1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
//! Support for a calling of an imported function.

use crate::{Engine, FuncType, Trap, ValRaw};
use anyhow::Result;
use std::panic::{self, AssertUnwindSafe};
use std::ptr::NonNull;
use wasmtime_jit::{CodeMemory, ProfilingAgent};
use wasmtime_runtime::{
    VMContext, VMHostFuncContext, VMOpaqueContext, VMSharedSignatureIndex, VMTrampoline,
};

struct TrampolineState<F> {
    func: F,
    #[allow(dead_code)]
    code_memory: CodeMemory,
}

unsafe extern "C" fn stub_fn<F>(
    vmctx: *mut VMOpaqueContext,
    caller_vmctx: *mut VMContext,
    values_vec: *mut ValRaw,
    values_vec_len: usize,
) where
    F: Fn(*mut VMContext, &mut [ValRaw]) -> Result<(), Trap> + 'static,
{
    // Here we are careful to use `catch_unwind` to ensure Rust panics don't
    // unwind past us. The primary reason for this is that Rust considers it UB
    // to unwind past an `extern "C"` function. Here we are in an `extern "C"`
    // function and the cross into wasm was through an `extern "C"` function at
    // the base of the stack as well. We'll need to wait for assorted RFCs and
    // language features to enable this to be done in a sound and stable fashion
    // before avoiding catching the panic here.
    //
    // Also note that there are intentionally no local variables on this stack
    // frame. The reason for that is that some of the "raise" functions we have
    // below will trigger a longjmp, which won't run local destructors if we
    // have any. To prevent leaks we avoid having any local destructors by
    // avoiding local variables.
    let result = panic::catch_unwind(AssertUnwindSafe(|| {
        let vmctx = VMHostFuncContext::from_opaque(vmctx);
        // Double-check ourselves in debug mode, but we control
        // the `Any` here so an unsafe downcast should also
        // work.
        let state = (*vmctx).host_state();
        debug_assert!(state.is::<TrampolineState<F>>());
        let state = &*(state as *const _ as *const TrampolineState<F>);
        let values_vec = std::slice::from_raw_parts_mut(values_vec, values_vec_len);
        (state.func)(caller_vmctx, values_vec)
    }));

    match result {
        Ok(Ok(())) => {}

        // If a trap was raised (an error returned from the imported function)
        // then we smuggle the trap through `Box<dyn Error>` through to the
        // call-site, which gets unwrapped in `Trap::from_runtime` later on as we
        // convert from the internal `Trap` type to our own `Trap` type in this
        // crate.
        Ok(Err(trap)) => wasmtime_runtime::raise_user_trap(trap.into()),

        // And finally if the imported function panicked, then we trigger the
        // form of unwinding that's safe to jump over wasm code on all
        // platforms.
        Err(panic) => wasmtime_runtime::resume_panic(panic),
    }
}

#[cfg(compiler)]
fn register_trampolines(profiler: &dyn ProfilingAgent, image: &object::File<'_>) {
    use object::{Object as _, ObjectSection, ObjectSymbol, SectionKind, SymbolKind};
    let pid = std::process::id();
    let tid = pid;

    let text_base = match image.sections().find(|s| s.kind() == SectionKind::Text) {
        Some(section) => match section.data() {
            Ok(data) => data.as_ptr() as usize,
            Err(_) => return,
        },
        None => return,
    };

    for sym in image.symbols() {
        if !sym.is_definition() {
            continue;
        }
        if sym.kind() != SymbolKind::Text {
            continue;
        }
        let address = sym.address();
        let size = sym.size();
        if address == 0 || size == 0 {
            continue;
        }
        if let Ok(name) = sym.name() {
            let addr = text_base + address as usize;
            profiler.load_single_trampoline(name, addr as *const u8, size as usize, pid, tid);
        }
    }
}

#[cfg(compiler)]
pub fn create_function<F>(
    ft: &FuncType,
    func: F,
    engine: &Engine,
) -> Result<(Box<VMHostFuncContext>, VMSharedSignatureIndex, VMTrampoline)>
where
    F: Fn(*mut VMContext, &mut [ValRaw]) -> Result<(), Trap> + Send + Sync + 'static,
{
    let mut obj = engine.compiler().object()?;
    let (t1, t2) = engine.compiler().emit_trampoline_obj(
        ft.as_wasm_func_type(),
        stub_fn::<F> as usize,
        &mut obj,
    )?;
    let obj = wasmtime_jit::mmap_vec_from_obj(obj)?;

    // Copy the results of JIT compilation into executable memory, and this will
    // also take care of unwind table registration.
    let mut code_memory = CodeMemory::new(obj);
    let code = code_memory.publish()?;

    register_trampolines(engine.profiler(), &code.obj);

    // Extract the host/wasm trampolines from the results of compilation since
    // we know their start/length.

    let host_trampoline = code.text[t1.start as usize..][..t1.length as usize].as_ptr();
    let wasm_trampoline = code.text[t2.start as usize..].as_ptr() as *mut _;
    let wasm_trampoline = NonNull::new(wasm_trampoline).unwrap();

    let sig = engine.signatures().register(ft.as_wasm_func_type());

    unsafe {
        let ctx = VMHostFuncContext::new(
            wasm_trampoline,
            sig,
            Box::new(TrampolineState { func, code_memory }),
        );
        let host_trampoline = std::mem::transmute::<*const u8, VMTrampoline>(host_trampoline);
        Ok((ctx, sig, host_trampoline))
    }
}