1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
//! The traits for cryptographic implementations that can be used by Noise.
use crate::{
constants::{CIPHERKEYLEN, MAXBLOCKLEN, MAXHASHLEN, TAGLEN},
Error,
};
use rand_core::{CryptoRng, RngCore};
/// CSPRNG operations
pub trait Random: CryptoRng + RngCore + Send + Sync {}
/// Diffie-Hellman operations
pub trait Dh: Send + Sync {
/// The string that the Noise spec defines for the primitive
fn name(&self) -> &'static str;
/// The length in bytes of a public key for this primitive
fn pub_len(&self) -> usize;
/// The length in bytes of a private key for this primitive
fn priv_len(&self) -> usize;
/// Set the private key
fn set(&mut self, privkey: &[u8]);
/// Generate a new private key
fn generate(&mut self, rng: &mut dyn Random);
/// Get the public key
fn pubkey(&self) -> &[u8];
/// Get the private key
fn privkey(&self) -> &[u8];
/// Calculate a Diffie-Hellman exchange.
fn dh(&self, pubkey: &[u8], out: &mut [u8]) -> Result<(), Error>;
}
/// Cipher operations
pub trait Cipher: Send + Sync {
/// The string that the Noise spec defines for the primitive
fn name(&self) -> &'static str;
/// Set the key
fn set(&mut self, key: &[u8]);
/// Encrypt (with associated data) a given plaintext.
fn encrypt(&self, nonce: u64, authtext: &[u8], plaintext: &[u8], out: &mut [u8]) -> usize;
/// Decrypt (with associated data) a given ciphertext.
fn decrypt(
&self,
nonce: u64,
authtext: &[u8],
ciphertext: &[u8],
out: &mut [u8],
) -> Result<usize, Error>;
/// Rekey according to Section 4.2 of the Noise Specification, with a default
/// implementation guaranteed to be secure for all ciphers.
fn rekey(&mut self) {
let mut ciphertext = [0; CIPHERKEYLEN + TAGLEN];
let ciphertext_len =
self.encrypt(u64::max_value(), &[], &[0; CIPHERKEYLEN], &mut ciphertext);
assert_eq!(ciphertext_len, ciphertext.len());
self.set(&ciphertext[..CIPHERKEYLEN]);
}
}
/// Hashing operations
pub trait Hash: Send + Sync {
/// The string that the Noise spec defines for the primitive
fn name(&self) -> &'static str;
/// The block length for the primitive
fn block_len(&self) -> usize;
/// The final hash digest length for the primitive
fn hash_len(&self) -> usize;
/// Reset the internal state
fn reset(&mut self);
/// Provide input to the internal state
fn input(&mut self, data: &[u8]);
/// Get the resulting hash
fn result(&mut self, out: &mut [u8]);
/// Calculate HMAC, as specified in the Noise spec.
///
/// NOTE: This method clobbers the existing internal state
fn hmac(&mut self, key: &[u8], data: &[u8], out: &mut [u8]) {
assert!(key.len() <= self.block_len());
let block_len = self.block_len();
let hash_len = self.hash_len();
let mut ipad = [0x36u8; MAXBLOCKLEN];
let mut opad = [0x5cu8; MAXBLOCKLEN];
for count in 0..key.len() {
ipad[count] ^= key[count];
opad[count] ^= key[count];
}
self.reset();
self.input(&ipad[..block_len]);
self.input(data);
let mut inner_output = [0u8; MAXHASHLEN];
self.result(&mut inner_output);
self.reset();
self.input(&opad[..block_len]);
self.input(&inner_output[..hash_len]);
self.result(out);
}
/// Derive keys as specified in the Noise spec.
///
/// NOTE: This method clobbers the existing internal state
fn hkdf(
&mut self,
chaining_key: &[u8],
input_key_material: &[u8],
outputs: usize,
out1: &mut [u8],
out2: &mut [u8],
out3: &mut [u8],
) {
let hash_len = self.hash_len();
let mut temp_key = [0u8; MAXHASHLEN];
self.hmac(chaining_key, input_key_material, &mut temp_key);
self.hmac(&temp_key, &[1u8], out1);
if outputs == 1 {
return;
}
let mut in2 = [0u8; MAXHASHLEN + 1];
copy_slices!(out1[0..hash_len], &mut in2);
in2[hash_len] = 2;
self.hmac(&temp_key, &in2[..=hash_len], out2);
if outputs == 2 {
return;
}
let mut in3 = [0u8; MAXHASHLEN + 1];
copy_slices!(out2[0..hash_len], &mut in3);
in3[hash_len] = 3;
self.hmac(&temp_key, &in3[..=hash_len], out3);
}
}
/// Kem operations.
#[cfg(feature = "hfs")]
pub trait Kem: Send + Sync {
/// The string that the Noise spec defines for the primitive.
fn name(&self) -> &'static str;
/// The length in bytes of a public key for this primitive.
fn pub_len(&self) -> usize;
/// The length in bytes the Kem cipherthext for this primitive.
fn ciphertext_len(&self) -> usize;
/// Shared secret length in bytes that this Kem encapsulates.
fn shared_secret_len(&self) -> usize;
/// Generate a new private key.
fn generate(&mut self, rng: &mut dyn Random);
/// Get the public key
fn pubkey(&self) -> &[u8];
/// Generate a shared secret and encapsulate it using this Kem.
#[must_use]
fn encapsulate(
&self,
pubkey: &[u8],
shared_secret_out: &mut [u8],
ciphertext_out: &mut [u8],
) -> Result<(usize, usize), ()>;
/// Decapsulate a ciphertext producing a shared secret.
#[must_use]
fn decapsulate(&self, ciphertext: &[u8], shared_secret_out: &mut [u8]) -> Result<usize, ()>;
}