1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460
use crate::alloc::alloc::{handle_alloc_error, Layout};
use crate::scopeguard::{guard, ScopeGuard};
use crate::TryReserveError;
use core::iter::FusedIterator;
use core::marker::PhantomData;
use core::mem;
use core::mem::ManuallyDrop;
use core::mem::MaybeUninit;
use core::ptr::NonNull;
use core::{hint, ptr};
cfg_if! {
// Use the SSE2 implementation if possible: it allows us to scan 16 buckets
// at once instead of 8. We don't bother with AVX since it would require
// runtime dispatch and wouldn't gain us much anyways: the probability of
// finding a match drops off drastically after the first few buckets.
//
// I attempted an implementation on ARM using NEON instructions, but it
// turns out that most NEON instructions have multi-cycle latency, which in
// the end outweighs any gains over the generic implementation.
if #[cfg(all(
target_feature = "sse2",
any(target_arch = "x86", target_arch = "x86_64"),
not(miri)
))] {
mod sse2;
use sse2 as imp;
} else {
#[path = "generic.rs"]
mod generic;
use generic as imp;
}
}
mod alloc;
pub(crate) use self::alloc::{do_alloc, Allocator, Global};
mod bitmask;
use self::bitmask::{BitMask, BitMaskIter};
use self::imp::Group;
// Branch prediction hint. This is currently only available on nightly but it
// consistently improves performance by 10-15%.
#[cfg(feature = "nightly")]
use core::intrinsics::{likely, unlikely};
// On stable we can use #[cold] to get a equivalent effect: this attributes
// suggests that the function is unlikely to be called
#[cfg(not(feature = "nightly"))]
#[inline]
#[cold]
fn cold() {}
#[cfg(not(feature = "nightly"))]
#[inline]
fn likely(b: bool) -> bool {
if !b {
cold();
}
b
}
#[cfg(not(feature = "nightly"))]
#[inline]
fn unlikely(b: bool) -> bool {
if b {
cold();
}
b
}
#[inline]
unsafe fn offset_from<T>(to: *const T, from: *const T) -> usize {
to.offset_from(from) as usize
}
/// Whether memory allocation errors should return an error or abort.
#[derive(Copy, Clone)]
enum Fallibility {
Fallible,
Infallible,
}
impl Fallibility {
/// Error to return on capacity overflow.
#[cfg_attr(feature = "inline-more", inline)]
fn capacity_overflow(self) -> TryReserveError {
match self {
Fallibility::Fallible => TryReserveError::CapacityOverflow,
Fallibility::Infallible => panic!("Hash table capacity overflow"),
}
}
/// Error to return on allocation error.
#[cfg_attr(feature = "inline-more", inline)]
fn alloc_err(self, layout: Layout) -> TryReserveError {
match self {
Fallibility::Fallible => TryReserveError::AllocError { layout },
Fallibility::Infallible => handle_alloc_error(layout),
}
}
}
/// Control byte value for an empty bucket.
const EMPTY: u8 = 0b1111_1111;
/// Control byte value for a deleted bucket.
const DELETED: u8 = 0b1000_0000;
/// Checks whether a control byte represents a full bucket (top bit is clear).
#[inline]
fn is_full(ctrl: u8) -> bool {
ctrl & 0x80 == 0
}
/// Checks whether a control byte represents a special value (top bit is set).
#[inline]
fn is_special(ctrl: u8) -> bool {
ctrl & 0x80 != 0
}
/// Checks whether a special control value is EMPTY (just check 1 bit).
#[inline]
fn special_is_empty(ctrl: u8) -> bool {
debug_assert!(is_special(ctrl));
ctrl & 0x01 != 0
}
/// Primary hash function, used to select the initial bucket to probe from.
#[inline]
#[allow(clippy::cast_possible_truncation)]
fn h1(hash: u64) -> usize {
// On 32-bit platforms we simply ignore the higher hash bits.
hash as usize
}
/// Secondary hash function, saved in the low 7 bits of the control byte.
#[inline]
#[allow(clippy::cast_possible_truncation)]
fn h2(hash: u64) -> u8 {
// Grab the top 7 bits of the hash. While the hash is normally a full 64-bit
// value, some hash functions (such as FxHash) produce a usize result
// instead, which means that the top 32 bits are 0 on 32-bit platforms.
let hash_len = usize::min(mem::size_of::<usize>(), mem::size_of::<u64>());
let top7 = hash >> (hash_len * 8 - 7);
(top7 & 0x7f) as u8 // truncation
}
/// Probe sequence based on triangular numbers, which is guaranteed (since our
/// table size is a power of two) to visit every group of elements exactly once.
///
/// A triangular probe has us jump by 1 more group every time. So first we
/// jump by 1 group (meaning we just continue our linear scan), then 2 groups
/// (skipping over 1 group), then 3 groups (skipping over 2 groups), and so on.
///
/// Proof that the probe will visit every group in the table:
/// <https://fgiesen.wordpress.com/2015/02/22/triangular-numbers-mod-2n/>
struct ProbeSeq {
pos: usize,
stride: usize,
}
impl ProbeSeq {
#[inline]
fn move_next(&mut self, bucket_mask: usize) {
// We should have found an empty bucket by now and ended the probe.
debug_assert!(
self.stride <= bucket_mask,
"Went past end of probe sequence"
);
self.stride += Group::WIDTH;
self.pos += self.stride;
self.pos &= bucket_mask;
}
}
/// Returns the number of buckets needed to hold the given number of items,
/// taking the maximum load factor into account.
///
/// Returns `None` if an overflow occurs.
// Workaround for emscripten bug emscripten-core/emscripten-fastcomp#258
#[cfg_attr(target_os = "emscripten", inline(never))]
#[cfg_attr(not(target_os = "emscripten"), inline)]
fn capacity_to_buckets(cap: usize) -> Option<usize> {
debug_assert_ne!(cap, 0);
// For small tables we require at least 1 empty bucket so that lookups are
// guaranteed to terminate if an element doesn't exist in the table.
if cap < 8 {
// We don't bother with a table size of 2 buckets since that can only
// hold a single element. Instead we skip directly to a 4 bucket table
// which can hold 3 elements.
return Some(if cap < 4 { 4 } else { 8 });
}
// Otherwise require 1/8 buckets to be empty (87.5% load)
//
// Be careful when modifying this, calculate_layout relies on the
// overflow check here.
let adjusted_cap = cap.checked_mul(8)? / 7;
// Any overflows will have been caught by the checked_mul. Also, any
// rounding errors from the division above will be cleaned up by
// next_power_of_two (which can't overflow because of the previous division).
Some(adjusted_cap.next_power_of_two())
}
/// Returns the maximum effective capacity for the given bucket mask, taking
/// the maximum load factor into account.
#[inline]
fn bucket_mask_to_capacity(bucket_mask: usize) -> usize {
if bucket_mask < 8 {
// For tables with 1/2/4/8 buckets, we always reserve one empty slot.
// Keep in mind that the bucket mask is one less than the bucket count.
bucket_mask
} else {
// For larger tables we reserve 12.5% of the slots as empty.
((bucket_mask + 1) / 8) * 7
}
}
/// Helper which allows the max calculation for ctrl_align to be statically computed for each T
/// while keeping the rest of `calculate_layout_for` independent of `T`
#[derive(Copy, Clone)]
struct TableLayout {
size: usize,
ctrl_align: usize,
}
impl TableLayout {
#[inline]
fn new<T>() -> Self {
let layout = Layout::new::<T>();
Self {
size: layout.size(),
ctrl_align: usize::max(layout.align(), Group::WIDTH),
}
}
#[inline]
fn calculate_layout_for(self, buckets: usize) -> Option<(Layout, usize)> {
debug_assert!(buckets.is_power_of_two());
let TableLayout { size, ctrl_align } = self;
// Manual layout calculation since Layout methods are not yet stable.
let ctrl_offset =
size.checked_mul(buckets)?.checked_add(ctrl_align - 1)? & !(ctrl_align - 1);
let len = ctrl_offset.checked_add(buckets + Group::WIDTH)?;
Some((
unsafe { Layout::from_size_align_unchecked(len, ctrl_align) },
ctrl_offset,
))
}
}
/// Returns a Layout which describes the allocation required for a hash table,
/// and the offset of the control bytes in the allocation.
/// (the offset is also one past last element of buckets)
///
/// Returns `None` if an overflow occurs.
#[cfg_attr(feature = "inline-more", inline)]
fn calculate_layout<T>(buckets: usize) -> Option<(Layout, usize)> {
TableLayout::new::<T>().calculate_layout_for(buckets)
}
/// A reference to a hash table bucket containing a `T`.
///
/// This is usually just a pointer to the element itself. However if the element
/// is a ZST, then we instead track the index of the element in the table so
/// that `erase` works properly.
pub struct Bucket<T> {
// Actually it is pointer to next element than element itself
// this is needed to maintain pointer arithmetic invariants
// keeping direct pointer to element introduces difficulty.
// Using `NonNull` for variance and niche layout
ptr: NonNull<T>,
}
// This Send impl is needed for rayon support. This is safe since Bucket is
// never exposed in a public API.
unsafe impl<T> Send for Bucket<T> {}
impl<T> Clone for Bucket<T> {
#[inline]
fn clone(&self) -> Self {
Self { ptr: self.ptr }
}
}
impl<T> Bucket<T> {
#[inline]
unsafe fn from_base_index(base: NonNull<T>, index: usize) -> Self {
let ptr = if mem::size_of::<T>() == 0 {
// won't overflow because index must be less than length
(index + 1) as *mut T
} else {
base.as_ptr().sub(index)
};
Self {
ptr: NonNull::new_unchecked(ptr),
}
}
#[inline]
unsafe fn to_base_index(&self, base: NonNull<T>) -> usize {
if mem::size_of::<T>() == 0 {
self.ptr.as_ptr() as usize - 1
} else {
offset_from(base.as_ptr(), self.ptr.as_ptr())
}
}
#[inline]
pub fn as_ptr(&self) -> *mut T {
if mem::size_of::<T>() == 0 {
// Just return an arbitrary ZST pointer which is properly aligned
mem::align_of::<T>() as *mut T
} else {
unsafe { self.ptr.as_ptr().sub(1) }
}
}
#[inline]
unsafe fn next_n(&self, offset: usize) -> Self {
let ptr = if mem::size_of::<T>() == 0 {
(self.ptr.as_ptr() as usize + offset) as *mut T
} else {
self.ptr.as_ptr().sub(offset)
};
Self {
ptr: NonNull::new_unchecked(ptr),
}
}
#[cfg_attr(feature = "inline-more", inline)]
pub unsafe fn drop(&self) {
self.as_ptr().drop_in_place();
}
#[inline]
pub unsafe fn read(&self) -> T {
self.as_ptr().read()
}
#[inline]
pub unsafe fn write(&self, val: T) {
self.as_ptr().write(val);
}
#[inline]
pub unsafe fn as_ref<'a>(&self) -> &'a T {
&*self.as_ptr()
}
#[inline]
pub unsafe fn as_mut<'a>(&self) -> &'a mut T {
&mut *self.as_ptr()
}
#[cfg(feature = "raw")]
#[inline]
pub unsafe fn copy_from_nonoverlapping(&self, other: &Self) {
self.as_ptr().copy_from_nonoverlapping(other.as_ptr(), 1);
}
}
/// A raw hash table with an unsafe API.
pub struct RawTable<T, A: Allocator + Clone = Global> {
table: RawTableInner<A>,
// Tell dropck that we own instances of T.
marker: PhantomData<T>,
}
/// Non-generic part of `RawTable` which allows functions to be instantiated only once regardless
/// of how many different key-value types are used.
struct RawTableInner<A> {
// Mask to get an index from a hash value. The value is one less than the
// number of buckets in the table.
bucket_mask: usize,
// [Padding], T1, T2, ..., Tlast, C1, C2, ...
// ^ points here
ctrl: NonNull<u8>,
// Number of elements that can be inserted before we need to grow the table
growth_left: usize,
// Number of elements in the table, only really used by len()
items: usize,
alloc: A,
}
impl<T> RawTable<T, Global> {
/// Creates a new empty hash table without allocating any memory.
///
/// In effect this returns a table with exactly 1 bucket. However we can
/// leave the data pointer dangling since that bucket is never written to
/// due to our load factor forcing us to always have at least 1 free bucket.
#[inline]
pub const fn new() -> Self {
Self {
table: RawTableInner::new_in(Global),
marker: PhantomData,
}
}
/// Attempts to allocate a new hash table with at least enough capacity
/// for inserting the given number of elements without reallocating.
#[cfg(feature = "raw")]
pub fn try_with_capacity(capacity: usize) -> Result<Self, TryReserveError> {
Self::try_with_capacity_in(capacity, Global)
}
/// Allocates a new hash table with at least enough capacity for inserting
/// the given number of elements without reallocating.
pub fn with_capacity(capacity: usize) -> Self {
Self::with_capacity_in(capacity, Global)
}
}
impl<T, A: Allocator + Clone> RawTable<T, A> {
/// Creates a new empty hash table without allocating any memory, using the
/// given allocator.
///
/// In effect this returns a table with exactly 1 bucket. However we can
/// leave the data pointer dangling since that bucket is never written to
/// due to our load factor forcing us to always have at least 1 free bucket.
#[inline]
pub fn new_in(alloc: A) -> Self {
Self {
table: RawTableInner::new_in(alloc),
marker: PhantomData,
}
}
/// Allocates a new hash table with the given number of buckets.
///
/// The control bytes are left uninitialized.
#[cfg_attr(feature = "inline-more", inline)]
unsafe fn new_uninitialized(
alloc: A,
buckets: usize,
fallibility: Fallibility,
) -> Result<Self, TryReserveError> {
debug_assert!(buckets.is_power_of_two());
Ok(Self {
table: RawTableInner::new_uninitialized(
alloc,
TableLayout::new::<T>(),
buckets,
fallibility,
)?,
marker: PhantomData,
})
}
/// Attempts to allocate a new hash table with at least enough capacity
/// for inserting the given number of elements without reallocating.
fn fallible_with_capacity(
alloc: A,
capacity: usize,
fallibility: Fallibility,
) -> Result<Self, TryReserveError> {
Ok(Self {
table: RawTableInner::fallible_with_capacity(
alloc,
TableLayout::new::<T>(),
capacity,
fallibility,
)?,
marker: PhantomData,
})
}
/// Attempts to allocate a new hash table using the given allocator, with at least enough
/// capacity for inserting the given number of elements without reallocating.
#[cfg(feature = "raw")]
pub fn try_with_capacity_in(capacity: usize, alloc: A) -> Result<Self, TryReserveError> {
Self::fallible_with_capacity(alloc, capacity, Fallibility::Fallible)
}
/// Allocates a new hash table using the given allocator, with at least enough capacity for
/// inserting the given number of elements without reallocating.
pub fn with_capacity_in(capacity: usize, alloc: A) -> Self {
// Avoid `Result::unwrap_or_else` because it bloats LLVM IR.
match Self::fallible_with_capacity(alloc, capacity, Fallibility::Infallible) {
Ok(capacity) => capacity,
Err(_) => unsafe { hint::unreachable_unchecked() },
}
}
/// Returns a reference to the underlying allocator.
#[inline]
pub fn allocator(&self) -> &A {
&self.table.alloc
}
/// Deallocates the table without dropping any entries.
#[cfg_attr(feature = "inline-more", inline)]
unsafe fn free_buckets(&mut self) {
self.table.free_buckets(TableLayout::new::<T>());
}
/// Returns pointer to one past last element of data table.
#[inline]
pub unsafe fn data_end(&self) -> NonNull<T> {
NonNull::new_unchecked(self.table.ctrl.as_ptr().cast())
}
/// Returns pointer to start of data table.
#[inline]
#[cfg(feature = "nightly")]
pub unsafe fn data_start(&self) -> *mut T {
self.data_end().as_ptr().wrapping_sub(self.buckets())
}
/// Returns the index of a bucket from a `Bucket`.
#[inline]
pub unsafe fn bucket_index(&self, bucket: &Bucket<T>) -> usize {
bucket.to_base_index(self.data_end())
}
/// Returns a pointer to an element in the table.
#[inline]
pub unsafe fn bucket(&self, index: usize) -> Bucket<T> {
debug_assert_ne!(self.table.bucket_mask, 0);
debug_assert!(index < self.buckets());
Bucket::from_base_index(self.data_end(), index)
}
/// Erases an element from the table without dropping it.
#[cfg_attr(feature = "inline-more", inline)]
#[deprecated(since = "0.8.1", note = "use erase or remove instead")]
pub unsafe fn erase_no_drop(&mut self, item: &Bucket<T>) {
let index = self.bucket_index(item);
self.table.erase(index);
}
/// Erases an element from the table, dropping it in place.
#[cfg_attr(feature = "inline-more", inline)]
#[allow(clippy::needless_pass_by_value)]
#[allow(deprecated)]
pub unsafe fn erase(&mut self, item: Bucket<T>) {
// Erase the element from the table first since drop might panic.
self.erase_no_drop(&item);
item.drop();
}
/// Finds and erases an element from the table, dropping it in place.
/// Returns true if an element was found.
#[cfg(feature = "raw")]
#[cfg_attr(feature = "inline-more", inline)]
pub fn erase_entry(&mut self, hash: u64, eq: impl FnMut(&T) -> bool) -> bool {
// Avoid `Option::map` because it bloats LLVM IR.
if let Some(bucket) = self.find(hash, eq) {
unsafe {
self.erase(bucket);
}
true
} else {
false
}
}
/// Removes an element from the table, returning it.
#[cfg_attr(feature = "inline-more", inline)]
#[allow(clippy::needless_pass_by_value)]
#[allow(deprecated)]
pub unsafe fn remove(&mut self, item: Bucket<T>) -> T {
self.erase_no_drop(&item);
item.read()
}
/// Finds and removes an element from the table, returning it.
#[cfg_attr(feature = "inline-more", inline)]
pub fn remove_entry(&mut self, hash: u64, eq: impl FnMut(&T) -> bool) -> Option<T> {
// Avoid `Option::map` because it bloats LLVM IR.
match self.find(hash, eq) {
Some(bucket) => Some(unsafe { self.remove(bucket) }),
None => None,
}
}
/// Marks all table buckets as empty without dropping their contents.
#[cfg_attr(feature = "inline-more", inline)]
pub fn clear_no_drop(&mut self) {
self.table.clear_no_drop();
}
/// Removes all elements from the table without freeing the backing memory.
#[cfg_attr(feature = "inline-more", inline)]
pub fn clear(&mut self) {
// Ensure that the table is reset even if one of the drops panic
let mut self_ = guard(self, |self_| self_.clear_no_drop());
unsafe {
self_.drop_elements();
}
}
unsafe fn drop_elements(&mut self) {
if mem::needs_drop::<T>() && !self.is_empty() {
for item in self.iter() {
item.drop();
}
}
}
/// Shrinks the table to fit `max(self.len(), min_size)` elements.
#[cfg_attr(feature = "inline-more", inline)]
pub fn shrink_to(&mut self, min_size: usize, hasher: impl Fn(&T) -> u64) {
// Calculate the minimal number of elements that we need to reserve
// space for.
let min_size = usize::max(self.table.items, min_size);
if min_size == 0 {
*self = Self::new_in(self.table.alloc.clone());
return;
}
// Calculate the number of buckets that we need for this number of
// elements. If the calculation overflows then the requested bucket
// count must be larger than what we have right and nothing needs to be
// done.
let min_buckets = match capacity_to_buckets(min_size) {
Some(buckets) => buckets,
None => return,
};
// If we have more buckets than we need, shrink the table.
if min_buckets < self.buckets() {
// Fast path if the table is empty
if self.table.items == 0 {
*self = Self::with_capacity_in(min_size, self.table.alloc.clone());
} else {
// Avoid `Result::unwrap_or_else` because it bloats LLVM IR.
if self
.resize(min_size, hasher, Fallibility::Infallible)
.is_err()
{
unsafe { hint::unreachable_unchecked() }
}
}
}
}
/// Ensures that at least `additional` items can be inserted into the table
/// without reallocation.
#[cfg_attr(feature = "inline-more", inline)]
pub fn reserve(&mut self, additional: usize, hasher: impl Fn(&T) -> u64) {
if additional > self.table.growth_left {
// Avoid `Result::unwrap_or_else` because it bloats LLVM IR.
if self
.reserve_rehash(additional, hasher, Fallibility::Infallible)
.is_err()
{
unsafe { hint::unreachable_unchecked() }
}
}
}
/// Tries to ensure that at least `additional` items can be inserted into
/// the table without reallocation.
#[cfg_attr(feature = "inline-more", inline)]
pub fn try_reserve(
&mut self,
additional: usize,
hasher: impl Fn(&T) -> u64,
) -> Result<(), TryReserveError> {
if additional > self.table.growth_left {
self.reserve_rehash(additional, hasher, Fallibility::Fallible)
} else {
Ok(())
}
}
/// Out-of-line slow path for `reserve` and `try_reserve`.
#[cold]
#[inline(never)]
fn reserve_rehash(
&mut self,
additional: usize,
hasher: impl Fn(&T) -> u64,
fallibility: Fallibility,
) -> Result<(), TryReserveError> {
unsafe {
self.table.reserve_rehash_inner(
additional,
&|table, index| hasher(table.bucket::<T>(index).as_ref()),
fallibility,
TableLayout::new::<T>(),
if mem::needs_drop::<T>() {
Some(mem::transmute(ptr::drop_in_place::<T> as unsafe fn(*mut T)))
} else {
None
},
)
}
}
/// Allocates a new table of a different size and moves the contents of the
/// current table into it.
fn resize(
&mut self,
capacity: usize,
hasher: impl Fn(&T) -> u64,
fallibility: Fallibility,
) -> Result<(), TryReserveError> {
unsafe {
self.table.resize_inner(
capacity,
&|table, index| hasher(table.bucket::<T>(index).as_ref()),
fallibility,
TableLayout::new::<T>(),
)
}
}
/// Inserts a new element into the table, and returns its raw bucket.
///
/// This does not check if the given element already exists in the table.
#[cfg_attr(feature = "inline-more", inline)]
pub fn insert(&mut self, hash: u64, value: T, hasher: impl Fn(&T) -> u64) -> Bucket<T> {
unsafe {
let mut index = self.table.find_insert_slot(hash);
// We can avoid growing the table once we have reached our load
// factor if we are replacing a tombstone. This works since the
// number of EMPTY slots does not change in this case.
let old_ctrl = *self.table.ctrl(index);
if unlikely(self.table.growth_left == 0 && special_is_empty(old_ctrl)) {
self.reserve(1, hasher);
index = self.table.find_insert_slot(hash);
}
self.table.record_item_insert_at(index, old_ctrl, hash);
let bucket = self.bucket(index);
bucket.write(value);
bucket
}
}
/// Attempts to insert a new element without growing the table and return its raw bucket.
///
/// Returns an `Err` containing the given element if inserting it would require growing the
/// table.
///
/// This does not check if the given element already exists in the table.
#[cfg(feature = "raw")]
#[cfg_attr(feature = "inline-more", inline)]
pub fn try_insert_no_grow(&mut self, hash: u64, value: T) -> Result<Bucket<T>, T> {
unsafe {
match self.table.prepare_insert_no_grow(hash) {
Ok(index) => {
let bucket = self.bucket(index);
bucket.write(value);
Ok(bucket)
}
Err(()) => Err(value),
}
}
}
/// Inserts a new element into the table, and returns a mutable reference to it.
///
/// This does not check if the given element already exists in the table.
#[cfg_attr(feature = "inline-more", inline)]
pub fn insert_entry(&mut self, hash: u64, value: T, hasher: impl Fn(&T) -> u64) -> &mut T {
unsafe { self.insert(hash, value, hasher).as_mut() }
}
/// Inserts a new element into the table, without growing the table.
///
/// There must be enough space in the table to insert the new element.
///
/// This does not check if the given element already exists in the table.
#[cfg_attr(feature = "inline-more", inline)]
#[cfg(any(feature = "raw", feature = "rustc-internal-api"))]
pub unsafe fn insert_no_grow(&mut self, hash: u64, value: T) -> Bucket<T> {
let (index, old_ctrl) = self.table.prepare_insert_slot(hash);
let bucket = self.table.bucket(index);
// If we are replacing a DELETED entry then we don't need to update
// the load counter.
self.table.growth_left -= special_is_empty(old_ctrl) as usize;
bucket.write(value);
self.table.items += 1;
bucket
}
/// Temporary removes a bucket, applying the given function to the removed
/// element and optionally put back the returned value in the same bucket.
///
/// Returns `true` if the bucket still contains an element
///
/// This does not check if the given bucket is actually occupied.
#[cfg_attr(feature = "inline-more", inline)]
pub unsafe fn replace_bucket_with<F>(&mut self, bucket: Bucket<T>, f: F) -> bool
where
F: FnOnce(T) -> Option<T>,
{
let index = self.bucket_index(&bucket);
let old_ctrl = *self.table.ctrl(index);
debug_assert!(is_full(old_ctrl));
let old_growth_left = self.table.growth_left;
let item = self.remove(bucket);
if let Some(new_item) = f(item) {
self.table.growth_left = old_growth_left;
self.table.set_ctrl(index, old_ctrl);
self.table.items += 1;
self.bucket(index).write(new_item);
true
} else {
false
}
}
/// Searches for an element in the table.
#[inline]
pub fn find(&self, hash: u64, mut eq: impl FnMut(&T) -> bool) -> Option<Bucket<T>> {
let result = self.table.find_inner(hash, &mut |index| unsafe {
eq(self.bucket(index).as_ref())
});
// Avoid `Option::map` because it bloats LLVM IR.
match result {
Some(index) => Some(unsafe { self.bucket(index) }),
None => None,
}
}
/// Gets a reference to an element in the table.
#[inline]
pub fn get(&self, hash: u64, eq: impl FnMut(&T) -> bool) -> Option<&T> {
// Avoid `Option::map` because it bloats LLVM IR.
match self.find(hash, eq) {
Some(bucket) => Some(unsafe { bucket.as_ref() }),
None => None,
}
}
/// Gets a mutable reference to an element in the table.
#[inline]
pub fn get_mut(&mut self, hash: u64, eq: impl FnMut(&T) -> bool) -> Option<&mut T> {
// Avoid `Option::map` because it bloats LLVM IR.
match self.find(hash, eq) {
Some(bucket) => Some(unsafe { bucket.as_mut() }),
None => None,
}
}
/// Attempts to get mutable references to `N` entries in the table at once.
///
/// Returns an array of length `N` with the results of each query.
///
/// At most one mutable reference will be returned to any entry. `None` will be returned if any
/// of the hashes are duplicates. `None` will be returned if the hash is not found.
///
/// The `eq` argument should be a closure such that `eq(i, k)` returns true if `k` is equal to
/// the `i`th key to be looked up.
pub fn get_many_mut<const N: usize>(
&mut self,
hashes: [u64; N],
eq: impl FnMut(usize, &T) -> bool,
) -> Option<[&'_ mut T; N]> {
unsafe {
let ptrs = self.get_many_mut_pointers(hashes, eq)?;
for (i, &cur) in ptrs.iter().enumerate() {
if ptrs[..i].iter().any(|&prev| ptr::eq::<T>(prev, cur)) {
return None;
}
}
// All bucket are distinct from all previous buckets so we're clear to return the result
// of the lookup.
// TODO use `MaybeUninit::array_assume_init` here instead once that's stable.
Some(mem::transmute_copy(&ptrs))
}
}
pub unsafe fn get_many_unchecked_mut<const N: usize>(
&mut self,
hashes: [u64; N],
eq: impl FnMut(usize, &T) -> bool,
) -> Option<[&'_ mut T; N]> {
let ptrs = self.get_many_mut_pointers(hashes, eq)?;
Some(mem::transmute_copy(&ptrs))
}
unsafe fn get_many_mut_pointers<const N: usize>(
&mut self,
hashes: [u64; N],
mut eq: impl FnMut(usize, &T) -> bool,
) -> Option<[*mut T; N]> {
// TODO use `MaybeUninit::uninit_array` here instead once that's stable.
let mut outs: MaybeUninit<[*mut T; N]> = MaybeUninit::uninit();
let outs_ptr = outs.as_mut_ptr();
for (i, &hash) in hashes.iter().enumerate() {
let cur = self.find(hash, |k| eq(i, k))?;
*(*outs_ptr).get_unchecked_mut(i) = cur.as_mut();
}
// TODO use `MaybeUninit::array_assume_init` here instead once that's stable.
Some(outs.assume_init())
}
/// Returns the number of elements the map can hold without reallocating.
///
/// This number is a lower bound; the table might be able to hold
/// more, but is guaranteed to be able to hold at least this many.
#[inline]
pub fn capacity(&self) -> usize {
self.table.items + self.table.growth_left
}
/// Returns the number of elements in the table.
#[inline]
pub fn len(&self) -> usize {
self.table.items
}
/// Returns `true` if the table contains no elements.
#[inline]
pub fn is_empty(&self) -> bool {
self.len() == 0
}
/// Returns the number of buckets in the table.
#[inline]
pub fn buckets(&self) -> usize {
self.table.bucket_mask + 1
}
/// Returns an iterator over every element in the table. It is up to
/// the caller to ensure that the `RawTable` outlives the `RawIter`.
/// Because we cannot make the `next` method unsafe on the `RawIter`
/// struct, we have to make the `iter` method unsafe.
#[inline]
pub unsafe fn iter(&self) -> RawIter<T> {
let data = Bucket::from_base_index(self.data_end(), 0);
RawIter {
iter: RawIterRange::new(self.table.ctrl.as_ptr(), data, self.table.buckets()),
items: self.table.items,
}
}
/// Returns an iterator over occupied buckets that could match a given hash.
///
/// `RawTable` only stores 7 bits of the hash value, so this iterator may
/// return items that have a hash value different than the one provided. You
/// should always validate the returned values before using them.
///
/// It is up to the caller to ensure that the `RawTable` outlives the
/// `RawIterHash`. Because we cannot make the `next` method unsafe on the
/// `RawIterHash` struct, we have to make the `iter_hash` method unsafe.
#[cfg_attr(feature = "inline-more", inline)]
#[cfg(feature = "raw")]
pub unsafe fn iter_hash(&self, hash: u64) -> RawIterHash<'_, T, A> {
RawIterHash::new(self, hash)
}
/// Returns an iterator which removes all elements from the table without
/// freeing the memory.
#[cfg_attr(feature = "inline-more", inline)]
pub fn drain(&mut self) -> RawDrain<'_, T, A> {
unsafe {
let iter = self.iter();
self.drain_iter_from(iter)
}
}
/// Returns an iterator which removes all elements from the table without
/// freeing the memory.
///
/// Iteration starts at the provided iterator's current location.
///
/// It is up to the caller to ensure that the iterator is valid for this
/// `RawTable` and covers all items that remain in the table.
#[cfg_attr(feature = "inline-more", inline)]
pub unsafe fn drain_iter_from(&mut self, iter: RawIter<T>) -> RawDrain<'_, T, A> {
debug_assert_eq!(iter.len(), self.len());
RawDrain {
iter,
table: ManuallyDrop::new(mem::replace(self, Self::new_in(self.table.alloc.clone()))),
orig_table: NonNull::from(self),
marker: PhantomData,
}
}
/// Returns an iterator which consumes all elements from the table.
///
/// Iteration starts at the provided iterator's current location.
///
/// It is up to the caller to ensure that the iterator is valid for this
/// `RawTable` and covers all items that remain in the table.
pub unsafe fn into_iter_from(self, iter: RawIter<T>) -> RawIntoIter<T, A> {
debug_assert_eq!(iter.len(), self.len());
let alloc = self.table.alloc.clone();
let allocation = self.into_allocation();
RawIntoIter {
iter,
allocation,
marker: PhantomData,
alloc,
}
}
/// Converts the table into a raw allocation. The contents of the table
/// should be dropped using a `RawIter` before freeing the allocation.
#[cfg_attr(feature = "inline-more", inline)]
pub(crate) fn into_allocation(self) -> Option<(NonNull<u8>, Layout)> {
let alloc = if self.table.is_empty_singleton() {
None
} else {
// Avoid `Option::unwrap_or_else` because it bloats LLVM IR.
let (layout, ctrl_offset) = match calculate_layout::<T>(self.table.buckets()) {
Some(lco) => lco,
None => unsafe { hint::unreachable_unchecked() },
};
Some((
unsafe { NonNull::new_unchecked(self.table.ctrl.as_ptr().sub(ctrl_offset)) },
layout,
))
};
mem::forget(self);
alloc
}
}
unsafe impl<T, A: Allocator + Clone> Send for RawTable<T, A>
where
T: Send,
A: Send,
{
}
unsafe impl<T, A: Allocator + Clone> Sync for RawTable<T, A>
where
T: Sync,
A: Sync,
{
}
impl<A> RawTableInner<A> {
#[inline]
const fn new_in(alloc: A) -> Self {
Self {
// Be careful to cast the entire slice to a raw pointer.
ctrl: unsafe { NonNull::new_unchecked(Group::static_empty() as *const _ as *mut u8) },
bucket_mask: 0,
items: 0,
growth_left: 0,
alloc,
}
}
}
impl<A: Allocator + Clone> RawTableInner<A> {
#[cfg_attr(feature = "inline-more", inline)]
unsafe fn new_uninitialized(
alloc: A,
table_layout: TableLayout,
buckets: usize,
fallibility: Fallibility,
) -> Result<Self, TryReserveError> {
debug_assert!(buckets.is_power_of_two());
// Avoid `Option::ok_or_else` because it bloats LLVM IR.
let (layout, ctrl_offset) = match table_layout.calculate_layout_for(buckets) {
Some(lco) => lco,
None => return Err(fallibility.capacity_overflow()),
};
// We need an additional check to ensure that the allocation doesn't
// exceed `isize::MAX`. We can skip this check on 64-bit systems since
// such allocations will never succeed anyways.
//
// This mirrors what Vec does in the standard library.
if mem::size_of::<usize>() < 8 && layout.size() > isize::MAX as usize {
return Err(fallibility.capacity_overflow());
}
let ptr: NonNull<u8> = match do_alloc(&alloc, layout) {
Ok(block) => block.cast(),
Err(_) => return Err(fallibility.alloc_err(layout)),
};
let ctrl = NonNull::new_unchecked(ptr.as_ptr().add(ctrl_offset));
Ok(Self {
ctrl,
bucket_mask: buckets - 1,
items: 0,
growth_left: bucket_mask_to_capacity(buckets - 1),
alloc,
})
}
#[inline]
fn fallible_with_capacity(
alloc: A,
table_layout: TableLayout,
capacity: usize,
fallibility: Fallibility,
) -> Result<Self, TryReserveError> {
if capacity == 0 {
Ok(Self::new_in(alloc))
} else {
unsafe {
let buckets =
capacity_to_buckets(capacity).ok_or_else(|| fallibility.capacity_overflow())?;
let result = Self::new_uninitialized(alloc, table_layout, buckets, fallibility)?;
result.ctrl(0).write_bytes(EMPTY, result.num_ctrl_bytes());
Ok(result)
}
}
}
/// Searches for an empty or deleted bucket which is suitable for inserting
/// a new element and sets the hash for that slot.
///
/// There must be at least 1 empty bucket in the table.
#[inline]
unsafe fn prepare_insert_slot(&self, hash: u64) -> (usize, u8) {
let index = self.find_insert_slot(hash);
let old_ctrl = *self.ctrl(index);
self.set_ctrl_h2(index, hash);
(index, old_ctrl)
}
/// Searches for an empty or deleted bucket which is suitable for inserting
/// a new element.
///
/// There must be at least 1 empty bucket in the table.
#[inline]
fn find_insert_slot(&self, hash: u64) -> usize {
let mut probe_seq = self.probe_seq(hash);
loop {
unsafe {
let group = Group::load(self.ctrl(probe_seq.pos));
if let Some(bit) = group.match_empty_or_deleted().lowest_set_bit() {
let result = (probe_seq.pos + bit) & self.bucket_mask;
// In tables smaller than the group width, trailing control
// bytes outside the range of the table are filled with
// EMPTY entries. These will unfortunately trigger a
// match, but once masked may point to a full bucket that
// is already occupied. We detect this situation here and
// perform a second scan starting at the beginning of the
// table. This second scan is guaranteed to find an empty
// slot (due to the load factor) before hitting the trailing
// control bytes (containing EMPTY).
if unlikely(is_full(*self.ctrl(result))) {
debug_assert!(self.bucket_mask < Group::WIDTH);
debug_assert_ne!(probe_seq.pos, 0);
return Group::load_aligned(self.ctrl(0))
.match_empty_or_deleted()
.lowest_set_bit_nonzero();
}
return result;
}
}
probe_seq.move_next(self.bucket_mask);
}
}
/// Searches for an element in the table. This uses dynamic dispatch to reduce the amount of
/// code generated, but it is eliminated by LLVM optimizations.
#[inline]
fn find_inner(&self, hash: u64, eq: &mut dyn FnMut(usize) -> bool) -> Option<usize> {
let h2_hash = h2(hash);
let mut probe_seq = self.probe_seq(hash);
loop {
let group = unsafe { Group::load(self.ctrl(probe_seq.pos)) };
for bit in group.match_byte(h2_hash) {
let index = (probe_seq.pos + bit) & self.bucket_mask;
if likely(eq(index)) {
return Some(index);
}
}
if likely(group.match_empty().any_bit_set()) {
return None;
}
probe_seq.move_next(self.bucket_mask);
}
}
#[allow(clippy::mut_mut)]
#[inline]
unsafe fn prepare_rehash_in_place(&mut self) {
// Bulk convert all full control bytes to DELETED, and all DELETED
// control bytes to EMPTY. This effectively frees up all buckets
// containing a DELETED entry.
for i in (0..self.buckets()).step_by(Group::WIDTH) {
let group = Group::load_aligned(self.ctrl(i));
let group = group.convert_special_to_empty_and_full_to_deleted();
group.store_aligned(self.ctrl(i));
}
// Fix up the trailing control bytes. See the comments in set_ctrl
// for the handling of tables smaller than the group width.
if self.buckets() < Group::WIDTH {
self.ctrl(0)
.copy_to(self.ctrl(Group::WIDTH), self.buckets());
} else {
self.ctrl(0)
.copy_to(self.ctrl(self.buckets()), Group::WIDTH);
}
}
#[inline]
unsafe fn bucket<T>(&self, index: usize) -> Bucket<T> {
debug_assert_ne!(self.bucket_mask, 0);
debug_assert!(index < self.buckets());
Bucket::from_base_index(self.data_end(), index)
}
#[inline]
unsafe fn bucket_ptr(&self, index: usize, size_of: usize) -> *mut u8 {
debug_assert_ne!(self.bucket_mask, 0);
debug_assert!(index < self.buckets());
let base: *mut u8 = self.data_end().as_ptr();
base.sub((index + 1) * size_of)
}
#[inline]
unsafe fn data_end<T>(&self) -> NonNull<T> {
NonNull::new_unchecked(self.ctrl.as_ptr().cast())
}
/// Returns an iterator-like object for a probe sequence on the table.
///
/// This iterator never terminates, but is guaranteed to visit each bucket
/// group exactly once. The loop using `probe_seq` must terminate upon
/// reaching a group containing an empty bucket.
#[inline]
fn probe_seq(&self, hash: u64) -> ProbeSeq {
ProbeSeq {
pos: h1(hash) & self.bucket_mask,
stride: 0,
}
}
/// Returns the index of a bucket for which a value must be inserted if there is enough rooom
/// in the table, otherwise returns error
#[cfg(feature = "raw")]
#[inline]
unsafe fn prepare_insert_no_grow(&mut self, hash: u64) -> Result<usize, ()> {
let index = self.find_insert_slot(hash);
let old_ctrl = *self.ctrl(index);
if unlikely(self.growth_left == 0 && special_is_empty(old_ctrl)) {
Err(())
} else {
self.record_item_insert_at(index, old_ctrl, hash);
Ok(index)
}
}
#[inline]
unsafe fn record_item_insert_at(&mut self, index: usize, old_ctrl: u8, hash: u64) {
self.growth_left -= usize::from(special_is_empty(old_ctrl));
self.set_ctrl_h2(index, hash);
self.items += 1;
}
#[inline]
fn is_in_same_group(&self, i: usize, new_i: usize, hash: u64) -> bool {
let probe_seq_pos = self.probe_seq(hash).pos;
let probe_index =
|pos: usize| (pos.wrapping_sub(probe_seq_pos) & self.bucket_mask) / Group::WIDTH;
probe_index(i) == probe_index(new_i)
}
/// Sets a control byte to the hash, and possibly also the replicated control byte at
/// the end of the array.
#[inline]
unsafe fn set_ctrl_h2(&self, index: usize, hash: u64) {
self.set_ctrl(index, h2(hash));
}
#[inline]
unsafe fn replace_ctrl_h2(&self, index: usize, hash: u64) -> u8 {
let prev_ctrl = *self.ctrl(index);
self.set_ctrl_h2(index, hash);
prev_ctrl
}
/// Sets a control byte, and possibly also the replicated control byte at
/// the end of the array.
#[inline]
unsafe fn set_ctrl(&self, index: usize, ctrl: u8) {
// Replicate the first Group::WIDTH control bytes at the end of
// the array without using a branch:
// - If index >= Group::WIDTH then index == index2.
// - Otherwise index2 == self.bucket_mask + 1 + index.
//
// The very last replicated control byte is never actually read because
// we mask the initial index for unaligned loads, but we write it
// anyways because it makes the set_ctrl implementation simpler.
//
// If there are fewer buckets than Group::WIDTH then this code will
// replicate the buckets at the end of the trailing group. For example
// with 2 buckets and a group size of 4, the control bytes will look
// like this:
//
// Real | Replicated
// ---------------------------------------------
// | [A] | [B] | [EMPTY] | [EMPTY] | [A] | [B] |
// ---------------------------------------------
let index2 = ((index.wrapping_sub(Group::WIDTH)) & self.bucket_mask) + Group::WIDTH;
*self.ctrl(index) = ctrl;
*self.ctrl(index2) = ctrl;
}
/// Returns a pointer to a control byte.
#[inline]
unsafe fn ctrl(&self, index: usize) -> *mut u8 {
debug_assert!(index < self.num_ctrl_bytes());
self.ctrl.as_ptr().add(index)
}
#[inline]
fn buckets(&self) -> usize {
self.bucket_mask + 1
}
#[inline]
fn num_ctrl_bytes(&self) -> usize {
self.bucket_mask + 1 + Group::WIDTH
}
#[inline]
fn is_empty_singleton(&self) -> bool {
self.bucket_mask == 0
}
#[allow(clippy::mut_mut)]
#[inline]
unsafe fn prepare_resize(
&self,
table_layout: TableLayout,
capacity: usize,
fallibility: Fallibility,
) -> Result<crate::scopeguard::ScopeGuard<Self, impl FnMut(&mut Self)>, TryReserveError> {
debug_assert!(self.items <= capacity);
// Allocate and initialize the new table.
let mut new_table = RawTableInner::fallible_with_capacity(
self.alloc.clone(),
table_layout,
capacity,
fallibility,
)?;
new_table.growth_left -= self.items;
new_table.items = self.items;
// The hash function may panic, in which case we simply free the new
// table without dropping any elements that may have been copied into
// it.
//
// This guard is also used to free the old table on success, see
// the comment at the bottom of this function.
Ok(guard(new_table, move |self_| {
if !self_.is_empty_singleton() {
self_.free_buckets(table_layout);
}
}))
}
/// Reserves or rehashes to make room for `additional` more elements.
///
/// This uses dynamic dispatch to reduce the amount of
/// code generated, but it is eliminated by LLVM optimizations when inlined.
#[allow(clippy::inline_always)]
#[inline(always)]
unsafe fn reserve_rehash_inner(
&mut self,
additional: usize,
hasher: &dyn Fn(&mut Self, usize) -> u64,
fallibility: Fallibility,
layout: TableLayout,
drop: Option<fn(*mut u8)>,
) -> Result<(), TryReserveError> {
// Avoid `Option::ok_or_else` because it bloats LLVM IR.
let new_items = match self.items.checked_add(additional) {
Some(new_items) => new_items,
None => return Err(fallibility.capacity_overflow()),
};
let full_capacity = bucket_mask_to_capacity(self.bucket_mask);
if new_items <= full_capacity / 2 {
// Rehash in-place without re-allocating if we have plenty of spare
// capacity that is locked up due to DELETED entries.
self.rehash_in_place(hasher, layout.size, drop);
Ok(())
} else {
// Otherwise, conservatively resize to at least the next size up
// to avoid churning deletes into frequent rehashes.
self.resize_inner(
usize::max(new_items, full_capacity + 1),
hasher,
fallibility,
layout,
)
}
}
/// Allocates a new table of a different size and moves the contents of the
/// current table into it.
///
/// This uses dynamic dispatch to reduce the amount of
/// code generated, but it is eliminated by LLVM optimizations when inlined.
#[allow(clippy::inline_always)]
#[inline(always)]
unsafe fn resize_inner(
&mut self,
capacity: usize,
hasher: &dyn Fn(&mut Self, usize) -> u64,
fallibility: Fallibility,
layout: TableLayout,
) -> Result<(), TryReserveError> {
let mut new_table = self.prepare_resize(layout, capacity, fallibility)?;
// Copy all elements to the new table.
for i in 0..self.buckets() {
if !is_full(*self.ctrl(i)) {
continue;
}
// This may panic.
let hash = hasher(self, i);
// We can use a simpler version of insert() here since:
// - there are no DELETED entries.
// - we know there is enough space in the table.
// - all elements are unique.
let (index, _) = new_table.prepare_insert_slot(hash);
ptr::copy_nonoverlapping(
self.bucket_ptr(i, layout.size),
new_table.bucket_ptr(index, layout.size),
layout.size,
);
}
// We successfully copied all elements without panicking. Now replace
// self with the new table. The old table will have its memory freed but
// the items will not be dropped (since they have been moved into the
// new table).
mem::swap(self, &mut new_table);
Ok(())
}
/// Rehashes the contents of the table in place (i.e. without changing the
/// allocation).
///
/// If `hasher` panics then some the table's contents may be lost.
///
/// This uses dynamic dispatch to reduce the amount of
/// code generated, but it is eliminated by LLVM optimizations when inlined.
#[allow(clippy::inline_always)]
#[cfg_attr(feature = "inline-more", inline(always))]
#[cfg_attr(not(feature = "inline-more"), inline)]
unsafe fn rehash_in_place(
&mut self,
hasher: &dyn Fn(&mut Self, usize) -> u64,
size_of: usize,
drop: Option<fn(*mut u8)>,
) {
// If the hash function panics then properly clean up any elements
// that we haven't rehashed yet. We unfortunately can't preserve the
// element since we lost their hash and have no way of recovering it
// without risking another panic.
self.prepare_rehash_in_place();
let mut guard = guard(self, move |self_| {
if let Some(drop) = drop {
for i in 0..self_.buckets() {
if *self_.ctrl(i) == DELETED {
self_.set_ctrl(i, EMPTY);
drop(self_.bucket_ptr(i, size_of));
self_.items -= 1;
}
}
}
self_.growth_left = bucket_mask_to_capacity(self_.bucket_mask) - self_.items;
});
// At this point, DELETED elements are elements that we haven't
// rehashed yet. Find them and re-insert them at their ideal
// position.
'outer: for i in 0..guard.buckets() {
if *guard.ctrl(i) != DELETED {
continue;
}
let i_p = guard.bucket_ptr(i, size_of);
'inner: loop {
// Hash the current item
let hash = hasher(*guard, i);
// Search for a suitable place to put it
let new_i = guard.find_insert_slot(hash);
let new_i_p = guard.bucket_ptr(new_i, size_of);
// Probing works by scanning through all of the control
// bytes in groups, which may not be aligned to the group
// size. If both the new and old position fall within the
// same unaligned group, then there is no benefit in moving
// it and we can just continue to the next item.
if likely(guard.is_in_same_group(i, new_i, hash)) {
guard.set_ctrl_h2(i, hash);
continue 'outer;
}
// We are moving the current item to a new position. Write
// our H2 to the control byte of the new position.
let prev_ctrl = guard.replace_ctrl_h2(new_i, hash);
if prev_ctrl == EMPTY {
guard.set_ctrl(i, EMPTY);
// If the target slot is empty, simply move the current
// element into the new slot and clear the old control
// byte.
ptr::copy_nonoverlapping(i_p, new_i_p, size_of);
continue 'outer;
} else {
// If the target slot is occupied, swap the two elements
// and then continue processing the element that we just
// swapped into the old slot.
debug_assert_eq!(prev_ctrl, DELETED);
ptr::swap_nonoverlapping(i_p, new_i_p, size_of);
continue 'inner;
}
}
}
guard.growth_left = bucket_mask_to_capacity(guard.bucket_mask) - guard.items;
mem::forget(guard);
}
#[inline]
unsafe fn free_buckets(&mut self, table_layout: TableLayout) {
// Avoid `Option::unwrap_or_else` because it bloats LLVM IR.
let (layout, ctrl_offset) = match table_layout.calculate_layout_for(self.buckets()) {
Some(lco) => lco,
None => hint::unreachable_unchecked(),
};
self.alloc.deallocate(
NonNull::new_unchecked(self.ctrl.as_ptr().sub(ctrl_offset)),
layout,
);
}
/// Marks all table buckets as empty without dropping their contents.
#[inline]
fn clear_no_drop(&mut self) {
if !self.is_empty_singleton() {
unsafe {
self.ctrl(0).write_bytes(EMPTY, self.num_ctrl_bytes());
}
}
self.items = 0;
self.growth_left = bucket_mask_to_capacity(self.bucket_mask);
}
#[inline]
unsafe fn erase(&mut self, index: usize) {
debug_assert!(is_full(*self.ctrl(index)));
let index_before = index.wrapping_sub(Group::WIDTH) & self.bucket_mask;
let empty_before = Group::load(self.ctrl(index_before)).match_empty();
let empty_after = Group::load(self.ctrl(index)).match_empty();
// If we are inside a continuous block of Group::WIDTH full or deleted
// cells then a probe window may have seen a full block when trying to
// insert. We therefore need to keep that block non-empty so that
// lookups will continue searching to the next probe window.
//
// Note that in this context `leading_zeros` refers to the bytes at the
// end of a group, while `trailing_zeros` refers to the bytes at the
// beginning of a group.
let ctrl = if empty_before.leading_zeros() + empty_after.trailing_zeros() >= Group::WIDTH {
DELETED
} else {
self.growth_left += 1;
EMPTY
};
self.set_ctrl(index, ctrl);
self.items -= 1;
}
}
impl<T: Clone, A: Allocator + Clone> Clone for RawTable<T, A> {
fn clone(&self) -> Self {
if self.table.is_empty_singleton() {
Self::new_in(self.table.alloc.clone())
} else {
unsafe {
// Avoid `Result::ok_or_else` because it bloats LLVM IR.
let new_table = match Self::new_uninitialized(
self.table.alloc.clone(),
self.table.buckets(),
Fallibility::Infallible,
) {
Ok(table) => table,
Err(_) => hint::unreachable_unchecked(),
};
// If cloning fails then we need to free the allocation for the
// new table. However we don't run its drop since its control
// bytes are not initialized yet.
let mut guard = guard(ManuallyDrop::new(new_table), |new_table| {
new_table.free_buckets();
});
guard.clone_from_spec(self);
// Disarm the scope guard and return the newly created table.
ManuallyDrop::into_inner(ScopeGuard::into_inner(guard))
}
}
}
fn clone_from(&mut self, source: &Self) {
if source.table.is_empty_singleton() {
*self = Self::new_in(self.table.alloc.clone());
} else {
unsafe {
// Make sure that if any panics occurs, we clear the table and
// leave it in an empty state.
let mut self_ = guard(self, |self_| {
self_.clear_no_drop();
});
// First, drop all our elements without clearing the control
// bytes. If this panics then the scope guard will clear the
// table, leaking any elements that were not dropped yet.
//
// This leak is unavoidable: we can't try dropping more elements
// since this could lead to another panic and abort the process.
self_.drop_elements();
// If necessary, resize our table to match the source.
if self_.buckets() != source.buckets() {
// Skip our drop by using ptr::write.
if !self_.table.is_empty_singleton() {
self_.free_buckets();
}
(&mut **self_ as *mut Self).write(
// Avoid `Result::unwrap_or_else` because it bloats LLVM IR.
match Self::new_uninitialized(
self_.table.alloc.clone(),
source.buckets(),
Fallibility::Infallible,
) {
Ok(table) => table,
Err(_) => hint::unreachable_unchecked(),
},
);
}
self_.clone_from_spec(source);
// Disarm the scope guard if cloning was successful.
ScopeGuard::into_inner(self_);
}
}
}
}
/// Specialization of `clone_from` for `Copy` types
trait RawTableClone {
unsafe fn clone_from_spec(&mut self, source: &Self);
}
impl<T: Clone, A: Allocator + Clone> RawTableClone for RawTable<T, A> {
default_fn! {
#[cfg_attr(feature = "inline-more", inline)]
unsafe fn clone_from_spec(&mut self, source: &Self) {
self.clone_from_impl(source);
}
}
}
#[cfg(feature = "nightly")]
impl<T: Copy, A: Allocator + Clone> RawTableClone for RawTable<T, A> {
#[cfg_attr(feature = "inline-more", inline)]
unsafe fn clone_from_spec(&mut self, source: &Self) {
source
.table
.ctrl(0)
.copy_to_nonoverlapping(self.table.ctrl(0), self.table.num_ctrl_bytes());
source
.data_start()
.copy_to_nonoverlapping(self.data_start(), self.table.buckets());
self.table.items = source.table.items;
self.table.growth_left = source.table.growth_left;
}
}
impl<T: Clone, A: Allocator + Clone> RawTable<T, A> {
/// Common code for clone and clone_from. Assumes:
/// - `self.buckets() == source.buckets()`.
/// - Any existing elements have been dropped.
/// - The control bytes are not initialized yet.
#[cfg_attr(feature = "inline-more", inline)]
unsafe fn clone_from_impl(&mut self, source: &Self) {
// Copy the control bytes unchanged. We do this in a single pass
source
.table
.ctrl(0)
.copy_to_nonoverlapping(self.table.ctrl(0), self.table.num_ctrl_bytes());
// The cloning of elements may panic, in which case we need
// to make sure we drop only the elements that have been
// cloned so far.
let mut guard = guard((0, &mut *self), |(index, self_)| {
if mem::needs_drop::<T>() && !self_.is_empty() {
for i in 0..=*index {
if is_full(*self_.table.ctrl(i)) {
self_.bucket(i).drop();
}
}
}
});
for from in source.iter() {
let index = source.bucket_index(&from);
let to = guard.1.bucket(index);
to.write(from.as_ref().clone());
// Update the index in case we need to unwind.
guard.0 = index;
}
// Successfully cloned all items, no need to clean up.
mem::forget(guard);
self.table.items = source.table.items;
self.table.growth_left = source.table.growth_left;
}
/// Variant of `clone_from` to use when a hasher is available.
#[cfg(feature = "raw")]
pub fn clone_from_with_hasher(&mut self, source: &Self, hasher: impl Fn(&T) -> u64) {
// If we have enough capacity in the table, just clear it and insert
// elements one by one. We don't do this if we have the same number of
// buckets as the source since we can just copy the contents directly
// in that case.
if self.table.buckets() != source.table.buckets()
&& bucket_mask_to_capacity(self.table.bucket_mask) >= source.len()
{
self.clear();
let guard_self = guard(&mut *self, |self_| {
// Clear the partially copied table if a panic occurs, otherwise
// items and growth_left will be out of sync with the contents
// of the table.
self_.clear();
});
unsafe {
for item in source.iter() {
// This may panic.
let item = item.as_ref().clone();
let hash = hasher(&item);
// We can use a simpler version of insert() here since:
// - there are no DELETED entries.
// - we know there is enough space in the table.
// - all elements are unique.
let (index, _) = guard_self.table.prepare_insert_slot(hash);
guard_self.bucket(index).write(item);
}
}
// Successfully cloned all items, no need to clean up.
mem::forget(guard_self);
self.table.items = source.table.items;
self.table.growth_left -= source.table.items;
} else {
self.clone_from(source);
}
}
}
impl<T, A: Allocator + Clone + Default> Default for RawTable<T, A> {
#[inline]
fn default() -> Self {
Self::new_in(Default::default())
}
}
#[cfg(feature = "nightly")]
unsafe impl<#[may_dangle] T, A: Allocator + Clone> Drop for RawTable<T, A> {
#[cfg_attr(feature = "inline-more", inline)]
fn drop(&mut self) {
if !self.table.is_empty_singleton() {
unsafe {
self.drop_elements();
self.free_buckets();
}
}
}
}
#[cfg(not(feature = "nightly"))]
impl<T, A: Allocator + Clone> Drop for RawTable<T, A> {
#[cfg_attr(feature = "inline-more", inline)]
fn drop(&mut self) {
if !self.table.is_empty_singleton() {
unsafe {
self.drop_elements();
self.free_buckets();
}
}
}
}
impl<T, A: Allocator + Clone> IntoIterator for RawTable<T, A> {
type Item = T;
type IntoIter = RawIntoIter<T, A>;
#[cfg_attr(feature = "inline-more", inline)]
fn into_iter(self) -> RawIntoIter<T, A> {
unsafe {
let iter = self.iter();
self.into_iter_from(iter)
}
}
}
/// Iterator over a sub-range of a table. Unlike `RawIter` this iterator does
/// not track an item count.
pub(crate) struct RawIterRange<T> {
// Mask of full buckets in the current group. Bits are cleared from this
// mask as each element is processed.
current_group: BitMask,
// Pointer to the buckets for the current group.
data: Bucket<T>,
// Pointer to the next group of control bytes,
// Must be aligned to the group size.
next_ctrl: *const u8,
// Pointer one past the last control byte of this range.
end: *const u8,
}
impl<T> RawIterRange<T> {
/// Returns a `RawIterRange` covering a subset of a table.
///
/// The control byte address must be aligned to the group size.
#[cfg_attr(feature = "inline-more", inline)]
unsafe fn new(ctrl: *const u8, data: Bucket<T>, len: usize) -> Self {
debug_assert_ne!(len, 0);
debug_assert_eq!(ctrl as usize % Group::WIDTH, 0);
let end = ctrl.add(len);
// Load the first group and advance ctrl to point to the next group
let current_group = Group::load_aligned(ctrl).match_full();
let next_ctrl = ctrl.add(Group::WIDTH);
Self {
current_group,
data,
next_ctrl,
end,
}
}
/// Splits a `RawIterRange` into two halves.
///
/// Returns `None` if the remaining range is smaller than or equal to the
/// group width.
#[cfg_attr(feature = "inline-more", inline)]
#[cfg(feature = "rayon")]
pub(crate) fn split(mut self) -> (Self, Option<RawIterRange<T>>) {
unsafe {
if self.end <= self.next_ctrl {
// Nothing to split if the group that we are current processing
// is the last one.
(self, None)
} else {
// len is the remaining number of elements after the group that
// we are currently processing. It must be a multiple of the
// group size (small tables are caught by the check above).
let len = offset_from(self.end, self.next_ctrl);
debug_assert_eq!(len % Group::WIDTH, 0);
// Split the remaining elements into two halves, but round the
// midpoint down in case there is an odd number of groups
// remaining. This ensures that:
// - The tail is at least 1 group long.
// - The split is roughly even considering we still have the
// current group to process.
let mid = (len / 2) & !(Group::WIDTH - 1);
let tail = Self::new(
self.next_ctrl.add(mid),
self.data.next_n(Group::WIDTH).next_n(mid),
len - mid,
);
debug_assert_eq!(
self.data.next_n(Group::WIDTH).next_n(mid).ptr,
tail.data.ptr
);
debug_assert_eq!(self.end, tail.end);
self.end = self.next_ctrl.add(mid);
debug_assert_eq!(self.end.add(Group::WIDTH), tail.next_ctrl);
(self, Some(tail))
}
}
}
/// # Safety
/// If DO_CHECK_PTR_RANGE is false, caller must ensure that we never try to iterate
/// after yielding all elements.
#[cfg_attr(feature = "inline-more", inline)]
unsafe fn next_impl<const DO_CHECK_PTR_RANGE: bool>(&mut self) -> Option<Bucket<T>> {
loop {
if let Some(index) = self.current_group.lowest_set_bit() {
self.current_group = self.current_group.remove_lowest_bit();
return Some(self.data.next_n(index));
}
if DO_CHECK_PTR_RANGE && self.next_ctrl >= self.end {
return None;
}
// We might read past self.end up to the next group boundary,
// but this is fine because it only occurs on tables smaller
// than the group size where the trailing control bytes are all
// EMPTY. On larger tables self.end is guaranteed to be aligned
// to the group size (since tables are power-of-two sized).
self.current_group = Group::load_aligned(self.next_ctrl).match_full();
self.data = self.data.next_n(Group::WIDTH);
self.next_ctrl = self.next_ctrl.add(Group::WIDTH);
}
}
}
// We make raw iterators unconditionally Send and Sync, and let the PhantomData
// in the actual iterator implementations determine the real Send/Sync bounds.
unsafe impl<T> Send for RawIterRange<T> {}
unsafe impl<T> Sync for RawIterRange<T> {}
impl<T> Clone for RawIterRange<T> {
#[cfg_attr(feature = "inline-more", inline)]
fn clone(&self) -> Self {
Self {
data: self.data.clone(),
next_ctrl: self.next_ctrl,
current_group: self.current_group,
end: self.end,
}
}
}
impl<T> Iterator for RawIterRange<T> {
type Item = Bucket<T>;
#[cfg_attr(feature = "inline-more", inline)]
fn next(&mut self) -> Option<Bucket<T>> {
unsafe {
// SAFETY: We set checker flag to true.
self.next_impl::<true>()
}
}
#[inline]
fn size_hint(&self) -> (usize, Option<usize>) {
// We don't have an item count, so just guess based on the range size.
let remaining_buckets = if self.end > self.next_ctrl {
unsafe { offset_from(self.end, self.next_ctrl) }
} else {
0
};
// Add a group width to include the group we are currently processing.
(0, Some(Group::WIDTH + remaining_buckets))
}
}
impl<T> FusedIterator for RawIterRange<T> {}
/// Iterator which returns a raw pointer to every full bucket in the table.
///
/// For maximum flexibility this iterator is not bound by a lifetime, but you
/// must observe several rules when using it:
/// - You must not free the hash table while iterating (including via growing/shrinking).
/// - It is fine to erase a bucket that has been yielded by the iterator.
/// - Erasing a bucket that has not yet been yielded by the iterator may still
/// result in the iterator yielding that bucket (unless `reflect_remove` is called).
/// - It is unspecified whether an element inserted after the iterator was
/// created will be yielded by that iterator (unless `reflect_insert` is called).
/// - The order in which the iterator yields bucket is unspecified and may
/// change in the future.
pub struct RawIter<T> {
pub(crate) iter: RawIterRange<T>,
items: usize,
}
impl<T> RawIter<T> {
/// Refresh the iterator so that it reflects a removal from the given bucket.
///
/// For the iterator to remain valid, this method must be called once
/// for each removed bucket before `next` is called again.
///
/// This method should be called _before_ the removal is made. It is not necessary to call this
/// method if you are removing an item that this iterator yielded in the past.
#[cfg(feature = "raw")]
pub fn reflect_remove(&mut self, b: &Bucket<T>) {
self.reflect_toggle_full(b, false);
}
/// Refresh the iterator so that it reflects an insertion into the given bucket.
///
/// For the iterator to remain valid, this method must be called once
/// for each insert before `next` is called again.
///
/// This method does not guarantee that an insertion of a bucket with a greater
/// index than the last one yielded will be reflected in the iterator.
///
/// This method should be called _after_ the given insert is made.
#[cfg(feature = "raw")]
pub fn reflect_insert(&mut self, b: &Bucket<T>) {
self.reflect_toggle_full(b, true);
}
/// Refresh the iterator so that it reflects a change to the state of the given bucket.
#[cfg(feature = "raw")]
fn reflect_toggle_full(&mut self, b: &Bucket<T>, is_insert: bool) {
unsafe {
if b.as_ptr() > self.iter.data.as_ptr() {
// The iterator has already passed the bucket's group.
// So the toggle isn't relevant to this iterator.
return;
}
if self.iter.next_ctrl < self.iter.end
&& b.as_ptr() <= self.iter.data.next_n(Group::WIDTH).as_ptr()
{
// The iterator has not yet reached the bucket's group.
// We don't need to reload anything, but we do need to adjust the item count.
if cfg!(debug_assertions) {
// Double-check that the user isn't lying to us by checking the bucket state.
// To do that, we need to find its control byte. We know that self.iter.data is
// at self.iter.next_ctrl - Group::WIDTH, so we work from there:
let offset = offset_from(self.iter.data.as_ptr(), b.as_ptr());
let ctrl = self.iter.next_ctrl.sub(Group::WIDTH).add(offset);
// This method should be called _before_ a removal, or _after_ an insert,
// so in both cases the ctrl byte should indicate that the bucket is full.
assert!(is_full(*ctrl));
}
if is_insert {
self.items += 1;
} else {
self.items -= 1;
}
return;
}
// The iterator is at the bucket group that the toggled bucket is in.
// We need to do two things:
//
// - Determine if the iterator already yielded the toggled bucket.
// If it did, we're done.
// - Otherwise, update the iterator cached group so that it won't
// yield a to-be-removed bucket, or _will_ yield a to-be-added bucket.
// We'll also need to update the item count accordingly.
if let Some(index) = self.iter.current_group.lowest_set_bit() {
let next_bucket = self.iter.data.next_n(index);
if b.as_ptr() > next_bucket.as_ptr() {
// The toggled bucket is "before" the bucket the iterator would yield next. We
// therefore don't need to do anything --- the iterator has already passed the
// bucket in question.
//
// The item count must already be correct, since a removal or insert "prior" to
// the iterator's position wouldn't affect the item count.
} else {
// The removed bucket is an upcoming bucket. We need to make sure it does _not_
// get yielded, and also that it's no longer included in the item count.
//
// NOTE: We can't just reload the group here, both since that might reflect
// inserts we've already passed, and because that might inadvertently unset the
// bits for _other_ removals. If we do that, we'd have to also decrement the
// item count for those other bits that we unset. But the presumably subsequent
// call to reflect for those buckets might _also_ decrement the item count.
// Instead, we _just_ flip the bit for the particular bucket the caller asked
// us to reflect.
let our_bit = offset_from(self.iter.data.as_ptr(), b.as_ptr());
let was_full = self.iter.current_group.flip(our_bit);
debug_assert_ne!(was_full, is_insert);
if is_insert {
self.items += 1;
} else {
self.items -= 1;
}
if cfg!(debug_assertions) {
if b.as_ptr() == next_bucket.as_ptr() {
// The removed bucket should no longer be next
debug_assert_ne!(self.iter.current_group.lowest_set_bit(), Some(index));
} else {
// We should not have changed what bucket comes next.
debug_assert_eq!(self.iter.current_group.lowest_set_bit(), Some(index));
}
}
}
} else {
// We must have already iterated past the removed item.
}
}
}
unsafe fn drop_elements(&mut self) {
if mem::needs_drop::<T>() && self.len() != 0 {
for item in self {
item.drop();
}
}
}
}
impl<T> Clone for RawIter<T> {
#[cfg_attr(feature = "inline-more", inline)]
fn clone(&self) -> Self {
Self {
iter: self.iter.clone(),
items: self.items,
}
}
}
impl<T> Iterator for RawIter<T> {
type Item = Bucket<T>;
#[cfg_attr(feature = "inline-more", inline)]
fn next(&mut self) -> Option<Bucket<T>> {
// Inner iterator iterates over buckets
// so it can do unnecessary work if we already yielded all items.
if self.items == 0 {
return None;
}
let nxt = unsafe {
// SAFETY: We check number of items to yield using `items` field.
self.iter.next_impl::<false>()
};
if nxt.is_some() {
self.items -= 1;
}
nxt
}
#[inline]
fn size_hint(&self) -> (usize, Option<usize>) {
(self.items, Some(self.items))
}
}
impl<T> ExactSizeIterator for RawIter<T> {}
impl<T> FusedIterator for RawIter<T> {}
/// Iterator which consumes a table and returns elements.
pub struct RawIntoIter<T, A: Allocator + Clone = Global> {
iter: RawIter<T>,
allocation: Option<(NonNull<u8>, Layout)>,
marker: PhantomData<T>,
alloc: A,
}
impl<T, A: Allocator + Clone> RawIntoIter<T, A> {
#[cfg_attr(feature = "inline-more", inline)]
pub fn iter(&self) -> RawIter<T> {
self.iter.clone()
}
}
unsafe impl<T, A: Allocator + Clone> Send for RawIntoIter<T, A>
where
T: Send,
A: Send,
{
}
unsafe impl<T, A: Allocator + Clone> Sync for RawIntoIter<T, A>
where
T: Sync,
A: Sync,
{
}
#[cfg(feature = "nightly")]
unsafe impl<#[may_dangle] T, A: Allocator + Clone> Drop for RawIntoIter<T, A> {
#[cfg_attr(feature = "inline-more", inline)]
fn drop(&mut self) {
unsafe {
// Drop all remaining elements
self.iter.drop_elements();
// Free the table
if let Some((ptr, layout)) = self.allocation {
self.alloc.deallocate(ptr, layout);
}
}
}
}
#[cfg(not(feature = "nightly"))]
impl<T, A: Allocator + Clone> Drop for RawIntoIter<T, A> {
#[cfg_attr(feature = "inline-more", inline)]
fn drop(&mut self) {
unsafe {
// Drop all remaining elements
self.iter.drop_elements();
// Free the table
if let Some((ptr, layout)) = self.allocation {
self.alloc.deallocate(ptr, layout);
}
}
}
}
impl<T, A: Allocator + Clone> Iterator for RawIntoIter<T, A> {
type Item = T;
#[cfg_attr(feature = "inline-more", inline)]
fn next(&mut self) -> Option<T> {
unsafe { Some(self.iter.next()?.read()) }
}
#[inline]
fn size_hint(&self) -> (usize, Option<usize>) {
self.iter.size_hint()
}
}
impl<T, A: Allocator + Clone> ExactSizeIterator for RawIntoIter<T, A> {}
impl<T, A: Allocator + Clone> FusedIterator for RawIntoIter<T, A> {}
/// Iterator which consumes elements without freeing the table storage.
pub struct RawDrain<'a, T, A: Allocator + Clone = Global> {
iter: RawIter<T>,
// The table is moved into the iterator for the duration of the drain. This
// ensures that an empty table is left if the drain iterator is leaked
// without dropping.
table: ManuallyDrop<RawTable<T, A>>,
orig_table: NonNull<RawTable<T, A>>,
// We don't use a &'a mut RawTable<T> because we want RawDrain to be
// covariant over T.
marker: PhantomData<&'a RawTable<T, A>>,
}
impl<T, A: Allocator + Clone> RawDrain<'_, T, A> {
#[cfg_attr(feature = "inline-more", inline)]
pub fn iter(&self) -> RawIter<T> {
self.iter.clone()
}
}
unsafe impl<T, A: Allocator + Copy> Send for RawDrain<'_, T, A>
where
T: Send,
A: Send,
{
}
unsafe impl<T, A: Allocator + Copy> Sync for RawDrain<'_, T, A>
where
T: Sync,
A: Sync,
{
}
impl<T, A: Allocator + Clone> Drop for RawDrain<'_, T, A> {
#[cfg_attr(feature = "inline-more", inline)]
fn drop(&mut self) {
unsafe {
// Drop all remaining elements. Note that this may panic.
self.iter.drop_elements();
// Reset the contents of the table now that all elements have been
// dropped.
self.table.clear_no_drop();
// Move the now empty table back to its original location.
self.orig_table
.as_ptr()
.copy_from_nonoverlapping(&*self.table, 1);
}
}
}
impl<T, A: Allocator + Clone> Iterator for RawDrain<'_, T, A> {
type Item = T;
#[cfg_attr(feature = "inline-more", inline)]
fn next(&mut self) -> Option<T> {
unsafe {
let item = self.iter.next()?;
Some(item.read())
}
}
#[inline]
fn size_hint(&self) -> (usize, Option<usize>) {
self.iter.size_hint()
}
}
impl<T, A: Allocator + Clone> ExactSizeIterator for RawDrain<'_, T, A> {}
impl<T, A: Allocator + Clone> FusedIterator for RawDrain<'_, T, A> {}
/// Iterator over occupied buckets that could match a given hash.
///
/// `RawTable` only stores 7 bits of the hash value, so this iterator may return
/// items that have a hash value different than the one provided. You should
/// always validate the returned values before using them.
pub struct RawIterHash<'a, T, A: Allocator + Clone = Global> {
inner: RawIterHashInner<'a, A>,
_marker: PhantomData<T>,
}
struct RawIterHashInner<'a, A: Allocator + Clone> {
table: &'a RawTableInner<A>,
// The top 7 bits of the hash.
h2_hash: u8,
// The sequence of groups to probe in the search.
probe_seq: ProbeSeq,
group: Group,
// The elements within the group with a matching h2-hash.
bitmask: BitMaskIter,
}
impl<'a, T, A: Allocator + Clone> RawIterHash<'a, T, A> {
#[cfg_attr(feature = "inline-more", inline)]
#[cfg(feature = "raw")]
fn new(table: &'a RawTable<T, A>, hash: u64) -> Self {
RawIterHash {
inner: RawIterHashInner::new(&table.table, hash),
_marker: PhantomData,
}
}
}
impl<'a, A: Allocator + Clone> RawIterHashInner<'a, A> {
#[cfg_attr(feature = "inline-more", inline)]
#[cfg(feature = "raw")]
fn new(table: &'a RawTableInner<A>, hash: u64) -> Self {
unsafe {
let h2_hash = h2(hash);
let probe_seq = table.probe_seq(hash);
let group = Group::load(table.ctrl(probe_seq.pos));
let bitmask = group.match_byte(h2_hash).into_iter();
RawIterHashInner {
table,
h2_hash,
probe_seq,
group,
bitmask,
}
}
}
}
impl<'a, T, A: Allocator + Clone> Iterator for RawIterHash<'a, T, A> {
type Item = Bucket<T>;
fn next(&mut self) -> Option<Bucket<T>> {
unsafe {
match self.inner.next() {
Some(index) => Some(self.inner.table.bucket(index)),
None => None,
}
}
}
}
impl<'a, A: Allocator + Clone> Iterator for RawIterHashInner<'a, A> {
type Item = usize;
fn next(&mut self) -> Option<Self::Item> {
unsafe {
loop {
if let Some(bit) = self.bitmask.next() {
let index = (self.probe_seq.pos + bit) & self.table.bucket_mask;
return Some(index);
}
if likely(self.group.match_empty().any_bit_set()) {
return None;
}
self.probe_seq.move_next(self.table.bucket_mask);
self.group = Group::load(self.table.ctrl(self.probe_seq.pos));
self.bitmask = self.group.match_byte(self.h2_hash).into_iter();
}
}
}
}
#[cfg(test)]
mod test_map {
use super::*;
fn rehash_in_place<T>(table: &mut RawTable<T>, hasher: impl Fn(&T) -> u64) {
unsafe {
table.table.rehash_in_place(
&|table, index| hasher(table.bucket::<T>(index).as_ref()),
mem::size_of::<T>(),
if mem::needs_drop::<T>() {
Some(mem::transmute(ptr::drop_in_place::<T> as unsafe fn(*mut T)))
} else {
None
},
);
}
}
#[test]
fn rehash() {
let mut table = RawTable::new();
let hasher = |i: &u64| *i;
for i in 0..100 {
table.insert(i, i, hasher);
}
for i in 0..100 {
unsafe {
assert_eq!(table.find(i, |x| *x == i).map(|b| b.read()), Some(i));
}
assert!(table.find(i + 100, |x| *x == i + 100).is_none());
}
rehash_in_place(&mut table, hasher);
for i in 0..100 {
unsafe {
assert_eq!(table.find(i, |x| *x == i).map(|b| b.read()), Some(i));
}
assert!(table.find(i + 100, |x| *x == i + 100).is_none());
}
}
}