1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
// Copyright 2019-2022 Parity Technologies (UK) Ltd.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#![cfg_attr(not(feature = "std"), no_std)]
#![deny(missing_docs)]

//! Efficient and space-efficient serialization of Rust types.
//!
//! This library provides structures to easily retrieve compile-time type
//! information at runtime and also to serialize this information in a
//! space-efficient form, aka `PortableForm`.
//!
//! # Registry
//!
//! At the heart of its functionality is the [`Registry`](`crate::Registry`)
//! that acts as a cache for known types in order to efficiently deduplicate
//! types and ensure a space-efficient serialization.
//!
//! # Type Information
//!
//! Information about types is provided via the [`TypeInfo`](`crate::TypeInfo`)
//! trait.
//!
//! This trait should be implemented for all types that are serializable.
//! `scale-info` provides implementations for all commonly used Rust standard
//! types and a derive macro for implementing of custom types.
//!
//! ## Deriving `TypeInfo`
//!
//! Enable the `derive` feature of this crate:
//!
//! ```toml
//! scale-info = { version = "2.0.0", features = ["derive"] }
//! ```
//!
//! ```ignore
//! use scale_info::TypeInfo;
//!
//! #[derive(TypeInfo)]
//! struct MyStruct {
//!     a: u32,
//!     b: MyEnum,
//! }
//!
//! #[derive(TypeInfo)]
//! enum MyEnum {
//!     A(bool),
//!     B { f: Vec<u8> },
//!     C,
//! }
//! ```
//!
//! ### Attributes
//!
//! #### `#[scale_info(bounds(..))]`
//!
//! Replace the auto-generated `where` clause bounds for the derived `TypeInfo` implementation.
//!
//! ```ignore
//! #[derive(TypeInfo)]
//! #[scale_info(bounds(T: TypeInfo + 'static))]
//! struct MyStruct<T> {
//!     a: Vec<T>,
//! }
//! ```
//!
//! The derive macro automatically adds `TypeInfo` bounds for all type parameters, and all field
//! types containing type parameters or associated types.
//!
//! This is naive and sometimes adds unnecessary bounds, since on a syntactical level there is no
//! way to differentiate between a generic type constructor and a type alias with a generic argument
//! e.g.
//!
//! ```ignore
//! trait MyTrait {
//!     type A;
//! }
//!
//! type MyAlias<T> = <T as MyTrait>::A;
//!
//! #[derive(TypeInfo)]
//! struct MyStruct<T> {
//!     a: MyAlias<T>,
//!     b: Vec<T>,
//! }
//! ```
//!
//! So for the above, since a `MyAlias<T>: TypeInfo` bound is required, and we can't distinguish
//! between `MyAlias<T>` and `Vec<T>`, then the `TypeInfo` bound is simply added for all
//! fields which contain any type param. In this case the redundant `Vec<T>: TypeInfo`
//! would be added.
//!
//! This is usually okay, but in some circumstances can cause problems, for example with the
//! [`overflow evaluating the requirement`] error [here](https://github.com/paritytech/scale-info/blob/master/test_suite/tests/ui/pass_custom_bounds_fix_overflow.rs).
//!
//! The `bounds` attribute provides an ["escape hatch"](https://serde.rs/attr-bound.html) to allow
//! the programmer control of the `where` clause on the generated `impl`, to solve this and other
//! issues that can't be foreseen by the auto-generated bounds heuristic.
//!
//! #### `#[scale_info(skip_type_params(..))]`
//!
//! Remove the requirement for the specified type params to implement `TypeInfo`.
//!
//! Consider a simple example of a type parameter which is used for associated types, but the type
//! itself does not carry any type information. Consider this common pattern:
//!
//! ```ignore
//! trait Config {
//!     type Balance;
//! }
//!
//! struct Runtime; // doesn't implement `TypeInfo`
//!
//! impl Config for Runtime {
//!     type Balance = u64;
//! }
//!
//! #[allow(unused)]
//! #[derive(TypeInfo)]
//! #[scale_info(skip_type_params(T))]
//! struct A<T: Config> {
//!     balance: T::Balance,
//!     marker: core::marker::PhantomData<T>,
//! }
//!
//! fn assert_type_info<T: scale_info::TypeInfo + 'static>() {}
//!
//! fn main() {
//!     // without the `skip_type_params` attribute this will fail.
//!     assert_type_info::<A<Runtime>>();
//! }
//! ```
//!
//! By default, the derived `TypeInfo` implementation will add the type of all type parameters to
//! the `TypeParameter` specification e.g.
//!
//! `type_params(vec![TypeParameter::new("T", Some(MetaType::new::<T>()))])`
//!
//! In the example above, this will cause a compiler error because `Runtime` is the concrete tyoe
//! for `T`, which does not satisfy the `TypeInfo` requirement of `MetaType::new::<T>()`.
//!
//! Simply adding a `TypeInfo` derive to `Runtime` is one way of solving this, but that could be
//! misleading (why does it need `TypeInfo` if a value of that type is never encoded?), and can
//! sometimes require adding `TypeInfo` bounds in other impl blocks.
//!
//! The `skip_type_params` attribute solves this, providing an additional "escape hatch" which
//! prevents the given type parameter's type information being required:
//!
//! `type_params(vec![TypeParameter::new("T", None)])`
//!
//! The generated type params do not now require `T` to implement `TypeInfo`, so the auto-generated
//! bound is not added to the generated `TypeInfo` `where` clause.
//!
//! #### Combining `bounds` and `skip_type_params`
//!
//! These two attributes can complement one another, particularly in the case where using `bounds`
//! would still require manually adding a `TypeInfo` bound for the type parameter:
//!
//! ```ignore
//! #[derive(TypeInfo)]
//! #[scale_info(bounds(), skip_type_params(T))]
//! struct A<T> {
//!     marker: core::marker::PhantomData<T>,
//! }
//! ```
//!
//! Without `skip_type_params` in the example above, it would require the `TypeInfo` bounds for `T`
//! to be added manually e.g. `#[scale_info(bounds(T: TypeInfo + 'static))]`. Since the intention of
//! the empty bounds is to **remove** all type bounds, then the addition of `skip_type_params`
//! allows this to compile successfully.
//!
//! ##### Precedence
//!
//! When used independently, both attributes modify the `where` clause of the derived `TypeInfo`
//! impl. When used together, the predicates supplied in the `bounds` attribute replaces *all*
//! auto-generated bounds, and `skip_type_params` will have no effect on the resulting `where`
//! clause.
//!
//! **Note:** When using `bounds` without `skip_type_params`, it is therefore required to manually
//! add a `TypeInfo` bound for any non skipped type parameters. The compiler will let you know.
//!
//! #### `#[scale_info(capture_docs = "default|always|never")]`
//!
//! Docs for types, fields and variants can all be captured by the `docs` feature being enabled.
//! This can be overridden using the `capture_docs` attribute:
//!
//! `#[scale_info(capture_docs = "default")]` will capture docs iff the `docs` feature is enabled.
//! This is the default if `capture_docs` is not specified.
//!
//! `#[scale_info(capture_docs = "always")]` will capture docs for the annotated type even if the
//! `docs` feature is *not* enabled.
//!
//! `#[scale_info(capture_docs = "never")]` will *not* capture docs for the annotated type even if
//! the `docs` is enabled.
//!
//! This is useful e.g. when compiling metadata into a Wasm blob, and it is desirable to keep the
//! binary size as small as possible, so the `docs` feature would be disabled. In case the docs for
//! some types is necessary they could be enabled on a per-type basis with the above attribute.
//!
//! #### `#[scale_info(crate = path::to::crate)]`
//!
//! Specify a path to the scale-info crate instance to use when referring to the APIs from generated
//! code. This is normally only applicable when invoking re-exported scale-info derives from a public
//! macro in a different crate. For example:
//! ```ignore
//! use scale_info_reexport::info::TypeInfo;
//!
//! #[derive(TypeInfo)]
//! #[scale_info(crate = scale_info_reexport::info)]
//! enum TestEnum {
//!     FirstVariant,
//!     SecondVariant,
//! }
//! ```
//!
//! # Forms
//!
//! To bridge between compile-time type information and runtime the
//! [`MetaForm`](`crate::form::MetaForm`) is used to easily retrieve all
//! information needed to uniquely identify types.
//!
//! The `MetaForm` and its associated `Registry` can be transformed into the
//! space-efficient form by the [`IntoPortable`](`crate::IntoPortable`) trait; it is
//! used internally by the [`Registry`](`crate::Registry`) in order to convert
//! the expanded types into their space-efficient form.
//!
//! # Symbols and Namespaces
//!
//! To differentiate two types sharing the same name, namespaces are used.
//! Commonly the namespace is equal to the one where the type has been defined
//! in. For Rust prelude types such as [`Option`](`std::option::Option`) and
//! [`Result`](`std::result::Result`) the root namespace (empty namespace) is
//! used.
//!
//! To use this library simply use the [`MetaForm`](`crate::form::MetaForm`)
//! initially with your own data structures; make them generic over the
//! [`Form`](`crate::form::Form`) trait just as has been done in this crate with
//! [`TypeInfo`](`crate::TypeInfo`) in order to get a simple implementation of
//! [`IntoPortable`](`crate::IntoPortable`). Use a single instance of the
//! [`Registry`](`crate::Registry`) for compaction and provide this registry
//! instance upon serialization.
//!
//! A usage example can be found in ink! here:
//! https://github.com/paritytech/ink/blob/master/abi/src/specs.rs

/// Takes a number of types and returns a vector that contains their respective
/// [`MetaType`](`crate::MetaType`) instances.
///
/// This is useful for places that require inputs of iterators over [`MetaType`](`crate::MetaType`)
/// instances and provide a way out of code bloat in these scenarios.
///
/// # Example
///
/// ```
/// # use scale_info::tuple_meta_type;
/// assert_eq!(
///     tuple_meta_type!(i32, [u8; 32], String),
///     {
///         use scale_info::MetaType;
///         let mut vec = Vec::new();
///         vec.push(MetaType::new::<i32>());
///         vec.push(MetaType::new::<[u8; 32]>());
///         vec.push(MetaType::new::<String>());
///         vec
///     }
/// );
/// ```
#[macro_export]
macro_rules! tuple_meta_type {
    ( $($ty:ty),* ) => {
        {
            $crate::prelude::vec![
                $(
                    $crate::MetaType::new::<$ty>(),
                )*
            ]
        }
    }
}

/// Construct a vector of `TypeParameter`s from pairs of the name and the concrete type.
///
/// # Example
///
/// ```
/// # use scale_info::{named_type_params, MetaType, TypeParameter};
/// assert_eq!(
///     named_type_params![(T, u8), (U, u32)],
///     vec! [
///         TypeParameter::new("T", Some(MetaType::new::<u8>())),
///         TypeParameter::new("U", Some(MetaType::new::<u32>())),
///     ]
/// );
/// ```
#[macro_export]
macro_rules! named_type_params {
    ( $(($tp:ty, $ty:ty)),* ) => {
        {
            $crate::prelude::vec![
                $(
                    $crate::TypeParameter::<$crate::form::MetaForm>::new(
                        ::core::stringify!($tp),
                        Some($crate::MetaType::new::<$ty>())
                    ),
                )*
            ]
        }
    }
}

/// Construct a vector of [`TypeParameter`] instances with the name of the type parameter,
/// together with its concrete [`MetaType`].
#[macro_export]
macro_rules! type_params {
    ( $($ty:ty),* ) => {
        $crate::named_type_params!{ $( ($ty, $ty) ),* }
    }
}

pub mod prelude;

pub mod build;
pub mod form;
mod impls;
pub mod interner;
mod meta_type;
mod portable;
mod registry;
mod ty;
mod utils;

#[cfg(test)]
mod tests;

#[doc(hidden)]
pub use scale;

pub use self::{
    meta_type::MetaType,
    portable::{
        PortableRegistry,
        PortableRegistryBuilder,
    },
    registry::{
        IntoPortable,
        Registry,
    },
    ty::*,
};

#[cfg(feature = "derive")]
pub use scale_info_derive::TypeInfo;

/// Implementors return their meta type information.
pub trait TypeInfo {
    /// The type identifying for which type info is provided.
    ///
    /// # Note
    ///
    /// This is used to uniquely identify a type via [`core::any::TypeId::of`]. In most cases it
    /// will just be `Self`, but can be used to unify different types which have the same encoded
    /// representation e.g. reference types `Box<T>`, `&T` and `&mut T`.
    type Identity: ?Sized + 'static;

    /// Returns the static type identifier for `Self`.
    fn type_info() -> Type;
}

/// Convenience trait for implementors, combining `TypeInfo` and `'static` bounds.
///
/// # Note
///
/// Currently because of the `'static` constraint on [`std::any::TypeId::of`] (see [`MetaType`]),
/// `TypeInfo` constraints must also be accompanied by a `'static` bound. This trait is useful to
/// implementors so only a single constraint is required.
pub trait StaticTypeInfo: TypeInfo + 'static {}

impl<T> StaticTypeInfo for T where T: TypeInfo + 'static {}

/// Returns the runtime bridge to the types compile-time type information.
pub fn meta_type<T>() -> MetaType
where
    T: ?Sized + TypeInfo + 'static,
{
    MetaType::new::<T>()
}