1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565
//! Implements the pooling instance allocator.
//!
//! The pooling instance allocator maps memory in advance
//! and allocates instances, memories, tables, and stacks from
//! a pool of available resources.
//!
//! Using the pooling instance allocator can speed up module instantiation
//! when modules can be constrained based on configurable limits.
use super::{
initialize_instance, InstanceAllocationRequest, InstanceAllocator, InstanceHandle,
InstantiationError,
};
use crate::{instance::Instance, Memory, Mmap, Table};
use crate::{MemoryImageSlot, ModuleRuntimeInfo, Store};
use anyhow::{anyhow, bail, Context, Result};
use libc::c_void;
use std::convert::TryFrom;
use std::mem;
use std::sync::Mutex;
use wasmtime_environ::{
DefinedMemoryIndex, DefinedTableIndex, HostPtr, MemoryStyle, Module, PrimaryMap, Tunables,
VMOffsets, WASM_PAGE_SIZE,
};
mod index_allocator;
use index_allocator::{PoolingAllocationState, SlotId};
cfg_if::cfg_if! {
if #[cfg(windows)] {
mod windows;
use windows as imp;
} else {
mod unix;
use unix as imp;
}
}
use imp::{commit_memory_pages, commit_table_pages, decommit_memory_pages, decommit_table_pages};
#[cfg(all(feature = "async", unix))]
use imp::{commit_stack_pages, reset_stack_pages_to_zero};
#[cfg(feature = "async")]
use super::FiberStackError;
fn round_up_to_pow2(n: usize, to: usize) -> usize {
debug_assert!(to > 0);
debug_assert!(to.is_power_of_two());
(n + to - 1) & !(to - 1)
}
/// Represents the limits placed on instances by the pooling instance allocator.
#[derive(Debug, Copy, Clone)]
pub struct InstanceLimits {
/// The maximum number of concurrent instances supported (default is 1000).
///
/// This value has a direct impact on the amount of memory allocated by the pooling
/// instance allocator.
///
/// The pooling instance allocator allocates three memory pools with sizes depending on this value:
///
/// * An instance pool, where each entry in the pool can store the runtime representation
/// of an instance, including a maximal `VMContext` structure.
///
/// * A memory pool, where each entry in the pool contains the reserved address space for each
/// linear memory supported by an instance.
///
/// * A table pool, where each entry in the pool contains the space needed for each WebAssembly table
/// supported by an instance (see `table_elements` to control the size of each table).
///
/// Additionally, this value will also control the maximum number of execution stacks allowed for
/// asynchronous execution (one per instance), when enabled.
///
/// The memory pool will reserve a large quantity of host process address space to elide the bounds
/// checks required for correct WebAssembly memory semantics. Even for 64-bit address spaces, the
/// address space is limited when dealing with a large number of supported instances.
///
/// For example, on Linux x86_64, the userland address space limit is 128 TiB. That might seem like a lot,
/// but each linear memory will *reserve* 6 GiB of space by default. Multiply that by the number of linear
/// memories each instance supports and then by the number of supported instances and it becomes apparent
/// that address space can be exhausted depending on the number of supported instances.
pub count: u32,
/// The maximum size, in bytes, allocated for an instance and its
/// `VMContext`.
///
/// This amount of space is pre-allocated for `count` number of instances
/// and is used to store the runtime `wasmtime_runtime::Instance` structure
/// along with its adjacent `VMContext` structure. The `Instance` type has a
/// static size but `VMContext` is dynamically sized depending on the module
/// being instantiated. This size limit loosely correlates to the size of
/// the wasm module, taking into account factors such as:
///
/// * number of functions
/// * number of globals
/// * number of memories
/// * number of tables
/// * number of function types
///
/// If the allocated size per instance is too small then instantiation of a
/// module will fail at runtime with an error indicating how many bytes were
/// needed. This amount of bytes are committed to memory per-instance when
/// a pooling allocator is created.
///
/// The default value for this is 1MB.
pub size: usize,
/// The maximum number of defined tables for a module (default is 1).
///
/// This value controls the capacity of the `VMTableDefinition` table in each instance's
/// `VMContext` structure.
///
/// The allocated size of the table will be `tables * sizeof(VMTableDefinition)` for each
/// instance regardless of how many tables are defined by an instance's module.
pub tables: u32,
/// The maximum table elements for any table defined in a module (default is 10000).
///
/// If a table's minimum element limit is greater than this value, the module will
/// fail to instantiate.
///
/// If a table's maximum element limit is unbounded or greater than this value,
/// the maximum will be `table_elements` for the purpose of any `table.grow` instruction.
///
/// This value is used to reserve the maximum space for each supported table; table elements
/// are pointer-sized in the Wasmtime runtime. Therefore, the space reserved for each instance
/// is `tables * table_elements * sizeof::<*const ()>`.
pub table_elements: u32,
/// The maximum number of defined linear memories for a module (default is 1).
///
/// This value controls the capacity of the `VMMemoryDefinition` table in each instance's
/// `VMContext` structure.
///
/// The allocated size of the table will be `memories * sizeof(VMMemoryDefinition)` for each
/// instance regardless of how many memories are defined by an instance's module.
pub memories: u32,
/// The maximum number of pages for any linear memory defined in a module (default is 160).
///
/// The default of 160 means at most 10 MiB of host memory may be committed for each instance.
///
/// If a memory's minimum page limit is greater than this value, the module will
/// fail to instantiate.
///
/// If a memory's maximum page limit is unbounded or greater than this value,
/// the maximum will be `memory_pages` for the purpose of any `memory.grow` instruction.
///
/// This value is used to control the maximum accessible space for each linear memory of an instance.
///
/// The reservation size of each linear memory is controlled by the
/// `static_memory_maximum_size` setting and this value cannot
/// exceed the configured static memory maximum size.
pub memory_pages: u64,
}
impl Default for InstanceLimits {
fn default() -> Self {
// See doc comments for `wasmtime::InstanceLimits` for these default values
Self {
count: 1000,
size: 1 << 20, // 1 MB
tables: 1,
table_elements: 10_000,
memories: 1,
memory_pages: 160,
}
}
}
/// The allocation strategy to use for the pooling instance allocator.
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub enum PoolingAllocationStrategy {
/// Allocate from the next available instance.
NextAvailable,
/// Allocate from a random available instance.
Random,
/// Try to allocate an instance slot that was previously used for
/// the same module, potentially enabling faster instantiation by
/// reusing e.g. memory mappings.
ReuseAffinity,
}
impl Default for PoolingAllocationStrategy {
fn default() -> Self {
if cfg!(memory_init_cow) {
Self::ReuseAffinity
} else {
Self::NextAvailable
}
}
}
/// Represents a pool of maximal `Instance` structures.
///
/// Each index in the pool provides enough space for a maximal `Instance`
/// structure depending on the limits used to create the pool.
///
/// The pool maintains a free list for fast instance allocation.
#[derive(Debug)]
struct InstancePool {
mapping: Mmap,
instance_size: usize,
max_instances: usize,
index_allocator: Mutex<PoolingAllocationState>,
memories: MemoryPool,
tables: TablePool,
}
impl InstancePool {
fn new(
strategy: PoolingAllocationStrategy,
instance_limits: &InstanceLimits,
tunables: &Tunables,
) -> Result<Self> {
let page_size = crate::page_size();
let instance_size = round_up_to_pow2(instance_limits.size, mem::align_of::<Instance>());
let max_instances = instance_limits.count as usize;
let allocation_size = round_up_to_pow2(
instance_size
.checked_mul(max_instances)
.ok_or_else(|| anyhow!("total size of instance data exceeds addressable memory"))?,
page_size,
);
let mapping = Mmap::accessible_reserved(allocation_size, allocation_size)
.context("failed to create instance pool mapping")?;
let pool = Self {
mapping,
instance_size,
max_instances,
index_allocator: Mutex::new(PoolingAllocationState::new(strategy, max_instances)),
memories: MemoryPool::new(instance_limits, tunables)?,
tables: TablePool::new(instance_limits)?,
};
Ok(pool)
}
unsafe fn instance(&self, index: usize) -> &mut Instance {
assert!(index < self.max_instances);
&mut *(self.mapping.as_mut_ptr().add(index * self.instance_size) as *mut Instance)
}
unsafe fn initialize_instance(
&self,
instance_index: usize,
req: InstanceAllocationRequest,
) -> Result<InstanceHandle, InstantiationError> {
let module = req.runtime_info.module();
// Before doing anything else ensure that our instance slot is actually
// big enough to hold the `Instance` and `VMContext` for this instance.
// If this fails then it's a configuration error at the `Engine` level
// from when this pooling allocator was created and that needs updating
// if this is to succeed.
let offsets = self
.validate_instance_size(module)
.map_err(InstantiationError::Resource)?;
let mut memories =
PrimaryMap::with_capacity(module.memory_plans.len() - module.num_imported_memories);
let mut tables =
PrimaryMap::with_capacity(module.table_plans.len() - module.num_imported_tables);
// If we fail to allocate the instance's resources, deallocate
// what was successfully allocated and return before initializing the instance
if let Err(e) = self.allocate_instance_resources(
instance_index,
req.runtime_info.as_ref(),
req.store.as_raw(),
&mut memories,
&mut tables,
) {
self.deallocate_memories(instance_index, &mut memories);
self.deallocate_tables(instance_index, &mut tables);
return Err(e);
}
let instance_ptr = self.instance(instance_index) as _;
Instance::new_at(
instance_ptr,
self.instance_size,
offsets,
req,
memories,
tables,
);
Ok(InstanceHandle {
instance: instance_ptr,
})
}
fn allocate(
&self,
req: InstanceAllocationRequest,
) -> Result<InstanceHandle, InstantiationError> {
let index = {
let mut alloc = self.index_allocator.lock().unwrap();
if alloc.is_empty() {
return Err(InstantiationError::Limit(self.max_instances as u32));
}
alloc.alloc(req.runtime_info.unique_id()).index()
};
match unsafe { self.initialize_instance(index, req) } {
Ok(handle) => Ok(handle),
Err(e) => {
// If we failed to initialize the instance, there's no need to drop
// it as it was never "allocated", but we still need to free the
// instance's slot.
self.index_allocator.lock().unwrap().free(SlotId(index));
Err(e)
}
}
}
fn deallocate(&self, handle: &InstanceHandle) {
let addr = handle.instance as usize;
let base = self.mapping.as_ptr() as usize;
assert!(addr >= base && addr < base + self.mapping.len());
assert!((addr - base) % self.instance_size == 0);
let index = (addr - base) / self.instance_size;
assert!(index < self.max_instances);
let instance = unsafe { &mut *handle.instance };
// Deallocate any resources used by the instance
self.deallocate_memories(index, &mut instance.memories);
self.deallocate_tables(index, &mut instance.tables);
// We've now done all of the pooling-allocator-specific
// teardown, so we can drop the Instance and let destructors
// take care of any other fields (host state, globals, etc.).
unsafe {
std::ptr::drop_in_place(instance as *mut _);
}
// The instance is now uninitialized memory and cannot be
// touched again until we write a fresh Instance in-place with
// std::ptr::write in allocate() above.
self.index_allocator.lock().unwrap().free(SlotId(index));
}
fn allocate_instance_resources(
&self,
instance_index: usize,
runtime_info: &dyn ModuleRuntimeInfo,
store: Option<*mut dyn Store>,
memories: &mut PrimaryMap<DefinedMemoryIndex, Memory>,
tables: &mut PrimaryMap<DefinedTableIndex, Table>,
) -> Result<(), InstantiationError> {
self.allocate_memories(instance_index, runtime_info, store, memories)?;
self.allocate_tables(instance_index, runtime_info, store, tables)?;
Ok(())
}
fn allocate_memories(
&self,
instance_index: usize,
runtime_info: &dyn ModuleRuntimeInfo,
store: Option<*mut dyn Store>,
memories: &mut PrimaryMap<DefinedMemoryIndex, Memory>,
) -> Result<(), InstantiationError> {
let module = runtime_info.module();
self.validate_memory_plans(module)
.map_err(InstantiationError::Resource)?;
for (memory_index, plan) in module
.memory_plans
.iter()
.skip(module.num_imported_memories)
{
let defined_index = module
.defined_memory_index(memory_index)
.expect("should be a defined memory since we skipped imported ones");
match plan.style {
MemoryStyle::Static { bound } => {
let bound = bound * u64::from(WASM_PAGE_SIZE);
if bound < self.memories.static_memory_bound {
return Err(InstantiationError::Resource(anyhow!(
"static bound of {bound:x} bytes incompatible with \
reservation of {:x} bytes",
self.memories.static_memory_bound,
)));
}
}
MemoryStyle::Dynamic { .. } => {}
}
let memory = unsafe {
std::slice::from_raw_parts_mut(
self.memories.get_base(instance_index, defined_index),
self.memories.max_memory_size,
)
};
let slot = if cfg!(memory_init_cow) {
Some(
self.memories
.take_memory_image_slot(instance_index, defined_index),
)
} else {
None
};
if let Some(image) = runtime_info
.memory_image(defined_index)
.map_err(|err| InstantiationError::Resource(err.into()))?
{
let mut slot = slot.unwrap();
let initial_size = plan.memory.minimum * WASM_PAGE_SIZE as u64;
// If instantiation fails, we can propagate the error
// upward and drop the slot. This will cause the Drop
// handler to attempt to map the range with PROT_NONE
// memory, to reserve the space while releasing any
// stale mappings. The next use of this slot will then
// create a new slot that will try to map over
// this, returning errors as well if the mapping
// errors persist. The unmap-on-drop is best effort;
// if it fails, then we can still soundly continue
// using the rest of the pool and allowing the rest of
// the process to continue, because we never perform a
// mmap that would leave an open space for someone
// else to come in and map something.
slot.instantiate(initial_size as usize, Some(image))
.map_err(|e| InstantiationError::Resource(e.into()))?;
memories.push(
Memory::new_static(plan, memory, None, Some(slot), unsafe {
&mut *store.unwrap()
})
.map_err(InstantiationError::Resource)?,
);
} else {
drop(slot);
memories.push(
Memory::new_static(plan, memory, Some(commit_memory_pages), None, unsafe {
&mut *store.unwrap()
})
.map_err(InstantiationError::Resource)?,
);
}
}
Ok(())
}
fn deallocate_memories(
&self,
instance_index: usize,
memories: &mut PrimaryMap<DefinedMemoryIndex, Memory>,
) {
// Decommit any linear memories that were used.
let memories = mem::take(memories);
for ((def_mem_idx, mut memory), base) in
memories.into_iter().zip(self.memories.get(instance_index))
{
assert!(memory.is_static());
let size = memory.byte_size();
if let Some(mut image) = memory.unwrap_static_image() {
// Reset the image slot. If there is any error clearing the
// image, just drop it here, and let the drop handler for the
// slot unmap in a way that retains the address space
// reservation.
if image.clear_and_remain_ready().is_ok() {
self.memories
.return_memory_image_slot(instance_index, def_mem_idx, image);
}
} else {
// Otherwise, decommit the memory pages.
decommit_memory_pages(base, size).expect("failed to decommit linear memory pages");
}
}
}
fn allocate_tables(
&self,
instance_index: usize,
runtime_info: &dyn ModuleRuntimeInfo,
store: Option<*mut dyn Store>,
tables: &mut PrimaryMap<DefinedTableIndex, Table>,
) -> Result<(), InstantiationError> {
let module = runtime_info.module();
self.validate_table_plans(module)
.map_err(InstantiationError::Resource)?;
let mut bases = self.tables.get(instance_index);
for (_, plan) in module.table_plans.iter().skip(module.num_imported_tables) {
let base = bases.next().unwrap() as _;
commit_table_pages(
base as *mut u8,
self.tables.max_elements as usize * mem::size_of::<*mut u8>(),
)
.map_err(InstantiationError::Resource)?;
tables.push(
Table::new_static(
plan,
unsafe {
std::slice::from_raw_parts_mut(base, self.tables.max_elements as usize)
},
unsafe { &mut *store.unwrap() },
)
.map_err(InstantiationError::Resource)?,
);
}
Ok(())
}
fn deallocate_tables(
&self,
instance_index: usize,
tables: &mut PrimaryMap<DefinedTableIndex, Table>,
) {
// Decommit any tables that were used
for (table, base) in tables.values_mut().zip(self.tables.get(instance_index)) {
let table = mem::take(table);
assert!(table.is_static());
let size = round_up_to_pow2(
table.size() as usize * mem::size_of::<*mut u8>(),
self.tables.page_size,
);
drop(table);
decommit_table_pages(base, size).expect("failed to decommit table pages");
}
}
fn validate_table_plans(&self, module: &Module) -> Result<()> {
let tables = module.table_plans.len() - module.num_imported_tables;
if tables > self.tables.max_tables {
bail!(
"defined tables count of {} exceeds the limit of {}",
tables,
self.tables.max_tables,
);
}
for (i, plan) in module.table_plans.iter().skip(module.num_imported_tables) {
if plan.table.minimum > self.tables.max_elements {
bail!(
"table index {} has a minimum element size of {} which exceeds the limit of {}",
i.as_u32(),
plan.table.minimum,
self.tables.max_elements,
);
}
}
Ok(())
}
fn validate_memory_plans(&self, module: &Module) -> Result<()> {
let memories = module.memory_plans.len() - module.num_imported_memories;
if memories > self.memories.max_memories {
bail!(
"defined memories count of {} exceeds the limit of {}",
memories,
self.memories.max_memories,
);
}
for (i, plan) in module
.memory_plans
.iter()
.skip(module.num_imported_memories)
{
let max = self.memories.max_memory_size / (WASM_PAGE_SIZE as usize);
if plan.memory.minimum > (max as u64) {
bail!(
"memory index {} has a minimum page size of {} which exceeds the limit of {}",
i.as_u32(),
plan.memory.minimum,
max,
);
}
}
Ok(())
}
fn validate_instance_size(&self, module: &Module) -> Result<VMOffsets<HostPtr>> {
let offsets = VMOffsets::new(HostPtr, module);
let layout = Instance::alloc_layout(&offsets);
if layout.size() <= self.instance_size {
return Ok(offsets);
}
// If this `module` exceeds the allocation size allotted to it then an
// error will be reported here. The error of "required N bytes but
// cannot allocate that" is pretty opaque, however, because it's not
// clear what the breakdown of the N bytes are and what to optimize
// next. To help provide a better error message here some fancy-ish
// logic is done here to report the breakdown of the byte request into
// the largest portions and where it's coming from.
let mut message = format!(
"instance allocation for this module \
requires {} bytes which exceeds the configured maximum \
of {} bytes; breakdown of allocation requirement:\n\n",
layout.size(),
self.instance_size,
);
let mut remaining = layout.size();
let mut push = |name: &str, bytes: usize| {
assert!(remaining >= bytes);
remaining -= bytes;
// If the `name` region is more than 5% of the allocation request
// then report it here, otherwise ignore it. We have less than 20
// fields so we're guaranteed that something should be reported, and
// otherwise it's not particularly interesting to learn about 5
// different fields that are all 8 or 0 bytes. Only try to report
// the "major" sources of bytes here.
if bytes > layout.size() / 20 {
message.push_str(&format!(
" * {:.02}% - {} bytes - {}\n",
((bytes as f32) / (layout.size() as f32)) * 100.0,
bytes,
name,
));
}
};
// The `Instance` itself requires some size allocated to it.
push("instance state management", mem::size_of::<Instance>());
// Afterwards the `VMContext`'s regions are why we're requesting bytes,
// so ask it for descriptions on each region's byte size.
for (desc, size) in offsets.region_sizes() {
push(desc, size as usize);
}
// double-check we accounted for all the bytes
assert_eq!(remaining, 0);
bail!("{}", message)
}
}
/// Represents a pool of WebAssembly linear memories.
///
/// A linear memory is divided into accessible pages and guard pages.
///
/// Each instance index into the pool returns an iterator over the base addresses
/// of the instance's linear memories.
#[derive(Debug)]
struct MemoryPool {
mapping: Mmap,
// If using a copy-on-write allocation scheme, the slot management. We
// dynamically transfer ownership of a slot to a Memory when in
// use.
image_slots: Vec<Mutex<Option<MemoryImageSlot>>>,
// The size, in bytes, of each linear memory's reservation plus the guard
// region allocated for it.
memory_reservation_size: usize,
// The maximum size, in bytes, of each linear memory. Guaranteed to be a
// whole number of wasm pages.
max_memory_size: usize,
// The size, in bytes, of the offset to the first linear memory in this
// pool. This is here to help account for the first region of guard pages,
// if desired, before the first linear memory.
initial_memory_offset: usize,
max_memories: usize,
max_instances: usize,
static_memory_bound: u64,
}
impl MemoryPool {
fn new(instance_limits: &InstanceLimits, tunables: &Tunables) -> Result<Self> {
// The maximum module memory page count cannot exceed 65536 pages
if instance_limits.memory_pages > 0x10000 {
bail!(
"module memory page limit of {} exceeds the maximum of 65536",
instance_limits.memory_pages
);
}
// The maximum module memory page count cannot exceed the memory reservation size
if u64::from(instance_limits.memory_pages) > tunables.static_memory_bound {
bail!(
"module memory page limit of {} pages exceeds maximum static memory limit of {} pages",
instance_limits.memory_pages,
tunables.static_memory_bound,
);
}
let static_memory_bound =
u64::from(tunables.static_memory_bound) * u64::from(WASM_PAGE_SIZE);
let memory_size =
usize::try_from(static_memory_bound + tunables.static_memory_offset_guard_size)
.map_err(|_| anyhow!("memory reservation size exceeds addressable memory"))?;
assert!(
memory_size % crate::page_size() == 0,
"memory size {} is not a multiple of system page size",
memory_size
);
let max_instances = instance_limits.count as usize;
let max_memories = instance_limits.memories as usize;
let initial_memory_offset = if tunables.guard_before_linear_memory {
usize::try_from(tunables.static_memory_offset_guard_size).unwrap()
} else {
0
};
// The entire allocation here is the size of each memory times the
// max memories per instance times the number of instances allowed in
// this pool, plus guard regions.
//
// Note, though, that guard regions are required to be after each linear
// memory. If the `guard_before_linear_memory` setting is specified,
// then due to the contiguous layout of linear memories the guard pages
// after one memory are also guard pages preceding the next linear
// memory. This means that we only need to handle pre-guard-page sizes
// specially for the first linear memory, hence the
// `initial_memory_offset` variable here. If guards aren't specified
// before linear memories this is set to `0`, otherwise it's set to
// the same size as guard regions for other memories.
let allocation_size = memory_size
.checked_mul(max_memories)
.and_then(|c| c.checked_mul(max_instances))
.and_then(|c| c.checked_add(initial_memory_offset))
.ok_or_else(|| {
anyhow!("total size of memory reservation exceeds addressable memory")
})?;
// Create a completely inaccessible region to start
let mapping = Mmap::accessible_reserved(0, allocation_size)
.context("failed to create memory pool mapping")?;
let num_image_slots = if cfg!(memory_init_cow) {
max_instances * max_memories
} else {
0
};
let image_slots: Vec<_> = std::iter::repeat_with(|| Mutex::new(None))
.take(num_image_slots)
.collect();
let pool = Self {
mapping,
image_slots,
memory_reservation_size: memory_size,
initial_memory_offset,
max_memories,
max_instances,
max_memory_size: (instance_limits.memory_pages as usize) * (WASM_PAGE_SIZE as usize),
static_memory_bound,
};
Ok(pool)
}
fn get_base(&self, instance_index: usize, memory_index: DefinedMemoryIndex) -> *mut u8 {
assert!(instance_index < self.max_instances);
let memory_index = memory_index.as_u32() as usize;
assert!(memory_index < self.max_memories);
let idx = instance_index * self.max_memories + memory_index;
let offset = self.initial_memory_offset + idx * self.memory_reservation_size;
unsafe { self.mapping.as_mut_ptr().offset(offset as isize) }
}
fn get<'a>(&'a self, instance_index: usize) -> impl Iterator<Item = *mut u8> + 'a {
(0..self.max_memories)
.map(move |i| self.get_base(instance_index, DefinedMemoryIndex::from_u32(i as u32)))
}
/// Take ownership of the given image slot. Must be returned via
/// `return_memory_image_slot` when the instance is done using it.
fn take_memory_image_slot(
&self,
instance_index: usize,
memory_index: DefinedMemoryIndex,
) -> MemoryImageSlot {
let idx = instance_index * self.max_memories + (memory_index.as_u32() as usize);
let maybe_slot = self.image_slots[idx].lock().unwrap().take();
maybe_slot.unwrap_or_else(|| {
MemoryImageSlot::create(
self.get_base(instance_index, memory_index) as *mut c_void,
0,
self.max_memory_size,
)
})
}
/// Return ownership of the given image slot.
fn return_memory_image_slot(
&self,
instance_index: usize,
memory_index: DefinedMemoryIndex,
slot: MemoryImageSlot,
) {
assert!(!slot.is_dirty());
let idx = instance_index * self.max_memories + (memory_index.as_u32() as usize);
*self.image_slots[idx].lock().unwrap() = Some(slot);
}
}
impl Drop for MemoryPool {
fn drop(&mut self) {
// Clear the `clear_no_drop` flag (i.e., ask to *not* clear on
// drop) for all slots, and then drop them here. This is
// valid because the one `Mmap` that covers the whole region
// can just do its one munmap.
for mut slot in std::mem::take(&mut self.image_slots) {
if let Some(slot) = slot.get_mut().unwrap() {
slot.no_clear_on_drop();
}
}
}
}
/// Represents a pool of WebAssembly tables.
///
/// Each instance index into the pool returns an iterator over the base addresses
/// of the instance's tables.
#[derive(Debug)]
struct TablePool {
mapping: Mmap,
table_size: usize,
max_tables: usize,
max_instances: usize,
page_size: usize,
max_elements: u32,
}
impl TablePool {
fn new(instance_limits: &InstanceLimits) -> Result<Self> {
let page_size = crate::page_size();
let table_size = round_up_to_pow2(
mem::size_of::<*mut u8>()
.checked_mul(instance_limits.table_elements as usize)
.ok_or_else(|| anyhow!("table size exceeds addressable memory"))?,
page_size,
);
let max_instances = instance_limits.count as usize;
let max_tables = instance_limits.tables as usize;
let allocation_size = table_size
.checked_mul(max_tables)
.and_then(|c| c.checked_mul(max_instances))
.ok_or_else(|| anyhow!("total size of instance tables exceeds addressable memory"))?;
let mapping = Mmap::accessible_reserved(allocation_size, allocation_size)
.context("failed to create table pool mapping")?;
Ok(Self {
mapping,
table_size,
max_tables,
max_instances,
page_size,
max_elements: instance_limits.table_elements,
})
}
fn get(&self, instance_index: usize) -> impl Iterator<Item = *mut u8> {
assert!(instance_index < self.max_instances);
let base: *mut u8 = unsafe {
self.mapping
.as_mut_ptr()
.add(instance_index * self.table_size * self.max_tables) as _
};
let size = self.table_size;
(0..self.max_tables).map(move |i| unsafe { base.add(i * size) })
}
}
/// Represents a pool of execution stacks (used for the async fiber implementation).
///
/// Each index into the pool represents a single execution stack. The maximum number of
/// stacks is the same as the maximum number of instances.
///
/// As stacks grow downwards, each stack starts (lowest address) with a guard page
/// that can be used to detect stack overflow.
///
/// The top of the stack (starting stack pointer) is returned when a stack is allocated
/// from the pool.
#[cfg(all(feature = "async", unix))]
#[derive(Debug)]
struct StackPool {
mapping: Mmap,
stack_size: usize,
max_instances: usize,
page_size: usize,
index_allocator: Mutex<PoolingAllocationState>,
async_stack_zeroing: bool,
}
#[cfg(all(feature = "async", unix))]
impl StackPool {
fn new(
instance_limits: &InstanceLimits,
stack_size: usize,
async_stack_zeroing: bool,
) -> Result<Self> {
use rustix::mm::{mprotect, MprotectFlags};
let page_size = crate::page_size();
// Add a page to the stack size for the guard page when using fiber stacks
let stack_size = if stack_size == 0 {
0
} else {
round_up_to_pow2(stack_size, page_size)
.checked_add(page_size)
.ok_or_else(|| anyhow!("stack size exceeds addressable memory"))?
};
let max_instances = instance_limits.count as usize;
let allocation_size = stack_size
.checked_mul(max_instances)
.ok_or_else(|| anyhow!("total size of execution stacks exceeds addressable memory"))?;
let mapping = Mmap::accessible_reserved(allocation_size, allocation_size)
.context("failed to create stack pool mapping")?;
// Set up the stack guard pages
if allocation_size > 0 {
unsafe {
for i in 0..max_instances {
// Make the stack guard page inaccessible
let bottom_of_stack = mapping.as_mut_ptr().add(i * stack_size);
mprotect(bottom_of_stack.cast(), page_size, MprotectFlags::empty())
.context("failed to protect stack guard page")?;
}
}
}
Ok(Self {
mapping,
stack_size,
max_instances,
page_size,
async_stack_zeroing,
// We always use a `NextAvailable` strategy for stack
// allocation. We don't want or need an affinity policy
// here: stacks do not benefit from being allocated to the
// same compiled module with the same image (they always
// start zeroed just the same for everyone).
index_allocator: Mutex::new(PoolingAllocationState::new(
PoolingAllocationStrategy::NextAvailable,
max_instances,
)),
})
}
fn allocate(&self) -> Result<wasmtime_fiber::FiberStack, FiberStackError> {
if self.stack_size == 0 {
return Err(FiberStackError::NotSupported);
}
let index = {
let mut alloc = self.index_allocator.lock().unwrap();
if alloc.is_empty() {
return Err(FiberStackError::Limit(self.max_instances as u32));
}
alloc.alloc(None).index()
};
assert!(index < self.max_instances);
unsafe {
// Remove the guard page from the size
let size_without_guard = self.stack_size - self.page_size;
let bottom_of_stack = self
.mapping
.as_mut_ptr()
.add((index * self.stack_size) + self.page_size);
commit_stack_pages(bottom_of_stack, size_without_guard)
.map_err(FiberStackError::Resource)?;
wasmtime_fiber::FiberStack::from_top_ptr(bottom_of_stack.add(size_without_guard))
.map_err(|e| FiberStackError::Resource(e.into()))
}
}
fn deallocate(&self, stack: &wasmtime_fiber::FiberStack) {
let top = stack
.top()
.expect("fiber stack not allocated from the pool") as usize;
let base = self.mapping.as_ptr() as usize;
let len = self.mapping.len();
assert!(
top > base && top <= (base + len),
"fiber stack top pointer not in range"
);
// Remove the guard page from the size
let stack_size = self.stack_size - self.page_size;
let bottom_of_stack = top - stack_size;
let start_of_stack = bottom_of_stack - self.page_size;
assert!(start_of_stack >= base && start_of_stack < (base + len));
assert!((start_of_stack - base) % self.stack_size == 0);
let index = (start_of_stack - base) / self.stack_size;
assert!(index < self.max_instances);
if self.async_stack_zeroing {
reset_stack_pages_to_zero(bottom_of_stack as _, stack_size).unwrap();
}
self.index_allocator.lock().unwrap().free(SlotId(index));
}
}
/// Implements the pooling instance allocator.
///
/// This allocator internally maintains pools of instances, memories, tables, and stacks.
///
/// Note: the resource pools are manually dropped so that the fault handler terminates correctly.
#[derive(Debug)]
pub struct PoolingInstanceAllocator {
instances: InstancePool,
#[cfg(all(feature = "async", unix))]
stacks: StackPool,
#[cfg(all(feature = "async", windows))]
stack_size: usize,
}
impl PoolingInstanceAllocator {
/// Creates a new pooling instance allocator with the given strategy and limits.
pub fn new(
strategy: PoolingAllocationStrategy,
instance_limits: InstanceLimits,
stack_size: usize,
tunables: &Tunables,
async_stack_zeroing: bool,
) -> Result<Self> {
if instance_limits.count == 0 {
bail!("the instance count limit cannot be zero");
}
let instances = InstancePool::new(strategy, &instance_limits, tunables)?;
drop(stack_size); // suppress unused warnings w/o async feature
drop(async_stack_zeroing); // suppress unused warnings w/o async feature
Ok(Self {
instances: instances,
#[cfg(all(feature = "async", unix))]
stacks: StackPool::new(&instance_limits, stack_size, async_stack_zeroing)?,
#[cfg(all(feature = "async", windows))]
stack_size,
})
}
}
unsafe impl InstanceAllocator for PoolingInstanceAllocator {
fn validate(&self, module: &Module) -> Result<()> {
self.instances.validate_memory_plans(module)?;
self.instances.validate_table_plans(module)?;
// Note that this check is not 100% accurate for cross-compiled systems
// where the pointer size may change since this check is often performed
// at compile time instead of runtime. Given that Wasmtime is almost
// always on a 64-bit platform though this is generally ok, and
// otherwise this check also happens during instantiation to
// double-check at that point.
self.instances.validate_instance_size(module)?;
Ok(())
}
fn adjust_tunables(&self, tunables: &mut Tunables) {
// Treat the static memory bound as the maximum for unbounded Wasm memories
// Because we guarantee a module cannot compile unless it fits in the limits of
// the pool allocator, this ensures all memories are treated as static (i.e. immovable).
tunables.static_memory_bound_is_maximum = true;
}
unsafe fn allocate(
&self,
req: InstanceAllocationRequest,
) -> Result<InstanceHandle, InstantiationError> {
self.instances.allocate(req)
}
unsafe fn initialize(
&self,
handle: &mut InstanceHandle,
module: &Module,
is_bulk_memory: bool,
) -> Result<(), InstantiationError> {
let instance = handle.instance_mut();
initialize_instance(instance, module, is_bulk_memory)
}
unsafe fn deallocate(&self, handle: &InstanceHandle) {
self.instances.deallocate(handle);
}
#[cfg(all(feature = "async", unix))]
fn allocate_fiber_stack(&self) -> Result<wasmtime_fiber::FiberStack, FiberStackError> {
self.stacks.allocate()
}
#[cfg(all(feature = "async", unix))]
unsafe fn deallocate_fiber_stack(&self, stack: &wasmtime_fiber::FiberStack) {
self.stacks.deallocate(stack);
}
#[cfg(all(feature = "async", windows))]
fn allocate_fiber_stack(&self) -> Result<wasmtime_fiber::FiberStack, FiberStackError> {
if self.stack_size == 0 {
return Err(FiberStackError::NotSupported);
}
// On windows, we don't use a stack pool as we use the native fiber implementation
wasmtime_fiber::FiberStack::new(self.stack_size)
.map_err(|e| FiberStackError::Resource(e.into()))
}
#[cfg(all(feature = "async", windows))]
unsafe fn deallocate_fiber_stack(&self, _stack: &wasmtime_fiber::FiberStack) {
// A no-op as we don't own the fiber stack on Windows
}
}
#[cfg(test)]
mod test {
use super::*;
use crate::{CompiledModuleId, Imports, MemoryImage, StorePtr, VMSharedSignatureIndex};
use std::sync::Arc;
use wasmtime_environ::{DefinedFuncIndex, DefinedMemoryIndex, FunctionInfo, SignatureIndex};
pub(crate) fn empty_runtime_info(
module: Arc<wasmtime_environ::Module>,
) -> Arc<dyn ModuleRuntimeInfo> {
struct RuntimeInfo(Arc<wasmtime_environ::Module>);
impl ModuleRuntimeInfo for RuntimeInfo {
fn module(&self) -> &Arc<wasmtime_environ::Module> {
&self.0
}
fn image_base(&self) -> usize {
0
}
fn function_info(&self, _: DefinedFuncIndex) -> &FunctionInfo {
unimplemented!()
}
fn signature(&self, _: SignatureIndex) -> VMSharedSignatureIndex {
unimplemented!()
}
fn memory_image(
&self,
_: DefinedMemoryIndex,
) -> anyhow::Result<Option<&Arc<MemoryImage>>> {
Ok(None)
}
fn unique_id(&self) -> Option<CompiledModuleId> {
None
}
fn wasm_data(&self) -> &[u8] {
&[]
}
fn signature_ids(&self) -> &[VMSharedSignatureIndex] {
&[]
}
}
Arc::new(RuntimeInfo(module))
}
#[cfg(target_pointer_width = "64")]
#[test]
fn test_instance_pool() -> Result<()> {
let instance_limits = InstanceLimits {
count: 3,
tables: 1,
memories: 1,
table_elements: 10,
size: 1000,
memory_pages: 1,
..Default::default()
};
let instances = InstancePool::new(
PoolingAllocationStrategy::NextAvailable,
&instance_limits,
&Tunables {
static_memory_bound: 1,
..Tunables::default()
},
)?;
assert_eq!(instances.instance_size, 1008); // round 1000 up to alignment
assert_eq!(instances.max_instances, 3);
assert_eq!(
instances.index_allocator.lock().unwrap().testing_freelist(),
&[SlotId(0), SlotId(1), SlotId(2)]
);
let mut handles = Vec::new();
let module = Arc::new(Module::default());
for _ in (0..3).rev() {
handles.push(
instances
.allocate(InstanceAllocationRequest {
runtime_info: &empty_runtime_info(module.clone()),
imports: Imports {
functions: &[],
tables: &[],
memories: &[],
globals: &[],
},
host_state: Box::new(()),
store: StorePtr::empty(),
})
.expect("allocation should succeed"),
);
}
assert_eq!(
instances.index_allocator.lock().unwrap().testing_freelist(),
&[]
);
match instances.allocate(InstanceAllocationRequest {
runtime_info: &empty_runtime_info(module),
imports: Imports {
functions: &[],
tables: &[],
memories: &[],
globals: &[],
},
host_state: Box::new(()),
store: StorePtr::empty(),
}) {
Err(InstantiationError::Limit(3)) => {}
_ => panic!("unexpected error"),
};
for handle in handles.drain(..) {
instances.deallocate(&handle);
}
assert_eq!(
instances.index_allocator.lock().unwrap().testing_freelist(),
&[SlotId(2), SlotId(1), SlotId(0)]
);
Ok(())
}
#[cfg(target_pointer_width = "64")]
#[test]
fn test_memory_pool() -> Result<()> {
let pool = MemoryPool::new(
&InstanceLimits {
count: 5,
tables: 0,
memories: 3,
table_elements: 0,
memory_pages: 1,
..Default::default()
},
&Tunables {
static_memory_bound: 1,
static_memory_offset_guard_size: 0,
..Tunables::default()
},
)?;
assert_eq!(pool.memory_reservation_size, WASM_PAGE_SIZE as usize);
assert_eq!(pool.max_memories, 3);
assert_eq!(pool.max_instances, 5);
assert_eq!(pool.max_memory_size, WASM_PAGE_SIZE as usize);
let base = pool.mapping.as_ptr() as usize;
for i in 0..5 {
let mut iter = pool.get(i);
for j in 0..3 {
assert_eq!(
iter.next().unwrap() as usize - base,
((i * 3) + j) * pool.memory_reservation_size
);
}
assert_eq!(iter.next(), None);
}
Ok(())
}
#[cfg(target_pointer_width = "64")]
#[test]
fn test_table_pool() -> Result<()> {
let pool = TablePool::new(&InstanceLimits {
count: 7,
table_elements: 100,
memory_pages: 0,
tables: 4,
memories: 0,
..Default::default()
})?;
let host_page_size = crate::page_size();
assert_eq!(pool.table_size, host_page_size);
assert_eq!(pool.max_tables, 4);
assert_eq!(pool.max_instances, 7);
assert_eq!(pool.page_size, host_page_size);
assert_eq!(pool.max_elements, 100);
let base = pool.mapping.as_ptr() as usize;
for i in 0..7 {
let mut iter = pool.get(i);
for j in 0..4 {
assert_eq!(
iter.next().unwrap() as usize - base,
((i * 4) + j) * pool.table_size
);
}
assert_eq!(iter.next(), None);
}
Ok(())
}
#[cfg(all(unix, target_pointer_width = "64", feature = "async"))]
#[test]
fn test_stack_pool() -> Result<()> {
let pool = StackPool::new(
&InstanceLimits {
count: 10,
..Default::default()
},
1,
true,
)?;
let native_page_size = crate::page_size();
assert_eq!(pool.stack_size, 2 * native_page_size);
assert_eq!(pool.max_instances, 10);
assert_eq!(pool.page_size, native_page_size);
assert_eq!(
pool.index_allocator.lock().unwrap().testing_freelist(),
&[
SlotId(0),
SlotId(1),
SlotId(2),
SlotId(3),
SlotId(4),
SlotId(5),
SlotId(6),
SlotId(7),
SlotId(8),
SlotId(9)
],
);
let base = pool.mapping.as_ptr() as usize;
let mut stacks = Vec::new();
for i in (0..10).rev() {
let stack = pool.allocate().expect("allocation should succeed");
assert_eq!(
((stack.top().unwrap() as usize - base) / pool.stack_size) - 1,
i
);
stacks.push(stack);
}
assert_eq!(pool.index_allocator.lock().unwrap().testing_freelist(), &[]);
match pool.allocate().unwrap_err() {
FiberStackError::Limit(10) => {}
_ => panic!("unexpected error"),
};
for stack in stacks {
pool.deallocate(&stack);
}
assert_eq!(
pool.index_allocator.lock().unwrap().testing_freelist(),
&[
SlotId(9),
SlotId(8),
SlotId(7),
SlotId(6),
SlotId(5),
SlotId(4),
SlotId(3),
SlotId(2),
SlotId(1),
SlotId(0)
],
);
Ok(())
}
#[test]
fn test_pooling_allocator_with_zero_instance_count() {
assert_eq!(
PoolingInstanceAllocator::new(
PoolingAllocationStrategy::Random,
InstanceLimits {
count: 0,
..Default::default()
},
4096,
&Tunables::default(),
true,
)
.map_err(|e| e.to_string())
.expect_err("expected a failure constructing instance allocator"),
"the instance count limit cannot be zero"
);
}
#[test]
fn test_pooling_allocator_with_memory_pages_exceeded() {
assert_eq!(
PoolingInstanceAllocator::new(
PoolingAllocationStrategy::Random,
InstanceLimits {
count: 1,
memory_pages: 0x10001,
..Default::default()
},
4096,
&Tunables {
static_memory_bound: 1,
..Tunables::default()
},
true,
)
.map_err(|e| e.to_string())
.expect_err("expected a failure constructing instance allocator"),
"module memory page limit of 65537 exceeds the maximum of 65536"
);
}
#[test]
fn test_pooling_allocator_with_reservation_size_exceeded() {
assert_eq!(
PoolingInstanceAllocator::new(
PoolingAllocationStrategy::Random,
InstanceLimits {
count: 1,
memory_pages: 2,
..Default::default()
},
4096,
&Tunables {
static_memory_bound: 1,
static_memory_offset_guard_size: 0,
..Tunables::default()
},
true
)
.map_err(|e| e.to_string())
.expect_err("expected a failure constructing instance allocator"),
"module memory page limit of 2 pages exceeds maximum static memory limit of 1 pages"
);
}
#[cfg(all(unix, target_pointer_width = "64", feature = "async"))]
#[test]
fn test_stack_zeroed() -> Result<()> {
let allocator = PoolingInstanceAllocator::new(
PoolingAllocationStrategy::NextAvailable,
InstanceLimits {
count: 1,
table_elements: 0,
memory_pages: 0,
tables: 0,
memories: 0,
..Default::default()
},
128,
&Tunables::default(),
true,
)?;
unsafe {
for _ in 0..255 {
let stack = allocator.allocate_fiber_stack()?;
// The stack pointer is at the top, so decrement it first
let addr = stack.top().unwrap().sub(1);
assert_eq!(*addr, 0);
*addr = 1;
allocator.deallocate_fiber_stack(&stack);
}
}
Ok(())
}
#[cfg(all(unix, target_pointer_width = "64", feature = "async"))]
#[test]
fn test_stack_unzeroed() -> Result<()> {
let allocator = PoolingInstanceAllocator::new(
PoolingAllocationStrategy::NextAvailable,
InstanceLimits {
count: 1,
table_elements: 0,
memory_pages: 0,
tables: 0,
memories: 0,
..Default::default()
},
128,
&Tunables::default(),
false,
)?;
unsafe {
for i in 0..255 {
let stack = allocator.allocate_fiber_stack()?;
// The stack pointer is at the top, so decrement it first
let addr = stack.top().unwrap().sub(1);
assert_eq!(*addr, i);
*addr = i + 1;
allocator.deallocate_fiber_stack(&stack);
}
}
Ok(())
}
}