1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506
// This file is part of Substrate.
// Copyright (C) 2019-2022 Parity Technologies (UK) Ltd.
// SPDX-License-Identifier: Apache-2.0
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//! Substrate Inherent Extrinsics
//!
//! Inherent extrinsics are extrinsics that are inherently added to each block. However, it is up to
//! the runtime implementation to require an inherent for each block or to make it optional.
//! Inherents are mainly used to pass data from the block producer to the runtime. So, inherents
//! require some part that is running on the client side and some part that is running on the
//! runtime side. Any data that is required by an inherent is passed as [`InherentData`] from the
//! client to the runtime when the inherents are constructed.
//!
//! The process of constructing and applying inherents is the following:
//!
//! 1. The block producer first creates the [`InherentData`] by using the inherent data providers
//! that are created by [`CreateInherentDataProviders`].
//!
//! 2. The [`InherentData`] is passed to the `inherent_extrinsics` function of the `BlockBuilder`
//! runtime api. This will call the runtime which will create all the inherents that should be
//! applied to the block.
//!
//! 3. Apply each inherent to the block like any normal extrinsic.
//!
//! On block import the inherents in the block are checked by calling the `check_inherents` runtime
//! API. This will also pass an instance of [`InherentData`] which the runtime can use to validate
//! all inherents. If some inherent data isn't required for validating an inherent, it can be
//! omitted when providing the inherent data providers for block import.
//!
//! # Providing inherent data
//!
//! To provide inherent data from the client side, [`InherentDataProvider`] should be implemented.
//!
//! ```
//! use codec::Decode;
//! use sp_inherents::{InherentIdentifier, InherentData};
//!
//! // This needs to be unique for the runtime.
//! const INHERENT_IDENTIFIER: InherentIdentifier = *b"testinh0";
//!
//! /// Some custom inherent data provider
//! struct InherentDataProvider;
//!
//! #[async_trait::async_trait]
//! impl sp_inherents::InherentDataProvider for InherentDataProvider {
//! async fn provide_inherent_data(
//! &self,
//! inherent_data: &mut InherentData,
//! ) -> Result<(), sp_inherents::Error> {
//! // We can insert any data that implements [`codec::Encode`].
//! inherent_data.put_data(INHERENT_IDENTIFIER, &"hello")
//! }
//!
//! /// When validating the inherents, the runtime implementation can throw errors. We support
//! /// two error modes, fatal and non-fatal errors. A fatal error means that the block is invalid
//! /// and this function here should return `Err(_)` to not import the block. Non-fatal errors
//! /// are allowed to be handled here in this function and the function should return `Ok(())`
//! /// if it could be handled. A non-fatal error is for example that a block is in the future
//! /// from the point of view of the local node. In such a case the block import for example
//! /// should be delayed until the block is valid.
//! ///
//! /// If this functions returns `None`, it means that it is not responsible for this error or
//! /// that the error could not be interpreted.
//! async fn try_handle_error(
//! &self,
//! identifier: &InherentIdentifier,
//! mut error: &[u8],
//! ) -> Option<Result<(), sp_inherents::Error>> {
//! // Check if this error belongs to us.
//! if *identifier != INHERENT_IDENTIFIER {
//! return None;
//! }
//!
//! // For demonstration purposes we are using a `String` as error type. In real
//! // implementations it is advised to not use `String`.
//! Some(Err(
//! sp_inherents::Error::Application(Box::from(String::decode(&mut error).ok()?))
//! ))
//! }
//! }
//! ```
//!
//! In the service the relevant inherent data providers need to be passed the block production and
//! the block import. As already highlighted above, the providers can be different between import
//! and production.
//!
//! ```
//! # use sp_runtime::testing::ExtrinsicWrapper;
//! # use sp_inherents::{InherentIdentifier, InherentData};
//! # use futures::FutureExt;
//! # type Block = sp_runtime::testing::Block<ExtrinsicWrapper<()>>;
//! # const INHERENT_IDENTIFIER: InherentIdentifier = *b"testinh0";
//! # struct InherentDataProvider;
//! # #[async_trait::async_trait]
//! # impl sp_inherents::InherentDataProvider for InherentDataProvider {
//! # async fn provide_inherent_data(&self, inherent_data: &mut InherentData) -> Result<(), sp_inherents::Error> {
//! # inherent_data.put_data(INHERENT_IDENTIFIER, &"hello")
//! # }
//! # async fn try_handle_error(
//! # &self,
//! # _: &InherentIdentifier,
//! # _: &[u8],
//! # ) -> Option<Result<(), sp_inherents::Error>> {
//! # None
//! # }
//! # }
//!
//! async fn cool_consensus_block_production(
//! // The second parameter to the trait are parameters that depend on what the caller
//! // can provide on extra data.
//! _: impl sp_inherents::CreateInherentDataProviders<Block, ()>,
//! ) {
//! // do cool stuff
//! }
//!
//! async fn cool_consensus_block_import(
//! _: impl sp_inherents::CreateInherentDataProviders<Block, ()>,
//! ) {
//! // do cool stuff
//! }
//!
//! async fn build_service(is_validator: bool) {
//! // For block import we don't pass any inherent data provider, because our runtime
//! // does not need any inherent data to validate the inherents.
//! let block_import = cool_consensus_block_import(|_parent, ()| async { Ok(()) });
//!
//! let block_production = if is_validator {
//! // For block production we want to provide our inherent data provider
//! cool_consensus_block_production(|_parent, ()| async {
//! Ok(InherentDataProvider)
//! }).boxed()
//! } else {
//! futures::future::pending().boxed()
//! };
//!
//! futures::pin_mut!(block_import);
//!
//! futures::future::select(block_import, block_production).await;
//! }
//! ```
//!
//! # Creating the inherent
//!
//! As the inherents are created by the runtime, it depends on the runtime implementation on how
//! to create the inherents. As already described above the client side passes the [`InherentData`]
//! and expects the runtime to construct the inherents out of it. When validating the inherents,
//! [`CheckInherentsResult`] is used to communicate the result client side.
#![cfg_attr(not(feature = "std"), no_std)]
#![warn(missing_docs)]
use codec::{Decode, Encode};
use sp_std::{
collections::btree_map::{BTreeMap, Entry, IntoIter},
vec::Vec,
};
#[cfg(feature = "std")]
mod client_side;
#[cfg(feature = "std")]
pub use client_side::*;
/// Errors that occur in context of inherents.
#[derive(Debug)]
#[cfg_attr(feature = "std", derive(thiserror::Error))]
#[allow(missing_docs)]
pub enum Error {
#[cfg_attr(
feature = "std",
error("Inherent data already exists for identifier: {}", "String::from_utf8_lossy(_0)")
)]
InherentDataExists(InherentIdentifier),
#[cfg_attr(
feature = "std",
error("Failed to decode inherent data for identifier: {}", "String::from_utf8_lossy(_1)")
)]
DecodingFailed(#[cfg_attr(feature = "std", source)] codec::Error, InherentIdentifier),
#[cfg_attr(
feature = "std",
error("There was already a fatal error reported and no other errors are allowed")
)]
FatalErrorReported,
#[cfg(feature = "std")]
#[error(transparent)]
Application(#[from] Box<dyn std::error::Error + Send + Sync>),
}
/// An identifier for an inherent.
pub type InherentIdentifier = [u8; 8];
/// Inherent data to include in a block.
#[derive(Clone, Default, Encode, Decode)]
pub struct InherentData {
/// All inherent data encoded with parity-scale-codec and an identifier.
data: BTreeMap<InherentIdentifier, Vec<u8>>,
}
impl InherentData {
/// Create a new instance.
pub fn new() -> Self {
Self::default()
}
/// Put data for an inherent into the internal storage.
///
/// # Return
///
/// Returns `Ok(())` if the data could be inserted and no data for an inherent with the same
/// identifier existed, otherwise an error is returned.
///
/// Inherent identifiers need to be unique, otherwise decoding of these values will not work!
pub fn put_data<I: codec::Encode>(
&mut self,
identifier: InherentIdentifier,
inherent: &I,
) -> Result<(), Error> {
match self.data.entry(identifier) {
Entry::Vacant(entry) => {
entry.insert(inherent.encode());
Ok(())
},
Entry::Occupied(_) => Err(Error::InherentDataExists(identifier)),
}
}
/// Replace the data for an inherent.
///
/// If it does not exist, the data is just inserted.
pub fn replace_data<I: codec::Encode>(&mut self, identifier: InherentIdentifier, inherent: &I) {
self.data.insert(identifier, inherent.encode());
}
/// Returns the data for the requested inherent.
///
/// # Return
///
/// - `Ok(Some(I))` if the data could be found and deserialized.
/// - `Ok(None)` if the data could not be found.
/// - `Err(_)` if the data could be found, but deserialization did not work.
pub fn get_data<I: codec::Decode>(
&self,
identifier: &InherentIdentifier,
) -> Result<Option<I>, Error> {
match self.data.get(identifier) {
Some(inherent) => I::decode(&mut &inherent[..])
.map_err(|e| Error::DecodingFailed(e, *identifier))
.map(Some),
None => Ok(None),
}
}
/// Get the number of inherents in this instance
pub fn len(&self) -> usize {
self.data.len()
}
}
/// The result of checking inherents.
///
/// It either returns okay for all checks, stores all occurred errors or just one fatal error.
///
/// When a fatal error occurs, all other errors are removed and the implementation needs to
/// abort checking inherents.
#[derive(Encode, Decode, Clone)]
pub struct CheckInherentsResult {
/// Did the check succeed?
okay: bool,
/// Did we encounter a fatal error?
fatal_error: bool,
/// We use the `InherentData` to store our errors.
errors: InherentData,
}
impl Default for CheckInherentsResult {
fn default() -> Self {
Self { okay: true, errors: InherentData::new(), fatal_error: false }
}
}
impl CheckInherentsResult {
/// Create a new instance.
pub fn new() -> Self {
Self::default()
}
/// Put an error into the result.
///
/// This makes this result resolve to `ok() == false`.
///
/// # Parameters
///
/// - identifier - The identifier of the inherent that generated the error.
/// - error - The error that will be encoded.
pub fn put_error<E: codec::Encode + IsFatalError>(
&mut self,
identifier: InherentIdentifier,
error: &E,
) -> Result<(), Error> {
// Don't accept any other error
if self.fatal_error {
return Err(Error::FatalErrorReported)
}
if error.is_fatal_error() {
// remove the other errors.
self.errors.data.clear();
}
self.errors.put_data(identifier, error)?;
self.okay = false;
self.fatal_error = error.is_fatal_error();
Ok(())
}
/// Get an error out of the result.
///
/// # Return
///
/// - `Ok(Some(I))` if the error could be found and deserialized.
/// - `Ok(None)` if the error could not be found.
/// - `Err(_)` if the error could be found, but deserialization did not work.
pub fn get_error<E: codec::Decode>(
&self,
identifier: &InherentIdentifier,
) -> Result<Option<E>, Error> {
self.errors.get_data(identifier)
}
/// Convert into an iterator over all contained errors.
pub fn into_errors(self) -> IntoIter<InherentIdentifier, Vec<u8>> {
self.errors.data.into_iter()
}
/// Is this result ok?
pub fn ok(&self) -> bool {
self.okay
}
/// Is this a fatal error?
pub fn fatal_error(&self) -> bool {
self.fatal_error
}
}
#[cfg(feature = "std")]
impl PartialEq for CheckInherentsResult {
fn eq(&self, other: &Self) -> bool {
self.fatal_error == other.fatal_error &&
self.okay == other.okay &&
self.errors.data == other.errors.data
}
}
/// Did we encounter a fatal error while checking an inherent?
///
/// A fatal error is everything that fails while checking an inherent error, e.g. the inherent
/// was not found, could not be decoded etc.
/// Then there are cases where you not want the inherent check to fail, but report that there is an
/// action required. For example a timestamp of a block is in the future, the timestamp is still
/// correct, but it is required to verify the block at a later time again and then the inherent
/// check will succeed.
pub trait IsFatalError {
/// Is this a fatal error?
fn is_fatal_error(&self) -> bool;
}
/// Auxiliary to make any given error resolve to `is_fatal_error() == true` for [`IsFatalError`].
#[derive(codec::Encode)]
pub struct MakeFatalError<E>(E);
impl<E: codec::Encode> From<E> for MakeFatalError<E> {
fn from(err: E) -> Self {
MakeFatalError(err)
}
}
impl<E: codec::Encode> IsFatalError for MakeFatalError<E> {
fn is_fatal_error(&self) -> bool {
true
}
}
#[cfg(test)]
mod tests {
use super::*;
use codec::{Decode, Encode};
const TEST_INHERENT_0: InherentIdentifier = *b"testinh0";
const TEST_INHERENT_1: InherentIdentifier = *b"testinh1";
#[derive(Encode)]
struct NoFatalError<E: codec::Encode>(E);
impl<E: codec::Encode> IsFatalError for NoFatalError<E> {
fn is_fatal_error(&self) -> bool {
false
}
}
#[test]
fn inherent_data_encodes_and_decodes() {
let inherent_0 = vec![1, 2, 3];
let inherent_1: u32 = 7;
let mut data = InherentData::new();
data.put_data(TEST_INHERENT_0, &inherent_0).unwrap();
data.put_data(TEST_INHERENT_1, &inherent_1).unwrap();
let encoded = data.encode();
let decoded = InherentData::decode(&mut &encoded[..]).unwrap();
assert_eq!(decoded.get_data::<Vec<u32>>(&TEST_INHERENT_0).unwrap().unwrap(), inherent_0);
assert_eq!(decoded.get_data::<u32>(&TEST_INHERENT_1).unwrap().unwrap(), inherent_1);
}
#[test]
fn adding_same_inherent_returns_an_error() {
let mut data = InherentData::new();
data.put_data(TEST_INHERENT_0, &8).unwrap();
assert!(data.put_data(TEST_INHERENT_0, &10).is_err());
}
#[derive(Clone)]
struct TestInherentDataProvider;
const ERROR_TO_STRING: &str = "Found error!";
#[async_trait::async_trait]
impl InherentDataProvider for TestInherentDataProvider {
async fn provide_inherent_data(&self, data: &mut InherentData) -> Result<(), Error> {
data.put_data(TEST_INHERENT_0, &42)
}
async fn try_handle_error(
&self,
_: &InherentIdentifier,
_: &[u8],
) -> Option<Result<(), Error>> {
Some(Err(Error::Application(Box::from(ERROR_TO_STRING))))
}
}
#[test]
fn create_inherent_data() {
let provider = TestInherentDataProvider;
let inherent_data = futures::executor::block_on(provider.create_inherent_data()).unwrap();
assert_eq!(inherent_data.get_data::<u32>(&TEST_INHERENT_0).unwrap().unwrap(), 42u32);
}
#[test]
fn check_inherents_result_encodes_and_decodes() {
let mut result = CheckInherentsResult::new();
assert!(result.ok());
result.put_error(TEST_INHERENT_0, &NoFatalError(2u32)).unwrap();
assert!(!result.ok());
assert!(!result.fatal_error());
let encoded = result.encode();
let decoded = CheckInherentsResult::decode(&mut &encoded[..]).unwrap();
assert_eq!(decoded.get_error::<u32>(&TEST_INHERENT_0).unwrap().unwrap(), 2);
assert!(!decoded.ok());
assert!(!decoded.fatal_error());
}
#[test]
fn check_inherents_result_removes_other_errors_on_fatal_error() {
let mut result = CheckInherentsResult::new();
assert!(result.ok());
result.put_error(TEST_INHERENT_0, &NoFatalError(2u32)).unwrap();
assert!(!result.ok());
assert!(!result.fatal_error());
result.put_error(TEST_INHERENT_1, &MakeFatalError(4u32)).unwrap();
assert!(!result.ok());
assert!(result.fatal_error());
assert!(result.put_error(TEST_INHERENT_0, &NoFatalError(5u32)).is_err());
result.into_errors().for_each(|(i, e)| match i {
TEST_INHERENT_1 => assert_eq!(u32::decode(&mut &e[..]).unwrap(), 4),
_ => panic!("There should be no other error!"),
});
}
}