1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
use std::collections::VecDeque;
use crate::enums::ProtocolVersion;
use crate::msgs::base::Payload;
use crate::msgs::codec;
use crate::msgs::enums::ContentType;
use crate::msgs::handshake::HandshakeMessagePayload;
use crate::msgs::message::{Message, MessagePayload, PlainMessage};
const HEADER_SIZE: usize = 1 + 3;
/// TLS allows for handshake messages of up to 16MB. We
/// restrict that to 64KB to limit potential for denial-of-
/// service.
const MAX_HANDSHAKE_SIZE: u32 = 0xffff;
/// This works to reconstruct TLS handshake messages
/// from individual TLS messages. It's guaranteed that
/// TLS messages output from this layer contain precisely
/// one handshake payload.
pub struct HandshakeJoiner {
/// The message payload(s) we're currently accumulating.
buf: Vec<u8>,
/// Sizes of messages currently in the buffer.
///
/// The buffer can be larger than the sum of the sizes in this queue, because it might contain
/// the start of a message that hasn't fully been received yet as its suffix.
sizes: VecDeque<usize>,
/// Version of the protocol we're currently parsing.
version: ProtocolVersion,
}
impl HandshakeJoiner {
/// Make a new HandshakeJoiner.
pub fn new() -> Self {
Self {
buf: Vec::new(),
sizes: VecDeque::new(),
version: ProtocolVersion::TLSv1_2,
}
}
/// Take the message, and join/split it as needed.
///
/// Returns `Err(JoinerError::Unwanted(msg))` if `msg`'s type is not `ContentType::Handshake` or
/// `JoinerError::Decode` if a received payload has an advertised size larger than we accept.
///
/// Otherwise, yields a `bool` to indicate whether the handshake is "aligned": if the buffer currently
/// only contains complete payloads (that is, no incomplete message in the suffix).
pub fn push(&mut self, msg: PlainMessage) -> Result<bool, JoinerError> {
if msg.typ != ContentType::Handshake {
return Err(JoinerError::Unwanted(msg));
}
// The vast majority of the time `self.buf` will be empty since most
// handshake messages arrive in a single fragment. Avoid allocating and
// copying in that common case.
if self.buf.is_empty() {
self.buf = msg.payload.0;
} else {
self.buf
.extend_from_slice(&msg.payload.0[..]);
}
if msg.version == ProtocolVersion::TLSv1_3 {
self.version = msg.version;
}
// Check the suffix of the buffer that hasn't been covered by `sizes` so far
// for complete messages. If we find any, update `self.sizes` and `complete`.
let mut complete = self.sizes.iter().copied().sum();
while let Some(size) = payload_size(&self.buf[complete..])? {
self.sizes.push_back(size);
complete += size;
}
// Use the value of `complete` to determine if the buffer currently contains any
// incomplete messages. If not, an incoming message is said to be "aligned".
Ok(complete == self.buf.len())
}
/// Parse the first received message out of the buffer.
///
/// Returns `Ok(None)` if we don't have a complete message in the buffer, or `Err` if we
/// fail to parse the first message in the buffer.
pub fn pop(&mut self) -> Result<Option<Message>, JoinerError> {
let len = match self.sizes.pop_front() {
Some(len) => len,
None => return Ok(None),
};
// Parse the first part of the buffer as a handshake buffer.
// If we get `None` back, we've failed to parse the message.
// If we succeed, drain the relevant bytes from the buffer.
let buf = &self.buf[..len];
let mut rd = codec::Reader::init(buf);
let parsed = match HandshakeMessagePayload::read_version(&mut rd, self.version) {
Some(p) => p,
None => return Err(JoinerError::Decode),
};
let message = Message {
version: self.version,
payload: MessagePayload::Handshake {
parsed,
encoded: Payload::new(buf),
},
};
self.buf.drain(..len);
Ok(Some(message))
}
}
/// Does `buf` contain a full handshake payload?
///
/// Returns `Ok(Some(_))` with the length of the payload (including header) if it does,
/// `Ok(None)` if the buffer is too small to contain a message with the length advertised in the
/// header, or `Err` if the advertised length is larger than what we want to accept
/// (`MAX_HANDSHAKE_SIZE`).
fn payload_size(buf: &[u8]) -> Result<Option<usize>, JoinerError> {
if buf.len() < HEADER_SIZE {
return Ok(None);
}
let (header, rest) = buf.split_at(HEADER_SIZE);
match codec::u24::decode(&header[1..]) {
Some(len) if len.0 > MAX_HANDSHAKE_SIZE => Err(JoinerError::Decode),
Some(len) if rest.get(..len.into()).is_some() => Ok(Some(HEADER_SIZE + usize::from(len))),
_ => Ok(None),
}
}
#[derive(Debug)]
pub enum JoinerError {
Unwanted(PlainMessage),
Decode,
}
#[cfg(test)]
mod tests {
use super::HandshakeJoiner;
use crate::enums::ProtocolVersion;
use crate::msgs::base::Payload;
use crate::msgs::codec::Codec;
use crate::msgs::enums::{ContentType, HandshakeType};
use crate::msgs::handshake::{HandshakeMessagePayload, HandshakePayload};
use crate::msgs::message::{Message, MessagePayload, PlainMessage};
#[test]
fn want() {
let mut hj = HandshakeJoiner::new();
let wanted = PlainMessage {
typ: ContentType::Handshake,
version: ProtocolVersion::TLSv1_2,
payload: Payload::new(b"\x00\x00\x00\x00".to_vec()),
};
let unwanted = PlainMessage {
typ: ContentType::Alert,
version: ProtocolVersion::TLSv1_2,
payload: Payload::new(b"ponytown".to_vec()),
};
hj.push(wanted).unwrap();
hj.push(unwanted).unwrap_err();
}
fn pop_eq(expect: &PlainMessage, hj: &mut HandshakeJoiner) {
let got = hj.pop().unwrap().unwrap();
assert_eq!(got.payload.content_type(), expect.typ);
assert_eq!(got.version, expect.version);
let (mut left, mut right) = (Vec::new(), Vec::new());
got.payload.encode(&mut left);
expect.payload.encode(&mut right);
assert_eq!(left, right);
}
#[test]
fn split() {
// Check we split two handshake messages within one PDU.
let mut hj = HandshakeJoiner::new();
// two HelloRequests
assert!(hj
.push(PlainMessage {
typ: ContentType::Handshake,
version: ProtocolVersion::TLSv1_2,
payload: Payload::new(b"\x00\x00\x00\x00\x00\x00\x00\x00".to_vec()),
})
.unwrap());
let expect = Message {
version: ProtocolVersion::TLSv1_2,
payload: MessagePayload::handshake(HandshakeMessagePayload {
typ: HandshakeType::HelloRequest,
payload: HandshakePayload::HelloRequest,
}),
}
.into();
pop_eq(&expect, &mut hj);
pop_eq(&expect, &mut hj);
}
#[test]
fn broken() {
// Check obvious crap payloads are reported as errors, not panics.
let mut hj = HandshakeJoiner::new();
// short ClientHello
hj.push(PlainMessage {
typ: ContentType::Handshake,
version: ProtocolVersion::TLSv1_2,
payload: Payload::new(b"\x01\x00\x00\x02\xff\xff".to_vec()),
})
.unwrap();
hj.pop().unwrap_err();
}
#[test]
fn join() {
// Check we join one handshake message split over two PDUs.
let mut hj = HandshakeJoiner::new();
// Introduce Finished of 16 bytes, providing 4.
hj.push(PlainMessage {
typ: ContentType::Handshake,
version: ProtocolVersion::TLSv1_2,
payload: Payload::new(b"\x14\x00\x00\x10\x00\x01\x02\x03\x04".to_vec()),
})
.unwrap();
// 11 more bytes.
assert!(!hj
.push(PlainMessage {
typ: ContentType::Handshake,
version: ProtocolVersion::TLSv1_2,
payload: Payload::new(b"\x05\x06\x07\x08\x09\x0a\x0b\x0c\x0d\x0e".to_vec()),
})
.unwrap());
// Final 1 byte.
assert!(hj
.push(PlainMessage {
typ: ContentType::Handshake,
version: ProtocolVersion::TLSv1_2,
payload: Payload::new(b"\x0f".to_vec()),
})
.unwrap());
let payload = b"\x00\x01\x02\x03\x04\x05\x06\x07\x08\x09\x0a\x0b\x0c\x0d\x0e\x0f".to_vec();
let expect = Message {
version: ProtocolVersion::TLSv1_2,
payload: MessagePayload::handshake(HandshakeMessagePayload {
typ: HandshakeType::Finished,
payload: HandshakePayload::Finished(Payload::new(payload)),
}),
}
.into();
pop_eq(&expect, &mut hj);
}
#[test]
fn test_rejects_giant_certs() {
let mut hj = HandshakeJoiner::new();
hj.push(PlainMessage {
typ: ContentType::Handshake,
version: ProtocolVersion::TLSv1_2,
payload: Payload::new(b"\x0b\x01\x00\x04\x01\x00\x01\x00\xff\xfe".to_vec()),
})
.unwrap_err();
}
}