1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
//! Traits used to define functionality of [block ciphers][1].
//!
//! # About block ciphers
//!
//! Block ciphers are keyed, deterministic permutations of a fixed-sized input
//! "block" providing a reversible transformation to/from an encrypted output.
//! They are one of the fundamental structural components of [symmetric cryptography][2].
//!
//! [1]: https://en.wikipedia.org/wiki/Block_cipher
//! [2]: https://en.wikipedia.org/wiki/Symmetric-key_algorithm
use crate::errors::InvalidLength;
use core::convert::TryInto;
use generic_array::{typenum::Unsigned, ArrayLength, GenericArray};
/// Key for an algorithm that implements [`NewBlockCipher`].
pub type BlockCipherKey<B> = GenericArray<u8, <B as NewBlockCipher>::KeySize>;
/// Block on which a [`BlockCipher`] operates.
pub type Block<B> = GenericArray<u8, <B as BlockCipher>::BlockSize>;
/// Block on which a [`BlockCipher`] operates in parallel.
pub type ParBlocks<B> = GenericArray<Block<B>, <B as BlockCipher>::ParBlocks>;
/// Instantiate a [`BlockCipher`] algorithm.
pub trait NewBlockCipher: Sized {
/// Key size in bytes with which cipher guaranteed to be initialized.
type KeySize: ArrayLength<u8>;
/// Create new block cipher instance from key with fixed size.
fn new(key: &BlockCipherKey<Self>) -> Self;
/// Create new block cipher instance from key with variable size.
///
/// Default implementation will accept only keys with length equal to
/// `KeySize`, but some ciphers can accept range of key lengths.
fn new_from_slice(key: &[u8]) -> Result<Self, InvalidLength> {
if key.len() != Self::KeySize::to_usize() {
Err(InvalidLength)
} else {
Ok(Self::new(GenericArray::from_slice(key)))
}
}
}
/// Trait which marks a type as being a block cipher.
pub trait BlockCipher {
/// Size of the block in bytes
type BlockSize: ArrayLength<u8>;
/// Number of blocks which can be processed in parallel by
/// cipher implementation
type ParBlocks: ArrayLength<Block<Self>>;
}
/// Encrypt-only functionality for block ciphers.
pub trait BlockEncrypt: BlockCipher {
/// Encrypt block in-place
fn encrypt_block(&self, block: &mut Block<Self>);
/// Encrypt several blocks in parallel using instruction level parallelism
/// if possible.
///
/// If `ParBlocks` equals to 1 it's equivalent to `encrypt_block`.
#[inline]
fn encrypt_par_blocks(&self, blocks: &mut ParBlocks<Self>) {
for block in blocks.iter_mut() {
self.encrypt_block(block);
}
}
/// Encrypt a slice of blocks, leveraging parallelism when available.
#[inline]
fn encrypt_blocks(&self, mut blocks: &mut [Block<Self>]) {
let pb = Self::ParBlocks::to_usize();
if pb > 1 {
let mut iter = blocks.chunks_exact_mut(pb);
for chunk in &mut iter {
self.encrypt_par_blocks(chunk.try_into().unwrap())
}
blocks = iter.into_remainder();
}
for block in blocks {
self.encrypt_block(block);
}
}
}
/// Decrypt-only functionality for block ciphers.
pub trait BlockDecrypt: BlockCipher {
/// Decrypt block in-place
fn decrypt_block(&self, block: &mut Block<Self>);
/// Decrypt several blocks in parallel using instruction level parallelism
/// if possible.
///
/// If `ParBlocks` equals to 1 it's equivalent to `decrypt_block`.
#[inline]
fn decrypt_par_blocks(&self, blocks: &mut ParBlocks<Self>) {
for block in blocks.iter_mut() {
self.decrypt_block(block);
}
}
/// Decrypt a slice of blocks, leveraging parallelism when available.
#[inline]
fn decrypt_blocks(&self, mut blocks: &mut [Block<Self>]) {
let pb = Self::ParBlocks::to_usize();
if pb > 1 {
let mut iter = blocks.chunks_exact_mut(pb);
for chunk in &mut iter {
self.decrypt_par_blocks(chunk.try_into().unwrap())
}
blocks = iter.into_remainder();
}
for block in blocks {
self.decrypt_block(block);
}
}
}
/// Encrypt-only functionality for block ciphers with mutable access to `self`.
///
/// The main use case for this trait is hardware encryption engines which
/// require `&mut self` access to an underlying hardware peripheral.
pub trait BlockEncryptMut: BlockCipher {
/// Encrypt block in-place
fn encrypt_block_mut(&mut self, block: &mut Block<Self>);
}
/// Decrypt-only functionality for block ciphers with mutable access to `self`.
///
/// The main use case for this trait is hardware encryption engines which
/// require `&mut self` access to an underlying hardware peripheral.
pub trait BlockDecryptMut: BlockCipher {
/// Decrypt block in-place
fn decrypt_block_mut(&mut self, block: &mut Block<Self>);
}
impl<Alg: BlockEncrypt> BlockEncryptMut for Alg {
fn encrypt_block_mut(&mut self, block: &mut Block<Self>) {
self.encrypt_block(block);
}
}
impl<Alg: BlockDecrypt> BlockDecryptMut for Alg {
fn decrypt_block_mut(&mut self, block: &mut Block<Self>) {
self.decrypt_block(block);
}
}
// Impls of block cipher traits for reference types
impl<Alg: BlockCipher> BlockCipher for &Alg {
type BlockSize = Alg::BlockSize;
type ParBlocks = Alg::ParBlocks;
}
impl<Alg: BlockEncrypt> BlockEncrypt for &Alg {
#[inline]
fn encrypt_block(&self, block: &mut Block<Self>) {
Alg::encrypt_block(self, block);
}
#[inline]
fn encrypt_par_blocks(&self, blocks: &mut ParBlocks<Self>) {
Alg::encrypt_par_blocks(self, blocks);
}
#[inline]
fn encrypt_blocks(&self, blocks: &mut [Block<Self>]) {
Alg::encrypt_blocks(self, blocks);
}
}
impl<Alg: BlockDecrypt> BlockDecrypt for &Alg {
#[inline]
fn decrypt_block(&self, block: &mut Block<Self>) {
Alg::decrypt_block(self, block);
}
#[inline]
fn decrypt_par_blocks(&self, blocks: &mut ParBlocks<Self>) {
Alg::decrypt_par_blocks(self, blocks);
}
#[inline]
fn decrypt_blocks(&self, blocks: &mut [Block<Self>]) {
Alg::decrypt_blocks(self, blocks);
}
}