1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
// This file is part of Substrate.

// Copyright (C) 2021-2022 Parity Technologies (UK) Ltd.
// SPDX-License-Identifier: Apache-2.0

// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// 	http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#![warn(missing_docs)]
#![warn(unused_crate_dependencies)]

//! Node-specific RPC methods for interaction with Merkle Mountain Range pallet.

use std::{marker::PhantomData, sync::Arc};

use codec::{Codec, Decode, Encode};
use jsonrpsee::{
	core::{async_trait, RpcResult},
	proc_macros::rpc,
	types::error::{CallError, ErrorObject},
};
use serde::{Deserialize, Serialize};

use sp_api::{NumberFor, ProvideRuntimeApi};
use sp_blockchain::HeaderBackend;
use sp_core::Bytes;
use sp_mmr_primitives::{Error as MmrError, Proof};
use sp_runtime::{generic::BlockId, traits::Block as BlockT};

pub use sp_mmr_primitives::MmrApi as MmrRuntimeApi;

const RUNTIME_ERROR: i32 = 8000;
const MMR_ERROR: i32 = 8010;

/// Retrieved MMR leaves and their proof.
#[derive(Serialize, Deserialize, Debug, Clone, PartialEq, Eq)]
#[serde(rename_all = "camelCase")]
pub struct LeavesProof<BlockHash> {
	/// Block hash the proof was generated for.
	pub block_hash: BlockHash,
	/// SCALE-encoded vector of `LeafData`.
	pub leaves: Bytes,
	/// SCALE-encoded proof data. See [sp_mmr_primitives::Proof].
	pub proof: Bytes,
}

impl<BlockHash> LeavesProof<BlockHash> {
	/// Create new `LeavesProof` from a given vector of `Leaf` and a
	/// [sp_mmr_primitives::Proof].
	pub fn new<Leaf, MmrHash>(
		block_hash: BlockHash,
		leaves: Vec<Leaf>,
		proof: Proof<MmrHash>,
	) -> Self
	where
		Leaf: Encode,
		MmrHash: Encode,
	{
		Self { block_hash, leaves: Bytes(leaves.encode()), proof: Bytes(proof.encode()) }
	}
}

/// MMR RPC methods.
#[rpc(client, server)]
pub trait MmrApi<BlockHash, BlockNumber, MmrHash> {
	/// Get the MMR root hash for the current best block.
	#[method(name = "mmr_root")]
	fn mmr_root(&self, at: Option<BlockHash>) -> RpcResult<MmrHash>;

	/// Generate an MMR proof for the given `block_numbers`.
	///
	/// This method calls into a runtime with MMR pallet included and attempts to generate
	/// an MMR proof for the set of blocks that have the given `block_numbers` with the MMR root at
	/// `best_known_block_number`. `best_known_block_number` must be larger than all the
	/// `block_numbers` for the function to succeed.
	///
	/// Optionally via `at`, a block hash at which the runtime should be queried can be specified.
	/// Optionally via `best_known_block_number`, the proof can be generated using the MMR's state
	/// at a specific best block. Note that if `best_known_block_number` is provided, then also
	/// specifying the block hash via `at` isn't super-useful here, unless you're generating proof
	/// using non-finalized blocks where there are several competing forks. That's because MMR state
	/// will be fixed to the state with `best_known_block_number`, which already points to
	/// some historical block.
	///
	/// Returns the (full) leaves and a proof for these leaves (compact encoding, i.e. hash of
	/// the leaves). Both parameters are SCALE-encoded.
	/// The order of entries in the `leaves` field of the returned struct
	/// is the same as the order of the entries in `block_numbers` supplied
	#[method(name = "mmr_generateProof")]
	fn generate_proof(
		&self,
		block_numbers: Vec<BlockNumber>,
		best_known_block_number: Option<BlockNumber>,
		at: Option<BlockHash>,
	) -> RpcResult<LeavesProof<BlockHash>>;

	/// Verify an MMR `proof`.
	///
	/// This method calls into a runtime with MMR pallet included and attempts to verify
	/// an MMR proof.
	///
	/// Returns `true` if the proof is valid, else returns the verification error.
	#[method(name = "mmr_verifyProof")]
	fn verify_proof(&self, proof: LeavesProof<BlockHash>) -> RpcResult<bool>;

	/// Verify an MMR `proof` statelessly given an `mmr_root`.
	///
	/// This method calls into a runtime with MMR pallet included and attempts to verify
	/// an MMR proof against a provided MMR root.
	///
	/// Returns `true` if the proof is valid, else returns the verification error.
	#[method(name = "mmr_verifyProofStateless")]
	fn verify_proof_stateless(
		&self,
		mmr_root: MmrHash,
		proof: LeavesProof<BlockHash>,
	) -> RpcResult<bool>;
}

/// MMR RPC methods.
pub struct Mmr<Client, Block> {
	client: Arc<Client>,
	_marker: PhantomData<Block>,
}

impl<C, B> Mmr<C, B> {
	/// Create new `Mmr` with the given reference to the client.
	pub fn new(client: Arc<C>) -> Self {
		Self { client, _marker: Default::default() }
	}
}

#[async_trait]
impl<Client, Block, MmrHash> MmrApiServer<<Block as BlockT>::Hash, NumberFor<Block>, MmrHash>
	for Mmr<Client, (Block, MmrHash)>
where
	Block: BlockT,
	Client: Send + Sync + 'static + ProvideRuntimeApi<Block> + HeaderBackend<Block>,
	Client::Api: MmrRuntimeApi<Block, MmrHash, NumberFor<Block>>,
	MmrHash: Codec + Send + Sync + 'static,
{
	fn mmr_root(&self, at: Option<<Block as BlockT>::Hash>) -> RpcResult<MmrHash> {
		let block_hash = at.unwrap_or_else(||
			// If the block hash is not supplied assume the best block.
			self.client.info().best_hash);
		let api = self.client.runtime_api();
		let mmr_root = api
			.mmr_root(&BlockId::Hash(block_hash))
			.map_err(runtime_error_into_rpc_error)?
			.map_err(mmr_error_into_rpc_error)?;
		Ok(mmr_root)
	}

	fn generate_proof(
		&self,
		block_numbers: Vec<NumberFor<Block>>,
		best_known_block_number: Option<NumberFor<Block>>,
		at: Option<<Block as BlockT>::Hash>,
	) -> RpcResult<LeavesProof<<Block as BlockT>::Hash>> {
		let api = self.client.runtime_api();
		let block_hash = at.unwrap_or_else(||
			// If the block hash is not supplied assume the best block.
			self.client.info().best_hash);

		let (leaves, proof) = api
			.generate_proof_with_context(
				&BlockId::hash(block_hash),
				sp_core::ExecutionContext::OffchainCall(None),
				block_numbers,
				best_known_block_number,
			)
			.map_err(runtime_error_into_rpc_error)?
			.map_err(mmr_error_into_rpc_error)?;

		Ok(LeavesProof::new(block_hash, leaves, proof))
	}

	fn verify_proof(&self, proof: LeavesProof<<Block as BlockT>::Hash>) -> RpcResult<bool> {
		let api = self.client.runtime_api();

		let leaves = Decode::decode(&mut &proof.leaves.0[..])
			.map_err(|e| CallError::InvalidParams(anyhow::Error::new(e)))?;

		let decoded_proof = Decode::decode(&mut &proof.proof.0[..])
			.map_err(|e| CallError::InvalidParams(anyhow::Error::new(e)))?;

		api.verify_proof_with_context(
			&BlockId::hash(proof.block_hash),
			sp_core::ExecutionContext::OffchainCall(None),
			leaves,
			decoded_proof,
		)
		.map_err(runtime_error_into_rpc_error)?
		.map_err(mmr_error_into_rpc_error)?;

		Ok(true)
	}

	fn verify_proof_stateless(
		&self,
		mmr_root: MmrHash,
		proof: LeavesProof<<Block as BlockT>::Hash>,
	) -> RpcResult<bool> {
		let api = self.client.runtime_api();

		let leaves = Decode::decode(&mut &proof.leaves.0[..])
			.map_err(|e| CallError::InvalidParams(anyhow::Error::new(e)))?;

		let decoded_proof = Decode::decode(&mut &proof.proof.0[..])
			.map_err(|e| CallError::InvalidParams(anyhow::Error::new(e)))?;

		api.verify_proof_stateless(
			&BlockId::hash(proof.block_hash),
			mmr_root,
			leaves,
			decoded_proof,
		)
		.map_err(runtime_error_into_rpc_error)?
		.map_err(mmr_error_into_rpc_error)?;

		Ok(true)
	}
}

/// Converts an mmr-specific error into a [`CallError`].
fn mmr_error_into_rpc_error(err: MmrError) -> CallError {
	let error_code = MMR_ERROR +
		match err {
			MmrError::LeafNotFound => 1,
			MmrError::GenerateProof => 2,
			MmrError::Verify => 3,
			MmrError::InvalidNumericOp => 4,
			MmrError::InvalidBestKnownBlock => 5,
			_ => 0,
		};

	CallError::Custom(ErrorObject::owned(error_code, err.to_string(), Some(format!("{:?}", err))))
}

/// Converts a runtime trap into a [`CallError`].
fn runtime_error_into_rpc_error(err: impl std::fmt::Debug) -> CallError {
	CallError::Custom(ErrorObject::owned(
		RUNTIME_ERROR,
		"Runtime trapped",
		Some(format!("{:?}", err)),
	))
}

#[cfg(test)]
mod tests {
	use super::*;
	use sp_core::H256;

	#[test]
	fn should_serialize_leaf_proof() {
		// given
		let leaf = vec![1_u8, 2, 3, 4];
		let proof = Proof {
			leaf_indices: vec![1],
			leaf_count: 9,
			items: vec![H256::repeat_byte(1), H256::repeat_byte(2)],
		};

		let leaf_proof = LeavesProof::new(H256::repeat_byte(0), vec![leaf], proof);

		// when
		let actual = serde_json::to_string(&leaf_proof).unwrap();

		// then
		assert_eq!(
			actual,
			r#"{"blockHash":"0x0000000000000000000000000000000000000000000000000000000000000000","leaves":"0x041001020304","proof":"0x04010000000000000009000000000000000801010101010101010101010101010101010101010101010101010101010101010202020202020202020202020202020202020202020202020202020202020202"}"#
		);
	}

	#[test]
	fn should_serialize_leaves_proof() {
		// given
		let leaf_a = vec![1_u8, 2, 3, 4];
		let leaf_b = vec![2_u8, 2, 3, 4];
		let proof = Proof {
			leaf_indices: vec![1, 2],
			leaf_count: 9,
			items: vec![H256::repeat_byte(1), H256::repeat_byte(2)],
		};

		let leaf_proof = LeavesProof::new(H256::repeat_byte(0), vec![leaf_a, leaf_b], proof);

		// when
		let actual = serde_json::to_string(&leaf_proof).unwrap();

		// then
		assert_eq!(
			actual,
			r#"{"blockHash":"0x0000000000000000000000000000000000000000000000000000000000000000","leaves":"0x0810010203041002020304","proof":"0x080100000000000000020000000000000009000000000000000801010101010101010101010101010101010101010101010101010101010101010202020202020202020202020202020202020202020202020202020202020202"}"#
		);
	}

	#[test]
	fn should_deserialize_leaf_proof() {
		// given
		let expected = LeavesProof {
			block_hash: H256::repeat_byte(0),
			leaves: Bytes(vec![vec![1_u8, 2, 3, 4]].encode()),
			proof: Bytes(
				Proof {
					leaf_indices: vec![1],
					leaf_count: 9,
					items: vec![H256::repeat_byte(1), H256::repeat_byte(2)],
				}
				.encode(),
			),
		};

		// when
		let actual: LeavesProof<H256> = serde_json::from_str(r#"{
			"blockHash":"0x0000000000000000000000000000000000000000000000000000000000000000",
			"leaves":"0x041001020304",
			"proof":"0x04010000000000000009000000000000000801010101010101010101010101010101010101010101010101010101010101010202020202020202020202020202020202020202020202020202020202020202"
		}"#).unwrap();

		// then
		assert_eq!(actual, expected);
	}

	#[test]
	fn should_deserialize_leaves_proof() {
		// given
		let expected = LeavesProof {
			block_hash: H256::repeat_byte(0),
			leaves: Bytes(vec![vec![1_u8, 2, 3, 4], vec![2_u8, 2, 3, 4]].encode()),
			proof: Bytes(
				Proof {
					leaf_indices: vec![1, 2],
					leaf_count: 9,
					items: vec![H256::repeat_byte(1), H256::repeat_byte(2)],
				}
				.encode(),
			),
		};

		// when
		let actual: LeavesProof<H256> = serde_json::from_str(r#"{
			"blockHash":"0x0000000000000000000000000000000000000000000000000000000000000000",
			"leaves":"0x0810010203041002020304",
			"proof":"0x080100000000000000020000000000000009000000000000000801010101010101010101010101010101010101010101010101010101010101010202020202020202020202020202020202020202020202020202020202020202"
		}"#).unwrap();

		// then
		assert_eq!(actual, expected);
	}
}