1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934
//! A verifier for ensuring that functions are well formed.
//! It verifies:
//!
//! block integrity
//!
//! - All instructions reached from the `block_insts` iterator must belong to
//! the block as reported by `inst_block()`.
//! - Every block must end in a terminator instruction, and no other instruction
//! can be a terminator.
//! - Every value in the `block_params` iterator belongs to the block as reported by `value_block`.
//!
//! Instruction integrity
//!
//! - The instruction format must match the opcode.
//! - All result values must be created for multi-valued instructions.
//! - All referenced entities must exist. (Values, blocks, stack slots, ...)
//! - Instructions must not reference (eg. branch to) the entry block.
//!
//! SSA form
//!
//! - Values must be defined by an instruction that exists and that is inserted in
//! a block, or be an argument of an existing block.
//! - Values used by an instruction must dominate the instruction.
//!
//! Control flow graph and dominator tree integrity:
//!
//! - All predecessors in the CFG must be branches to the block.
//! - All branches to a block must be present in the CFG.
//! - A recomputed dominator tree is identical to the existing one.
//! - The entry block must not be a cold block.
//!
//! Type checking
//!
//! - Compare input and output values against the opcode's type constraints.
//! For polymorphic opcodes, determine the controlling type variable first.
//! - Branches and jumps must pass arguments to destination blocks that match the
//! expected types exactly. The number of arguments must match.
//! - All blocks in a jump table must take no arguments.
//! - Function calls are type checked against their signature.
//! - The entry block must take arguments that match the signature of the current
//! function.
//! - All return instructions must have return value operands matching the current
//! function signature.
//!
//! Global values
//!
//! - Detect cycles in global values.
//! - Detect use of 'vmctx' global value when no corresponding parameter is defined.
//!
//! TODO:
//! Ad hoc checking
//!
//! - Stack slot loads and stores must be in-bounds.
//! - Immediate constraints for certain opcodes, like `udiv_imm v3, 0`.
//! - `Insertlane` and `extractlane` instructions have immediate lane numbers that must be in
//! range for their polymorphic type.
//! - Swizzle and shuffle instructions take a variable number of lane arguments. The number
//! of arguments must match the destination type, and the lane indexes must be in range.
use self::flags::verify_flags;
use crate::dbg::DisplayList;
use crate::dominator_tree::DominatorTree;
use crate::entity::SparseSet;
use crate::flowgraph::{BlockPredecessor, ControlFlowGraph};
use crate::ir;
use crate::ir::entities::AnyEntity;
use crate::ir::instructions::{BranchInfo, CallInfo, InstructionFormat, ResolvedConstraint};
use crate::ir::{
types, ArgumentPurpose, Block, Constant, DynamicStackSlot, FuncRef, Function, GlobalValue,
Inst, JumpTable, Opcode, SigRef, StackSlot, Type, Value, ValueDef, ValueList,
};
use crate::isa::TargetIsa;
use crate::iterators::IteratorExtras;
use crate::print_errors::pretty_verifier_error;
use crate::settings::FlagsOrIsa;
use crate::timing;
use alloc::collections::BTreeSet;
use alloc::string::{String, ToString};
use alloc::vec::Vec;
use core::cmp::Ordering;
use core::fmt::{self, Display, Formatter};
mod flags;
/// A verifier error.
#[derive(Debug, PartialEq, Eq, Clone)]
pub struct VerifierError {
/// The entity causing the verifier error.
pub location: AnyEntity,
/// Optionally provide some context for the given location; e.g., for `inst42` provide
/// `Some("v3 = iconst.i32 0")` for more comprehensible errors.
pub context: Option<String>,
/// The error message.
pub message: String,
}
// This is manually implementing Error and Display instead of using thiserror to reduce the amount
// of dependencies used by Cranelift.
impl std::error::Error for VerifierError {}
impl Display for VerifierError {
fn fmt(&self, f: &mut Formatter) -> fmt::Result {
match &self.context {
None => write!(f, "{}: {}", self.location, self.message),
Some(context) => write!(f, "{} ({}): {}", self.location, context, self.message),
}
}
}
/// Convenience converter for making error-reporting less verbose.
///
/// Converts a tuple of `(location, context, message)` to a `VerifierError`.
/// ```
/// use cranelift_codegen::verifier::VerifierErrors;
/// use cranelift_codegen::ir::Inst;
/// let mut errors = VerifierErrors::new();
/// errors.report((Inst::from_u32(42), "v3 = iadd v1, v2", "iadd cannot be used with values of this type"));
/// // note the double parenthenses to use this syntax
/// ```
impl<L, C, M> From<(L, C, M)> for VerifierError
where
L: Into<AnyEntity>,
C: Into<String>,
M: Into<String>,
{
fn from(items: (L, C, M)) -> Self {
let (location, context, message) = items;
Self {
location: location.into(),
context: Some(context.into()),
message: message.into(),
}
}
}
/// Convenience converter for making error-reporting less verbose.
///
/// Same as above but without `context`.
impl<L, M> From<(L, M)> for VerifierError
where
L: Into<AnyEntity>,
M: Into<String>,
{
fn from(items: (L, M)) -> Self {
let (location, message) = items;
Self {
location: location.into(),
context: None,
message: message.into(),
}
}
}
/// Result of a step in the verification process.
///
/// Functions that return `VerifierStepResult<()>` should also take a
/// mutable reference to `VerifierErrors` as argument in order to report
/// errors.
///
/// Here, `Ok` represents a step that **did not lead to a fatal error**,
/// meaning that the verification process may continue. However, other (non-fatal)
/// errors might have been reported through the previously mentioned `VerifierErrors`
/// argument.
pub type VerifierStepResult<T> = Result<T, ()>;
/// Result of a verification operation.
///
/// Unlike `VerifierStepResult<()>` which may be `Ok` while still having reported
/// errors, this type always returns `Err` if an error (fatal or not) was reported.
pub type VerifierResult<T> = Result<T, VerifierErrors>;
/// List of verifier errors.
#[derive(Debug, Default, PartialEq, Eq, Clone)]
pub struct VerifierErrors(pub Vec<VerifierError>);
// This is manually implementing Error and Display instead of using thiserror to reduce the amount
// of dependencies used by Cranelift.
impl std::error::Error for VerifierErrors {}
impl VerifierErrors {
/// Return a new `VerifierErrors` struct.
#[inline]
pub fn new() -> Self {
Self(Vec::new())
}
/// Return whether no errors were reported.
#[inline]
pub fn is_empty(&self) -> bool {
self.0.is_empty()
}
/// Return whether one or more errors were reported.
#[inline]
pub fn has_error(&self) -> bool {
!self.0.is_empty()
}
/// Return a `VerifierStepResult` that is fatal if at least one error was reported,
/// and non-fatal otherwise.
#[inline]
pub fn as_result(&self) -> VerifierStepResult<()> {
if self.is_empty() {
Ok(())
} else {
Err(())
}
}
/// Report an error, adding it to the list of errors.
pub fn report(&mut self, error: impl Into<VerifierError>) {
self.0.push(error.into());
}
/// Report a fatal error and return `Err`.
pub fn fatal(&mut self, error: impl Into<VerifierError>) -> VerifierStepResult<()> {
self.report(error);
Err(())
}
/// Report a non-fatal error and return `Ok`.
pub fn nonfatal(&mut self, error: impl Into<VerifierError>) -> VerifierStepResult<()> {
self.report(error);
Ok(())
}
}
impl From<Vec<VerifierError>> for VerifierErrors {
fn from(v: Vec<VerifierError>) -> Self {
Self(v)
}
}
impl Into<Vec<VerifierError>> for VerifierErrors {
fn into(self) -> Vec<VerifierError> {
self.0
}
}
impl Into<VerifierResult<()>> for VerifierErrors {
fn into(self) -> VerifierResult<()> {
if self.is_empty() {
Ok(())
} else {
Err(self)
}
}
}
impl Display for VerifierErrors {
fn fmt(&self, f: &mut Formatter) -> fmt::Result {
for err in &self.0 {
writeln!(f, "- {}", err)?;
}
Ok(())
}
}
/// Verify `func`.
pub fn verify_function<'a, FOI: Into<FlagsOrIsa<'a>>>(
func: &Function,
fisa: FOI,
) -> VerifierResult<()> {
let _tt = timing::verifier();
let mut errors = VerifierErrors::default();
let verifier = Verifier::new(func, fisa.into());
let result = verifier.run(&mut errors);
if errors.is_empty() {
result.unwrap();
Ok(())
} else {
Err(errors)
}
}
/// Verify `func` after checking the integrity of associated context data structures `cfg` and
/// `domtree`.
pub fn verify_context<'a, FOI: Into<FlagsOrIsa<'a>>>(
func: &Function,
cfg: &ControlFlowGraph,
domtree: &DominatorTree,
fisa: FOI,
errors: &mut VerifierErrors,
) -> VerifierStepResult<()> {
let _tt = timing::verifier();
let verifier = Verifier::new(func, fisa.into());
if cfg.is_valid() {
verifier.cfg_integrity(cfg, errors)?;
}
if domtree.is_valid() {
verifier.domtree_integrity(domtree, errors)?;
}
verifier.run(errors)
}
struct Verifier<'a> {
func: &'a Function,
expected_cfg: ControlFlowGraph,
expected_domtree: DominatorTree,
isa: Option<&'a dyn TargetIsa>,
}
impl<'a> Verifier<'a> {
pub fn new(func: &'a Function, fisa: FlagsOrIsa<'a>) -> Self {
let expected_cfg = ControlFlowGraph::with_function(func);
let expected_domtree = DominatorTree::with_function(func, &expected_cfg);
Self {
func,
expected_cfg,
expected_domtree,
isa: fisa.isa,
}
}
/// Determine a contextual error string for an instruction.
#[inline]
fn context(&self, inst: Inst) -> String {
self.func.dfg.display_inst(inst).to_string()
}
// Check for:
// - cycles in the global value declarations.
// - use of 'vmctx' when no special parameter declares it.
fn verify_global_values(&self, errors: &mut VerifierErrors) -> VerifierStepResult<()> {
let mut cycle_seen = false;
let mut seen = SparseSet::new();
'gvs: for gv in self.func.global_values.keys() {
seen.clear();
seen.insert(gv);
let mut cur = gv;
loop {
match self.func.global_values[cur] {
ir::GlobalValueData::Load { base, .. }
| ir::GlobalValueData::IAddImm { base, .. } => {
if seen.insert(base).is_some() {
if !cycle_seen {
errors.report((
gv,
format!("global value cycle: {}", DisplayList(seen.as_slice())),
));
// ensures we don't report the cycle multiple times
cycle_seen = true;
}
continue 'gvs;
}
cur = base;
}
_ => break,
}
}
match self.func.global_values[gv] {
ir::GlobalValueData::VMContext { .. } => {
if self
.func
.special_param(ir::ArgumentPurpose::VMContext)
.is_none()
{
errors.report((gv, format!("undeclared vmctx reference {}", gv)));
}
}
ir::GlobalValueData::IAddImm {
base, global_type, ..
} => {
if !global_type.is_int() {
errors.report((
gv,
format!("iadd_imm global value with non-int type {}", global_type),
));
} else if let Some(isa) = self.isa {
let base_type = self.func.global_values[base].global_type(isa);
if global_type != base_type {
errors.report((
gv,
format!(
"iadd_imm type {} differs from operand type {}",
global_type, base_type
),
));
}
}
}
ir::GlobalValueData::Load { base, .. } => {
if let Some(isa) = self.isa {
let base_type = self.func.global_values[base].global_type(isa);
let pointer_type = isa.pointer_type();
if base_type != pointer_type {
errors.report((
gv,
format!(
"base {} has type {}, which is not the pointer type {}",
base, base_type, pointer_type
),
));
}
}
}
_ => {}
}
}
// Invalid global values shouldn't stop us from verifying the rest of the function
Ok(())
}
fn verify_heaps(&self, errors: &mut VerifierErrors) -> VerifierStepResult<()> {
if let Some(isa) = self.isa {
for (heap, heap_data) in &self.func.heaps {
let base = heap_data.base;
if !self.func.global_values.is_valid(base) {
return errors.nonfatal((heap, format!("invalid base global value {}", base)));
}
let pointer_type = isa.pointer_type();
let base_type = self.func.global_values[base].global_type(isa);
if base_type != pointer_type {
errors.report((
heap,
format!(
"heap base has type {}, which is not the pointer type {}",
base_type, pointer_type
),
));
}
if let ir::HeapStyle::Dynamic { bound_gv, .. } = heap_data.style {
if !self.func.global_values.is_valid(bound_gv) {
return errors
.nonfatal((heap, format!("invalid bound global value {}", bound_gv)));
}
let bound_type = self.func.global_values[bound_gv].global_type(isa);
if pointer_type != bound_type {
errors.report((
heap,
format!(
"heap pointer type {} differs from the type of its bound, {}",
pointer_type, bound_type
),
));
}
}
}
}
Ok(())
}
fn verify_tables(&self, errors: &mut VerifierErrors) -> VerifierStepResult<()> {
if let Some(isa) = self.isa {
for (table, table_data) in &self.func.tables {
let base = table_data.base_gv;
if !self.func.global_values.is_valid(base) {
return errors.nonfatal((table, format!("invalid base global value {}", base)));
}
let pointer_type = isa.pointer_type();
let base_type = self.func.global_values[base].global_type(isa);
if base_type != pointer_type {
errors.report((
table,
format!(
"table base has type {}, which is not the pointer type {}",
base_type, pointer_type
),
));
}
let bound_gv = table_data.bound_gv;
if !self.func.global_values.is_valid(bound_gv) {
return errors
.nonfatal((table, format!("invalid bound global value {}", bound_gv)));
}
let index_type = table_data.index_type;
let bound_type = self.func.global_values[bound_gv].global_type(isa);
if index_type != bound_type {
errors.report((
table,
format!(
"table index type {} differs from the type of its bound, {}",
index_type, bound_type
),
));
}
}
}
Ok(())
}
fn verify_jump_tables(&self, errors: &mut VerifierErrors) -> VerifierStepResult<()> {
for (jt, jt_data) in &self.func.jump_tables {
for &block in jt_data.iter() {
self.verify_block(jt, block, errors)?;
}
}
Ok(())
}
/// Check that the given block can be encoded as a BB, by checking that only
/// branching instructions are ending the block.
fn encodable_as_bb(&self, block: Block, errors: &mut VerifierErrors) -> VerifierStepResult<()> {
match self.func.is_block_basic(block) {
Ok(()) => Ok(()),
Err((inst, message)) => errors.fatal((inst, self.context(inst), message)),
}
}
fn block_integrity(
&self,
block: Block,
inst: Inst,
errors: &mut VerifierErrors,
) -> VerifierStepResult<()> {
let is_terminator = self.func.dfg[inst].opcode().is_terminator();
let is_last_inst = self.func.layout.last_inst(block) == Some(inst);
if is_terminator && !is_last_inst {
// Terminating instructions only occur at the end of blocks.
return errors.fatal((
inst,
self.context(inst),
format!(
"a terminator instruction was encountered before the end of {}",
block
),
));
}
if is_last_inst && !is_terminator {
return errors.fatal((block, "block does not end in a terminator instruction"));
}
// Instructions belong to the correct block.
let inst_block = self.func.layout.inst_block(inst);
if inst_block != Some(block) {
return errors.fatal((
inst,
self.context(inst),
format!("should belong to {} not {:?}", block, inst_block),
));
}
// Parameters belong to the correct block.
for &arg in self.func.dfg.block_params(block) {
match self.func.dfg.value_def(arg) {
ValueDef::Param(arg_block, _) => {
if block != arg_block {
return errors.fatal((arg, format!("does not belong to {}", block)));
}
}
_ => {
return errors.fatal((arg, "expected an argument, found a result"));
}
}
}
Ok(())
}
fn instruction_integrity(
&self,
inst: Inst,
errors: &mut VerifierErrors,
) -> VerifierStepResult<()> {
let inst_data = &self.func.dfg[inst];
let dfg = &self.func.dfg;
// The instruction format matches the opcode
if inst_data.opcode().format() != InstructionFormat::from(inst_data) {
return errors.fatal((
inst,
self.context(inst),
"instruction opcode doesn't match instruction format",
));
}
let num_fixed_results = inst_data.opcode().constraints().num_fixed_results();
// var_results is 0 if we aren't a call instruction
let var_results = dfg
.call_signature(inst)
.map_or(0, |sig| dfg.signatures[sig].returns.len());
let total_results = num_fixed_results + var_results;
// All result values for multi-valued instructions are created
let got_results = dfg.inst_results(inst).len();
if got_results != total_results {
return errors.fatal((
inst,
self.context(inst),
format!(
"expected {} result values, found {}",
total_results, got_results,
),
));
}
self.verify_entity_references(inst, errors)
}
fn verify_entity_references(
&self,
inst: Inst,
errors: &mut VerifierErrors,
) -> VerifierStepResult<()> {
use crate::ir::instructions::InstructionData::*;
for &arg in self.func.dfg.inst_args(inst) {
self.verify_inst_arg(inst, arg, errors)?;
// All used values must be attached to something.
let original = self.func.dfg.resolve_aliases(arg);
if !self.func.dfg.value_is_attached(original) {
errors.report((
inst,
self.context(inst),
format!("argument {} -> {} is not attached", arg, original),
));
}
}
for &res in self.func.dfg.inst_results(inst) {
self.verify_inst_result(inst, res, errors)?;
}
match self.func.dfg[inst] {
MultiAry { ref args, .. } => {
self.verify_value_list(inst, args, errors)?;
}
Jump {
destination,
ref args,
..
}
| Branch {
destination,
ref args,
..
}
| BranchInt {
destination,
ref args,
..
}
| BranchFloat {
destination,
ref args,
..
}
| BranchIcmp {
destination,
ref args,
..
} => {
self.verify_block(inst, destination, errors)?;
self.verify_value_list(inst, args, errors)?;
}
BranchTable {
table, destination, ..
} => {
self.verify_block(inst, destination, errors)?;
self.verify_jump_table(inst, table, errors)?;
}
Call {
func_ref, ref args, ..
} => {
self.verify_func_ref(inst, func_ref, errors)?;
self.verify_value_list(inst, args, errors)?;
}
CallIndirect {
sig_ref, ref args, ..
} => {
self.verify_sig_ref(inst, sig_ref, errors)?;
self.verify_value_list(inst, args, errors)?;
}
FuncAddr { func_ref, .. } => {
self.verify_func_ref(inst, func_ref, errors)?;
}
StackLoad { stack_slot, .. } | StackStore { stack_slot, .. } => {
self.verify_stack_slot(inst, stack_slot, errors)?;
}
DynamicStackLoad {
dynamic_stack_slot, ..
}
| DynamicStackStore {
dynamic_stack_slot, ..
} => {
self.verify_dynamic_stack_slot(inst, dynamic_stack_slot, errors)?;
}
UnaryGlobalValue { global_value, .. } => {
self.verify_global_value(inst, global_value, errors)?;
}
HeapAddr { heap, .. } => {
self.verify_heap(inst, heap, errors)?;
}
TableAddr { table, .. } => {
self.verify_table(inst, table, errors)?;
}
NullAry {
opcode: Opcode::GetPinnedReg,
}
| Unary {
opcode: Opcode::SetPinnedReg,
..
} => {
if let Some(isa) = &self.isa {
if !isa.flags().enable_pinned_reg() {
return errors.fatal((
inst,
self.context(inst),
"GetPinnedReg/SetPinnedReg cannot be used without enable_pinned_reg",
));
}
} else {
return errors.fatal((
inst,
self.context(inst),
"GetPinnedReg/SetPinnedReg need an ISA!",
));
}
}
NullAry {
opcode: Opcode::GetFramePointer | Opcode::GetReturnAddress,
} => {
if let Some(isa) = &self.isa {
if !isa.flags().preserve_frame_pointers() {
return errors.fatal((
inst,
self.context(inst),
"`get_frame_pointer`/`get_return_address` cannot be used without \
enabling `preserve_frame_pointers`",
));
}
} else {
return errors.fatal((
inst,
self.context(inst),
"`get_frame_pointer`/`get_return_address` require an ISA!",
));
}
}
Unary {
opcode: Opcode::Bitcast,
arg,
} => {
self.verify_bitcast(inst, arg, errors)?;
}
UnaryConst {
opcode: Opcode::Vconst,
constant_handle,
..
} => {
self.verify_constant_size(inst, constant_handle, errors)?;
}
// Exhaustive list so we can't forget to add new formats
AtomicCas { .. }
| AtomicRmw { .. }
| LoadNoOffset { .. }
| StoreNoOffset { .. }
| Unary { .. }
| UnaryConst { .. }
| UnaryImm { .. }
| UnaryIeee32 { .. }
| UnaryIeee64 { .. }
| UnaryBool { .. }
| Binary { .. }
| BinaryImm8 { .. }
| BinaryImm64 { .. }
| Ternary { .. }
| TernaryImm8 { .. }
| Shuffle { .. }
| IntCompare { .. }
| IntCompareImm { .. }
| IntCond { .. }
| FloatCompare { .. }
| FloatCond { .. }
| IntSelect { .. }
| Load { .. }
| Store { .. }
| Trap { .. }
| CondTrap { .. }
| IntCondTrap { .. }
| FloatCondTrap { .. }
| NullAry { .. } => {}
}
Ok(())
}
fn verify_block(
&self,
loc: impl Into<AnyEntity>,
e: Block,
errors: &mut VerifierErrors,
) -> VerifierStepResult<()> {
if !self.func.dfg.block_is_valid(e) || !self.func.layout.is_block_inserted(e) {
return errors.fatal((loc, format!("invalid block reference {}", e)));
}
if let Some(entry_block) = self.func.layout.entry_block() {
if e == entry_block {
return errors.fatal((loc, format!("invalid reference to entry block {}", e)));
}
}
Ok(())
}
fn verify_sig_ref(
&self,
inst: Inst,
s: SigRef,
errors: &mut VerifierErrors,
) -> VerifierStepResult<()> {
if !self.func.dfg.signatures.is_valid(s) {
errors.fatal((
inst,
self.context(inst),
format!("invalid signature reference {}", s),
))
} else {
Ok(())
}
}
fn verify_func_ref(
&self,
inst: Inst,
f: FuncRef,
errors: &mut VerifierErrors,
) -> VerifierStepResult<()> {
if !self.func.dfg.ext_funcs.is_valid(f) {
errors.nonfatal((
inst,
self.context(inst),
format!("invalid function reference {}", f),
))
} else {
Ok(())
}
}
fn verify_stack_slot(
&self,
inst: Inst,
ss: StackSlot,
errors: &mut VerifierErrors,
) -> VerifierStepResult<()> {
if !self.func.sized_stack_slots.is_valid(ss) {
errors.nonfatal((
inst,
self.context(inst),
format!("invalid stack slot {}", ss),
))
} else {
Ok(())
}
}
fn verify_dynamic_stack_slot(
&self,
inst: Inst,
ss: DynamicStackSlot,
errors: &mut VerifierErrors,
) -> VerifierStepResult<()> {
if !self.func.dynamic_stack_slots.is_valid(ss) {
errors.nonfatal((
inst,
self.context(inst),
format!("invalid dynamic stack slot {}", ss),
))
} else {
Ok(())
}
}
fn verify_global_value(
&self,
inst: Inst,
gv: GlobalValue,
errors: &mut VerifierErrors,
) -> VerifierStepResult<()> {
if !self.func.global_values.is_valid(gv) {
errors.nonfatal((
inst,
self.context(inst),
format!("invalid global value {}", gv),
))
} else {
Ok(())
}
}
fn verify_heap(
&self,
inst: Inst,
heap: ir::Heap,
errors: &mut VerifierErrors,
) -> VerifierStepResult<()> {
if !self.func.heaps.is_valid(heap) {
errors.nonfatal((inst, self.context(inst), format!("invalid heap {}", heap)))
} else {
Ok(())
}
}
fn verify_table(
&self,
inst: Inst,
table: ir::Table,
errors: &mut VerifierErrors,
) -> VerifierStepResult<()> {
if !self.func.tables.is_valid(table) {
errors.nonfatal((inst, self.context(inst), format!("invalid table {}", table)))
} else {
Ok(())
}
}
fn verify_value_list(
&self,
inst: Inst,
l: &ValueList,
errors: &mut VerifierErrors,
) -> VerifierStepResult<()> {
if !l.is_valid(&self.func.dfg.value_lists) {
errors.nonfatal((
inst,
self.context(inst),
format!("invalid value list reference {:?}", l),
))
} else {
Ok(())
}
}
fn verify_jump_table(
&self,
inst: Inst,
j: JumpTable,
errors: &mut VerifierErrors,
) -> VerifierStepResult<()> {
if !self.func.jump_tables.is_valid(j) {
errors.nonfatal((
inst,
self.context(inst),
format!("invalid jump table reference {}", j),
))
} else {
Ok(())
}
}
fn verify_value(
&self,
loc_inst: Inst,
v: Value,
errors: &mut VerifierErrors,
) -> VerifierStepResult<()> {
let dfg = &self.func.dfg;
if !dfg.value_is_valid(v) {
errors.nonfatal((
loc_inst,
self.context(loc_inst),
format!("invalid value reference {}", v),
))
} else {
Ok(())
}
}
fn verify_inst_arg(
&self,
loc_inst: Inst,
v: Value,
errors: &mut VerifierErrors,
) -> VerifierStepResult<()> {
self.verify_value(loc_inst, v, errors)?;
let dfg = &self.func.dfg;
let loc_block = self.func.layout.pp_block(loc_inst);
let is_reachable = self.expected_domtree.is_reachable(loc_block);
// SSA form
match dfg.value_def(v) {
ValueDef::Result(def_inst, _) => {
// Value is defined by an instruction that exists.
if !dfg.inst_is_valid(def_inst) {
return errors.fatal((
loc_inst,
self.context(loc_inst),
format!("{} is defined by invalid instruction {}", v, def_inst),
));
}
// Defining instruction is inserted in a block.
if self.func.layout.inst_block(def_inst) == None {
return errors.fatal((
loc_inst,
self.context(loc_inst),
format!("{} is defined by {} which has no block", v, def_inst),
));
}
// Defining instruction dominates the instruction that uses the value.
if is_reachable {
if !self
.expected_domtree
.dominates(def_inst, loc_inst, &self.func.layout)
{
return errors.fatal((
loc_inst,
self.context(loc_inst),
format!("uses value {} from non-dominating {}", v, def_inst),
));
}
if def_inst == loc_inst {
return errors.fatal((
loc_inst,
self.context(loc_inst),
format!("uses value {} from itself", v),
));
}
}
}
ValueDef::Param(block, _) => {
// Value is defined by an existing block.
if !dfg.block_is_valid(block) {
return errors.fatal((
loc_inst,
self.context(loc_inst),
format!("{} is defined by invalid block {}", v, block),
));
}
// Defining block is inserted in the layout
if !self.func.layout.is_block_inserted(block) {
return errors.fatal((
loc_inst,
self.context(loc_inst),
format!("{} is defined by {} which is not in the layout", v, block),
));
}
// The defining block dominates the instruction using this value.
if is_reachable
&& !self
.expected_domtree
.dominates(block, loc_inst, &self.func.layout)
{
return errors.fatal((
loc_inst,
self.context(loc_inst),
format!("uses value arg from non-dominating {}", block),
));
}
}
}
Ok(())
}
fn verify_inst_result(
&self,
loc_inst: Inst,
v: Value,
errors: &mut VerifierErrors,
) -> VerifierStepResult<()> {
self.verify_value(loc_inst, v, errors)?;
match self.func.dfg.value_def(v) {
ValueDef::Result(def_inst, _) => {
if def_inst != loc_inst {
errors.fatal((
loc_inst,
self.context(loc_inst),
format!("instruction result {} is not defined by the instruction", v),
))
} else {
Ok(())
}
}
ValueDef::Param(_, _) => errors.fatal((
loc_inst,
self.context(loc_inst),
format!("instruction result {} is not defined by the instruction", v),
)),
}
}
fn verify_bitcast(
&self,
inst: Inst,
arg: Value,
errors: &mut VerifierErrors,
) -> VerifierStepResult<()> {
let typ = self.func.dfg.ctrl_typevar(inst);
let value_type = self.func.dfg.value_type(arg);
if typ.lane_bits() < value_type.lane_bits() {
errors.fatal((
inst,
format!(
"The bitcast argument {} doesn't fit in a type of {} bits",
arg,
typ.lane_bits()
),
))
} else {
Ok(())
}
}
fn verify_constant_size(
&self,
inst: Inst,
constant: Constant,
errors: &mut VerifierErrors,
) -> VerifierStepResult<()> {
let type_size = self.func.dfg.ctrl_typevar(inst).bytes() as usize;
let constant_size = self.func.dfg.constants.get(constant).len();
if type_size != constant_size {
errors.fatal((
inst,
format!(
"The instruction expects {} to have a size of {} bytes but it has {}",
constant, type_size, constant_size
),
))
} else {
Ok(())
}
}
fn domtree_integrity(
&self,
domtree: &DominatorTree,
errors: &mut VerifierErrors,
) -> VerifierStepResult<()> {
// We consider two `DominatorTree`s to be equal if they return the same immediate
// dominator for each block. Therefore the current domtree is valid if it matches the freshly
// computed one.
for block in self.func.layout.blocks() {
let expected = self.expected_domtree.idom(block);
let got = domtree.idom(block);
if got != expected {
return errors.fatal((
block,
format!(
"invalid domtree, expected idom({}) = {:?}, got {:?}",
block, expected, got
),
));
}
}
// We also verify if the postorder defined by `DominatorTree` is sane
if domtree.cfg_postorder().len() != self.expected_domtree.cfg_postorder().len() {
return errors.fatal((
AnyEntity::Function,
"incorrect number of Blocks in postorder traversal",
));
}
for (index, (&test_block, &true_block)) in domtree
.cfg_postorder()
.iter()
.zip(self.expected_domtree.cfg_postorder().iter())
.enumerate()
{
if test_block != true_block {
return errors.fatal((
test_block,
format!(
"invalid domtree, postorder block number {} should be {}, got {}",
index, true_block, test_block
),
));
}
}
// We verify rpo_cmp on pairs of adjacent blocks in the postorder
for (&prev_block, &next_block) in domtree.cfg_postorder().iter().adjacent_pairs() {
if self
.expected_domtree
.rpo_cmp(prev_block, next_block, &self.func.layout)
!= Ordering::Greater
{
return errors.fatal((
next_block,
format!(
"invalid domtree, rpo_cmp does not says {} is greater than {}",
prev_block, next_block
),
));
}
}
Ok(())
}
fn typecheck_entry_block_params(&self, errors: &mut VerifierErrors) -> VerifierStepResult<()> {
if let Some(block) = self.func.layout.entry_block() {
let expected_types = &self.func.signature.params;
let block_param_count = self.func.dfg.num_block_params(block);
if block_param_count != expected_types.len() {
return errors.fatal((
block,
format!(
"entry block parameters ({}) must match function signature ({})",
block_param_count,
expected_types.len()
),
));
}
for (i, &arg) in self.func.dfg.block_params(block).iter().enumerate() {
let arg_type = self.func.dfg.value_type(arg);
if arg_type != expected_types[i].value_type {
errors.report((
block,
format!(
"entry block parameter {} expected to have type {}, got {}",
i, expected_types[i], arg_type
),
));
}
}
}
errors.as_result()
}
fn check_entry_not_cold(&self, errors: &mut VerifierErrors) -> VerifierStepResult<()> {
if let Some(entry_block) = self.func.layout.entry_block() {
if self.func.layout.is_cold(entry_block) {
return errors
.fatal((entry_block, format!("entry block cannot be marked as cold")));
}
}
errors.as_result()
}
fn typecheck(&self, inst: Inst, errors: &mut VerifierErrors) -> VerifierStepResult<()> {
let inst_data = &self.func.dfg[inst];
let constraints = inst_data.opcode().constraints();
let ctrl_type = if let Some(value_typeset) = constraints.ctrl_typeset() {
// For polymorphic opcodes, determine the controlling type variable first.
let ctrl_type = self.func.dfg.ctrl_typevar(inst);
if !value_typeset.contains(ctrl_type) {
errors.report((
inst,
self.context(inst),
format!("has an invalid controlling type {}", ctrl_type),
));
}
ctrl_type
} else {
// Non-polymorphic instructions don't check the controlling type variable, so `Option`
// is unnecessary and we can just make it `INVALID`.
types::INVALID
};
// Typechecking instructions is never fatal
let _ = self.typecheck_results(inst, ctrl_type, errors);
let _ = self.typecheck_fixed_args(inst, ctrl_type, errors);
let _ = self.typecheck_variable_args(inst, errors);
let _ = self.typecheck_return(inst, errors);
let _ = self.typecheck_special(inst, ctrl_type, errors);
Ok(())
}
fn typecheck_results(
&self,
inst: Inst,
ctrl_type: Type,
errors: &mut VerifierErrors,
) -> VerifierStepResult<()> {
let mut i = 0;
for &result in self.func.dfg.inst_results(inst) {
let result_type = self.func.dfg.value_type(result);
let expected_type = self.func.dfg.compute_result_type(inst, i, ctrl_type);
if let Some(expected_type) = expected_type {
if result_type != expected_type {
errors.report((
inst,
self.context(inst),
format!(
"expected result {} ({}) to have type {}, found {}",
i, result, expected_type, result_type
),
));
}
} else {
return errors.nonfatal((
inst,
self.context(inst),
"has more result values than expected",
));
}
i += 1;
}
// There aren't any more result types left.
if self.func.dfg.compute_result_type(inst, i, ctrl_type) != None {
return errors.nonfatal((
inst,
self.context(inst),
"has fewer result values than expected",
));
}
Ok(())
}
fn typecheck_fixed_args(
&self,
inst: Inst,
ctrl_type: Type,
errors: &mut VerifierErrors,
) -> VerifierStepResult<()> {
let constraints = self.func.dfg[inst].opcode().constraints();
for (i, &arg) in self.func.dfg.inst_fixed_args(inst).iter().enumerate() {
let arg_type = self.func.dfg.value_type(arg);
match constraints.value_argument_constraint(i, ctrl_type) {
ResolvedConstraint::Bound(expected_type) => {
if arg_type != expected_type {
errors.report((
inst,
self.context(inst),
format!(
"arg {} ({}) has type {}, expected {}",
i, arg, arg_type, expected_type
),
));
}
}
ResolvedConstraint::Free(type_set) => {
if !type_set.contains(arg_type) {
errors.report((
inst,
self.context(inst),
format!(
"arg {} ({}) with type {} failed to satisfy type set {:?}",
i, arg, arg_type, type_set
),
));
}
}
}
}
Ok(())
}
fn typecheck_variable_args(
&self,
inst: Inst,
errors: &mut VerifierErrors,
) -> VerifierStepResult<()> {
match self.func.dfg.analyze_branch(inst) {
BranchInfo::SingleDest(block, _) => {
let iter = self
.func
.dfg
.block_params(block)
.iter()
.map(|&v| self.func.dfg.value_type(v));
self.typecheck_variable_args_iterator(inst, iter, errors)?;
}
BranchInfo::Table(table, block) => {
if let Some(block) = block {
let arg_count = self.func.dfg.num_block_params(block);
if arg_count != 0 {
return errors.nonfatal((
inst,
self.context(inst),
format!(
"takes no arguments, but had target {} with {} arguments",
block, arg_count,
),
));
}
}
for block in self.func.jump_tables[table].iter() {
let arg_count = self.func.dfg.num_block_params(*block);
if arg_count != 0 {
return errors.nonfatal((
inst,
self.context(inst),
format!(
"takes no arguments, but had target {} with {} arguments",
block, arg_count,
),
));
}
}
}
BranchInfo::NotABranch => {}
}
match self.func.dfg[inst].analyze_call(&self.func.dfg.value_lists) {
CallInfo::Direct(func_ref, _) => {
let sig_ref = self.func.dfg.ext_funcs[func_ref].signature;
let arg_types = self.func.dfg.signatures[sig_ref]
.params
.iter()
.map(|a| a.value_type);
self.typecheck_variable_args_iterator(inst, arg_types, errors)?;
}
CallInfo::Indirect(sig_ref, _) => {
let arg_types = self.func.dfg.signatures[sig_ref]
.params
.iter()
.map(|a| a.value_type);
self.typecheck_variable_args_iterator(inst, arg_types, errors)?;
}
CallInfo::NotACall => {}
}
Ok(())
}
fn typecheck_variable_args_iterator<I: Iterator<Item = Type>>(
&self,
inst: Inst,
iter: I,
errors: &mut VerifierErrors,
) -> VerifierStepResult<()> {
let variable_args = self.func.dfg.inst_variable_args(inst);
let mut i = 0;
for expected_type in iter {
if i >= variable_args.len() {
// Result count mismatch handled below, we want the full argument count first though
i += 1;
continue;
}
let arg = variable_args[i];
let arg_type = self.func.dfg.value_type(arg);
if expected_type != arg_type {
errors.report((
inst,
self.context(inst),
format!(
"arg {} ({}) has type {}, expected {}",
i, variable_args[i], arg_type, expected_type
),
));
}
i += 1;
}
if i != variable_args.len() {
return errors.nonfatal((
inst,
self.context(inst),
format!(
"mismatched argument count for `{}`: got {}, expected {}",
self.func.dfg.display_inst(inst),
variable_args.len(),
i,
),
));
}
Ok(())
}
fn typecheck_return(&self, inst: Inst, errors: &mut VerifierErrors) -> VerifierStepResult<()> {
if self.func.dfg[inst].opcode().is_return() {
let args = self.func.dfg.inst_variable_args(inst);
let expected_types = &self.func.signature.returns;
if args.len() != expected_types.len() {
return errors.nonfatal((
inst,
self.context(inst),
"arguments of return must match function signature",
));
}
for (i, (&arg, &expected_type)) in args.iter().zip(expected_types).enumerate() {
let arg_type = self.func.dfg.value_type(arg);
if arg_type != expected_type.value_type {
errors.report((
inst,
self.context(inst),
format!(
"arg {} ({}) has type {}, must match function signature of {}",
i, arg, arg_type, expected_type
),
));
}
}
}
Ok(())
}
// Check special-purpose type constraints that can't be expressed in the normal opcode
// constraints.
fn typecheck_special(
&self,
inst: Inst,
ctrl_type: Type,
errors: &mut VerifierErrors,
) -> VerifierStepResult<()> {
match self.func.dfg[inst] {
ir::InstructionData::Unary { opcode, arg } => {
let arg_type = self.func.dfg.value_type(arg);
match opcode {
Opcode::Bextend | Opcode::Uextend | Opcode::Sextend | Opcode::Fpromote => {
if arg_type.lane_count() != ctrl_type.lane_count() {
return errors.nonfatal((
inst,
self.context(inst),
format!(
"input {} and output {} must have same number of lanes",
arg_type, ctrl_type,
),
));
}
if arg_type.lane_bits() >= ctrl_type.lane_bits() {
return errors.nonfatal((
inst,
self.context(inst),
format!(
"input {} must be smaller than output {}",
arg_type, ctrl_type,
),
));
}
}
Opcode::Breduce | Opcode::Ireduce | Opcode::Fdemote => {
if arg_type.lane_count() != ctrl_type.lane_count() {
return errors.nonfatal((
inst,
self.context(inst),
format!(
"input {} and output {} must have same number of lanes",
arg_type, ctrl_type,
),
));
}
if arg_type.lane_bits() <= ctrl_type.lane_bits() {
return errors.nonfatal((
inst,
self.context(inst),
format!(
"input {} must be larger than output {}",
arg_type, ctrl_type,
),
));
}
}
_ => {}
}
}
ir::InstructionData::HeapAddr { heap, arg, .. } => {
let index_type = self.func.dfg.value_type(arg);
let heap_index_type = self.func.heaps[heap].index_type;
if index_type != heap_index_type {
return errors.nonfatal((
inst,
self.context(inst),
format!(
"index type {} differs from heap index type {}",
index_type, heap_index_type,
),
));
}
}
ir::InstructionData::TableAddr { table, arg, .. } => {
let index_type = self.func.dfg.value_type(arg);
let table_index_type = self.func.tables[table].index_type;
if index_type != table_index_type {
return errors.nonfatal((
inst,
self.context(inst),
format!(
"index type {} differs from table index type {}",
index_type, table_index_type,
),
));
}
}
ir::InstructionData::UnaryGlobalValue { global_value, .. } => {
if let Some(isa) = self.isa {
let inst_type = self.func.dfg.value_type(self.func.dfg.first_result(inst));
let global_type = self.func.global_values[global_value].global_type(isa);
if inst_type != global_type {
return errors.nonfatal((
inst, self.context(inst),
format!(
"global_value instruction with type {} references global value with type {}",
inst_type, global_type
)),
);
}
}
}
_ => {}
}
Ok(())
}
fn cfg_integrity(
&self,
cfg: &ControlFlowGraph,
errors: &mut VerifierErrors,
) -> VerifierStepResult<()> {
let mut expected_succs = BTreeSet::<Block>::new();
let mut got_succs = BTreeSet::<Block>::new();
let mut expected_preds = BTreeSet::<Inst>::new();
let mut got_preds = BTreeSet::<Inst>::new();
for block in self.func.layout.blocks() {
expected_succs.extend(self.expected_cfg.succ_iter(block));
got_succs.extend(cfg.succ_iter(block));
let missing_succs: Vec<Block> =
expected_succs.difference(&got_succs).cloned().collect();
if !missing_succs.is_empty() {
errors.report((
block,
format!("cfg lacked the following successor(s) {:?}", missing_succs),
));
continue;
}
let excess_succs: Vec<Block> = got_succs.difference(&expected_succs).cloned().collect();
if !excess_succs.is_empty() {
errors.report((
block,
format!("cfg had unexpected successor(s) {:?}", excess_succs),
));
continue;
}
expected_preds.extend(
self.expected_cfg
.pred_iter(block)
.map(|BlockPredecessor { inst, .. }| inst),
);
got_preds.extend(
cfg.pred_iter(block)
.map(|BlockPredecessor { inst, .. }| inst),
);
let missing_preds: Vec<Inst> = expected_preds.difference(&got_preds).cloned().collect();
if !missing_preds.is_empty() {
errors.report((
block,
format!(
"cfg lacked the following predecessor(s) {:?}",
missing_preds
),
));
continue;
}
let excess_preds: Vec<Inst> = got_preds.difference(&expected_preds).cloned().collect();
if !excess_preds.is_empty() {
errors.report((
block,
format!("cfg had unexpected predecessor(s) {:?}", excess_preds),
));
continue;
}
expected_succs.clear();
got_succs.clear();
expected_preds.clear();
got_preds.clear();
}
errors.as_result()
}
fn immediate_constraints(
&self,
inst: Inst,
errors: &mut VerifierErrors,
) -> VerifierStepResult<()> {
let inst_data = &self.func.dfg[inst];
match *inst_data {
ir::InstructionData::Store { flags, .. } => {
if flags.readonly() {
errors.fatal((
inst,
self.context(inst),
"A store instruction cannot have the `readonly` MemFlag",
))
} else {
Ok(())
}
}
ir::InstructionData::BinaryImm8 {
opcode: ir::instructions::Opcode::Extractlane,
imm: lane,
arg,
..
}
| ir::InstructionData::TernaryImm8 {
opcode: ir::instructions::Opcode::Insertlane,
imm: lane,
args: [arg, _],
..
} => {
// We must be specific about the opcodes above because other instructions are using
// the same formats.
let ty = self.func.dfg.value_type(arg);
if lane as u32 >= ty.lane_count() {
errors.fatal((
inst,
self.context(inst),
format!("The lane {} does not index into the type {}", lane, ty,),
))
} else {
Ok(())
}
}
_ => Ok(()),
}
}
fn typecheck_function_signature(&self, errors: &mut VerifierErrors) -> VerifierStepResult<()> {
self.func
.signature
.params
.iter()
.enumerate()
.filter(|(_, ¶m)| param.value_type == types::INVALID)
.for_each(|(i, _)| {
errors.report((
AnyEntity::Function,
format!("Parameter at position {} has an invalid type", i),
));
});
self.func
.signature
.returns
.iter()
.enumerate()
.filter(|(_, &ret)| ret.value_type == types::INVALID)
.for_each(|(i, _)| {
errors.report((
AnyEntity::Function,
format!("Return value at position {} has an invalid type", i),
))
});
self.func
.signature
.returns
.iter()
.enumerate()
.for_each(|(i, ret)| {
if let ArgumentPurpose::StructArgument(_) = ret.purpose {
errors.report((
AnyEntity::Function,
format!("Return value at position {} can't be an struct argument", i),
))
}
});
if errors.has_error() {
Err(())
} else {
Ok(())
}
}
pub fn run(&self, errors: &mut VerifierErrors) -> VerifierStepResult<()> {
self.verify_global_values(errors)?;
self.verify_heaps(errors)?;
self.verify_tables(errors)?;
self.verify_jump_tables(errors)?;
self.typecheck_entry_block_params(errors)?;
self.check_entry_not_cold(errors)?;
self.typecheck_function_signature(errors)?;
for block in self.func.layout.blocks() {
if self.func.layout.first_inst(block).is_none() {
return errors.fatal((block, format!("{} cannot be empty", block)));
}
for inst in self.func.layout.block_insts(block) {
self.block_integrity(block, inst, errors)?;
self.instruction_integrity(inst, errors)?;
self.typecheck(inst, errors)?;
self.immediate_constraints(inst, errors)?;
}
self.encodable_as_bb(block, errors)?;
}
verify_flags(self.func, &self.expected_cfg, errors)?;
if !errors.is_empty() {
log::warn!(
"Found verifier errors in function:\n{}",
pretty_verifier_error(self.func, None, errors.clone())
);
}
Ok(())
}
}
#[cfg(test)]
mod tests {
use super::{Verifier, VerifierError, VerifierErrors};
use crate::entity::EntityList;
use crate::ir::instructions::{InstructionData, Opcode};
use crate::ir::{types, AbiParam, Function};
use crate::settings;
macro_rules! assert_err_with_msg {
($e:expr, $msg:expr) => {
match $e.0.get(0) {
None => panic!("Expected an error"),
Some(&VerifierError { ref message, .. }) => {
if !message.contains($msg) {
#[cfg(feature = "std")]
panic!("'{}' did not contain the substring '{}'", message, $msg);
#[cfg(not(feature = "std"))]
panic!("error message did not contain the expected substring");
}
}
}
};
}
#[test]
fn empty() {
let func = Function::new();
let flags = &settings::Flags::new(settings::builder());
let verifier = Verifier::new(&func, flags.into());
let mut errors = VerifierErrors::default();
assert_eq!(verifier.run(&mut errors), Ok(()));
assert!(errors.0.is_empty());
}
#[test]
fn bad_instruction_format() {
let mut func = Function::new();
let block0 = func.dfg.make_block();
func.layout.append_block(block0);
let nullary_with_bad_opcode = func.dfg.make_inst(InstructionData::UnaryImm {
opcode: Opcode::F32const,
imm: 0.into(),
});
func.layout.append_inst(nullary_with_bad_opcode, block0);
func.stencil.layout.append_inst(
func.stencil.dfg.make_inst(InstructionData::Jump {
opcode: Opcode::Jump,
destination: block0,
args: EntityList::default(),
}),
block0,
);
let flags = &settings::Flags::new(settings::builder());
let verifier = Verifier::new(&func, flags.into());
let mut errors = VerifierErrors::default();
let _ = verifier.run(&mut errors);
assert_err_with_msg!(errors, "instruction format");
}
#[test]
fn test_function_invalid_param() {
let mut func = Function::new();
func.signature.params.push(AbiParam::new(types::INVALID));
let mut errors = VerifierErrors::default();
let flags = &settings::Flags::new(settings::builder());
let verifier = Verifier::new(&func, flags.into());
let _ = verifier.typecheck_function_signature(&mut errors);
assert_err_with_msg!(errors, "Parameter at position 0 has an invalid type");
}
#[test]
fn test_function_invalid_return_value() {
let mut func = Function::new();
func.signature.returns.push(AbiParam::new(types::INVALID));
let mut errors = VerifierErrors::default();
let flags = &settings::Flags::new(settings::builder());
let verifier = Verifier::new(&func, flags.into());
let _ = verifier.typecheck_function_signature(&mut errors);
assert_err_with_msg!(errors, "Return value at position 0 has an invalid type");
}
#[test]
fn test_printing_contextual_errors() {
// Build function.
let mut func = Function::new();
let block0 = func.dfg.make_block();
func.layout.append_block(block0);
// Build instruction: v0, v1 = iconst 42
let inst = func.dfg.make_inst(InstructionData::UnaryImm {
opcode: Opcode::Iconst,
imm: 42.into(),
});
func.dfg.append_result(inst, types::I32);
func.dfg.append_result(inst, types::I32);
func.layout.append_inst(inst, block0);
// Setup verifier.
let mut errors = VerifierErrors::default();
let flags = &settings::Flags::new(settings::builder());
let verifier = Verifier::new(&func, flags.into());
// Now the error message, when printed, should contain the instruction sequence causing the
// error (i.e. v0, v1 = iconst.i32 42) and not only its entity value (i.e. inst0)
let _ = verifier.typecheck_results(inst, types::I32, &mut errors);
assert_eq!(
format!("{}", errors.0[0]),
"inst0 (v0, v1 = iconst.i32 42): has more result values than expected"
)
}
#[test]
fn test_empty_block() {
let mut func = Function::new();
let block0 = func.dfg.make_block();
func.layout.append_block(block0);
let flags = &settings::Flags::new(settings::builder());
let verifier = Verifier::new(&func, flags.into());
let mut errors = VerifierErrors::default();
let _ = verifier.run(&mut errors);
assert_err_with_msg!(errors, "block0 cannot be empty");
}
}