible_with_shared_flag(name, val)
                .map_err(|s| anyhow::Error::msg(s))
                .context("compilation settings of module incompatible with native host")?;
        }
        Ok(())
    }

    fn check_isa_flags(&mut self, engine: &Engine) -> Result<()> {
        for (name, val) in self.metadata.isa_flags.iter() {
            engine
                .check_compatible_with_isa_flag(name, val)
                .map_err(|s| anyhow::Error::msg(s))
                .context("compilation settings of module incompatible with native host")?;
        }
        Ok(())
    }

    fn check_int<T: Eq + std::fmt::Display>(found: T, expected: T, feature: &str) -> Result<()> {
        if found == expected {
            return Ok(());
        }

        bail!(
            "Module was compiled with a {} of '{}' but '{}' is expected for the host",
            feature,
            found,
            expected
        );
    }

    fn check_bool(found: bool, expected: bool, feature: &str) -> Result<()> {
        if found == expected {
            return Ok(());
        }

        bail!(
            "Module was compiled {} {} but it {} enabled for the host",
            if found { "with" } else { "without" },
            feature,
            if expected { "is" } else { "is not" }
        );
    }

    fn check_tunables(&mut self, other: &Tunables) -> Result<()> {
        let Tunables {
            static_memory_bound,
            static_memory_offset_guard_size,
            dynamic_memory_offset_guard_size,
            generate_native_debuginfo,
            parse_wasm_debuginfo,
            consume_fuel,
            epoch_interruption,
            static_memory_bound_is_maximum,
            guard_before_linear_memory,

            // This doesn't affect compilation, it's just a runtime setting.
            dynamic_memory_growth_reserve: _,

            // This does technically affect compilation but modules with/without
            // trap information can be loaded into engines with the opposite
            // setting just fine (it's just a section in the compiled file and
            // whether it's present or not)
            generate_address_map: _,

            // Just a debugging aid, doesn't affect functionality at all.
            debug_adapter_modules: _,
        } = self.metadata.tunables;

        Self::check_int(
            static_memory_bound,
            other.static_memory_bound,
            "static memory bound",
        )?;
        Self::check_int(
            static_memory_offset_guard_size,
            other.static_memory_offset_guard_size,
            "static memory guard size",
        )?;
        Self::check_int(
            dynamic_memory_offset_guard_size,
            other.dynamic_memory_offset_guard_size,
            "dynamic memory guard size",
        )?;
        Self::check_bool(
            generate_native_debuginfo,
            other.generate_native_debuginfo,
            "debug information support",
        )?;
        Self::check_bool(
            parse_wasm_debuginfo,
            other.parse_wasm_debuginfo,
            "WebAssembly backtrace support",
        )?;
        Self::check_bool(consume_fuel, other.consume_fuel, "fuel support")?;
        Self::check_bool(
            epoch_interruption,
            other.epoch_interruption,
            "epoch interruption",
        )?;
        Self::check_bool(
            static_memory_bound_is_maximum,
            other.static_memory_bound_is_maximum,
            "pooling allocation support",
        )?;
        Self::check_bool(
            guard_before_linear_memory,
            other.guard_before_linear_memory,
            "guard before linear memory",
        )?;

        Ok(())
    }

    fn check_features(&mut self, other: &wasmparser::WasmFeatures) -> Result<()> {
        let WasmFeatures {
            reference_types,
            multi_value,
            bulk_memory,
            component_model,
            simd,
            threads,
            tail_call,
            deterministic_only,
            multi_memory,
            exceptions,
            memory64,
            relaxed_simd,
            extended_const,
        } = self.metadata.features;

        Self::check_bool(
            reference_types,
            other.reference_types,
            "WebAssembly reference types support",
        )?;
        Self::check_bool(
            multi_value,
            other.multi_value,
            "WebAssembly multi-value support",
        )?;
        Self::check_bool(
            bulk_memory,
            other.bulk_memory,
            "WebAssembly bulk memory support",
        )?;
        Self::check_bool(
            component_model,
            other.component_model,
            "WebAssembly component model support",
        )?;
        Self::check_bool(simd, other.simd, "WebAssembly SIMD support")?;
        Self::check_bool(threads, other.threads, "WebAssembly threads support")?;
        Self::check_bool(tail_call, other.tail_call, "WebAssembly tail-call support")?;
        Self::check_bool(
            deterministic_only,
            other.deterministic_only,
            "WebAssembly deterministic-only support",
        )?;
        Self::check_bool(
            multi_memory,
            other.multi_memory,
            "WebAssembly multi-memory support",
        )?;
        Self::check_bool(
            exceptions,
            other.exceptions,
            "WebAssembly exceptions support",
        )?;
        Self::check_bool(
            memory64,
            other.memory64,
            "WebAssembly 64-bit memory support",
        )?;
        Self::check_bool(
            extended_const,
            other.extended_const,
            "WebAssembly extended-const support",
        )?;
        Self::check_bool(
            relaxed_simd,
            other.relaxed_simd,
            "WebAssembly relaxed-simd support",
        )?;

        Ok(())
    }
}

#[cfg(test)]
mod test {
    use super::*;
    use crate::Config;

    #[test]
    fn test_architecture_mismatch() -> Result<()> {
        let engine = Engine::default();
        let module = Module::new(&engine, "(module)")?;

        let mut serialized = SerializedModule::new(&module);
        serialized.metadata.target = "unknown-generic-linux".to_string();

        match serialized.into_module(&engine) {
            Ok(_) => unreachable!(),
            Err(e) => assert_eq!(
                e.to_string(),
                "Module was compiled for architecture 'unknown'",
            ),
        }

        Ok(())
    }

    #[test]
    fn test_os_mismatch() -> Result<()> {
        let engine = Engine::default();
        let module = Module::new(&engine, "(module)")?;

        let mut serialized = SerializedModule::new(&module);
        serialized.metadata.target = format!(
            "{}-generic-unknown",
            target_lexicon::Triple::host().architecture
        );

        match serialized.into_module(&engine) {
            Ok(_) => unreachable!(),
            Err(e) => assert_eq!(
                e.to_string(),
                "Module was compiled for operating system 'unknown'",
            ),
        }

        Ok(())
    }

    #[test]
    fn test_cranelift_flags_mismatch() -> Result<()> {
        let engine = Engine::default();
        let module = Module::new(&engine, "(module)")?;

        let mut serialized = SerializedModule::new(&module);
        serialized
            .metadata
            .shared_flags
            .insert("avoid_div_traps".to_string(), FlagValue::Bool(false));

        match serialized.into_module(&engine) {
            Ok(_) => unreachable!(),
            Err(e) => assert!(format!("{:?}", e).starts_with(
                "\
compilation settings of module incompatible with native host

Caused by:
    setting \"avoid_div_traps\" is configured to Bool(false) which is not supported"
            )),
        }

        Ok(())
    }

    #[test]
    fn test_isa_flags_mismatch() -> Result<()> {
        let engine = Engine::default();
        let module = Module::new(&engine, "(module)")?;

        let mut serialized = SerializedModule::new(&module);

        serialized
            .metadata
            .isa_flags
            .insert("not_a_flag".to_string(), FlagValue::Bool(true));

        match serialized.into_module(&engine) {
            Ok(_) => unreachable!(),
            Err(e) => assert!(format!("{:?}", e).starts_with(
                "\
compilation settings of module incompatible with native host

Caused by:
    cannot test if target-specific flag \"not_a_flag\" is available at runtime",
            )),
        }

        Ok(())
    }

    #[test]
    fn test_tunables_int_mismatch() -> Result<()> {
        let engine = Engine::default();
        let module = Module::new(&engine, "(module)")?;

        let mut serialized = SerializedModule::new(&module);
        serialized.metadata.tunables.static_memory_offset_guard_size = 0;

        match serialized.into_module(&engine) {
            Ok(_) => unreachable!(),
            Err(e) => assert_eq!(e.to_string(), "Module was compiled with a static memory guard size of '0' but '2147483648' is expected for the host"),
        }

        Ok(())
    }

    #[test]
    fn test_tunables_bool_mismatch() -> Result<()> {
        let mut config = Config::new();
        config.epoch_interruption(true);

        let engine = Engine::new(&config)?;
        let module = Module::new(&engine, "(module)")?;

        let mut serialized = SerializedModule::new(&module);
        serialized.metadata.tunables.epoch_interruption = false;

        match serialized.into_module(&engine) {
            Ok(_) => unreachable!(),
            Err(e) => assert_eq!(
                e.to_string(),
                "Module was compiled without epoch interruption but it is enabled for the host"
            ),
        }

        let mut config = Config::new();
        config.epoch_interruption(false);

        let engine = Engine::new(&config)?;
        let module = Module::new(&engine, "(module)")?;

        let mut serialized = SerializedModule::new(&module);
        serialized.metadata.tunables.epoch_interruption = true;

        match serialized.into_module(&engine) {
            Ok(_) => unreachable!(),
            Err(e) => assert_eq!(
                e.to_string(),
                "Module was compiled with epoch interruption but it is not enabled for the host"
            ),
        }

        Ok(())
    }

    #[test]
    fn test_feature_mismatch() -> Result<()> {
        let mut config = Config::new();
        config.wasm_simd(true);

        let engine = Engine::new(&config)?;
        let module = Module::new(&engine, "(module)")?;

        let mut serialized = SerializedModule::new(&module);
        serialized.metadata.features.simd = false;

        match serialized.into_module(&engine) {
            Ok(_) => unreachable!(),
            Err(e) => assert_eq!(e.to_string(), "Module was compiled without WebAssembly SIMD support but it is enabled for the host"),
        }

        let mut config = Config::new();
        config.wasm_simd(false);

        let engine = Engine::new(&config)?;
        let module = Module::new(&engine, "(module)")?;

        let mut serialized = SerializedModule::new(&module);
        serialized.metadata.features.simd = true;

        match serialized.into_module(&engine) {
            Ok(_) => unreachable!(),
            Err(e) => assert_eq!(e.to_string(), "Module was compiled with WebAssembly SIMD support but it is not enabled for the host"),
        }

        Ok(())
    }
}