1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339
//! Legalize instructions.
//!
//! A legal instruction is one that can be mapped directly to a machine code instruction for the
//! target ISA. The `legalize_function()` function takes as input any function and transforms it
//! into an equivalent function using only legal instructions.
//!
//! The characteristics of legal instructions depend on the target ISA, so any given instruction
//! can be legal for one ISA and illegal for another.
//!
//! Besides transforming instructions, the legalizer also fills out the `function.encodings` map
//! which provides a legal encoding recipe for every instruction.
//!
//! The legalizer does not deal with register allocation constraints. These constraints are derived
//! from the encoding recipes, and solved later by the register allocator.
use crate::cursor::{Cursor, FuncCursor};
use crate::flowgraph::ControlFlowGraph;
use crate::ir::immediates::Imm64;
use crate::ir::types::{I128, I64};
use crate::ir::{self, InstBuilder, InstructionData, MemFlags, Value};
use crate::isa::TargetIsa;
mod globalvalue;
mod heap;
mod table;
use self::globalvalue::expand_global_value;
use self::heap::expand_heap_addr;
use self::table::expand_table_addr;
fn imm_const(pos: &mut FuncCursor, arg: Value, imm: Imm64, is_signed: bool) -> Value {
let ty = pos.func.dfg.value_type(arg);
match (ty, is_signed) {
(I128, true) => {
let imm = pos.ins().iconst(I64, imm);
pos.ins().sextend(I128, imm)
}
(I128, false) => {
let imm = pos.ins().iconst(I64, imm);
pos.ins().uextend(I128, imm)
}
_ => pos.ins().iconst(ty.lane_type(), imm),
}
}
/// Perform a simple legalization by expansion of the function, without
/// platform-specific transforms.
pub fn simple_legalize(func: &mut ir::Function, cfg: &mut ControlFlowGraph, isa: &dyn TargetIsa) {
let mut pos = FuncCursor::new(func);
let func_begin = pos.position();
pos.set_position(func_begin);
while let Some(_block) = pos.next_block() {
let mut prev_pos = pos.position();
while let Some(inst) = pos.next_inst() {
match pos.func.dfg[inst] {
// control flow
InstructionData::BranchIcmp {
opcode: ir::Opcode::BrIcmp,
cond,
destination,
ref args,
} => {
let a = args.get(0, &pos.func.dfg.value_lists).unwrap();
let b = args.get(1, &pos.func.dfg.value_lists).unwrap();
let block_args = args.as_slice(&pos.func.dfg.value_lists)[2..].to_vec();
let old_block = pos.func.layout.pp_block(inst);
pos.func.dfg.clear_results(inst);
let icmp_res = pos.func.dfg.replace(inst).icmp(cond, a, b);
let mut pos = FuncCursor::new(pos.func).after_inst(inst);
pos.use_srcloc(inst);
pos.ins().brnz(icmp_res, destination, &block_args);
cfg.recompute_block(pos.func, destination);
cfg.recompute_block(pos.func, old_block);
}
InstructionData::CondTrap {
opcode:
opcode @ (ir::Opcode::Trapnz | ir::Opcode::Trapz | ir::Opcode::ResumableTrapnz),
arg,
code,
} => {
expand_cond_trap(inst, &mut pos.func, cfg, opcode, arg, code);
}
// memory and constants
InstructionData::UnaryGlobalValue {
opcode: ir::Opcode::GlobalValue,
global_value,
} => expand_global_value(inst, &mut pos.func, isa, global_value),
InstructionData::HeapAddr {
opcode: ir::Opcode::HeapAddr,
heap,
arg,
imm,
} => expand_heap_addr(inst, &mut pos.func, cfg, isa, heap, arg, imm),
InstructionData::StackLoad {
opcode: ir::Opcode::StackLoad,
stack_slot,
offset,
} => {
let ty = pos.func.dfg.value_type(pos.func.dfg.first_result(inst));
let addr_ty = isa.pointer_type();
let mut pos = FuncCursor::new(pos.func).at_inst(inst);
pos.use_srcloc(inst);
let addr = pos.ins().stack_addr(addr_ty, stack_slot, offset);
// Stack slots are required to be accessible and aligned.
let mflags = MemFlags::trusted();
pos.func.dfg.replace(inst).load(ty, mflags, addr, 0);
}
InstructionData::StackStore {
opcode: ir::Opcode::StackStore,
arg,
stack_slot,
offset,
} => {
let addr_ty = isa.pointer_type();
let mut pos = FuncCursor::new(pos.func).at_inst(inst);
pos.use_srcloc(inst);
let addr = pos.ins().stack_addr(addr_ty, stack_slot, offset);
let mut mflags = MemFlags::new();
// Stack slots are required to be accessible and aligned.
mflags.set_notrap();
mflags.set_aligned();
pos.func.dfg.replace(inst).store(mflags, arg, addr, 0);
}
InstructionData::DynamicStackLoad {
opcode: ir::Opcode::DynamicStackLoad,
dynamic_stack_slot,
} => {
let ty = pos.func.dfg.value_type(pos.func.dfg.first_result(inst));
assert!(ty.is_dynamic_vector());
let addr_ty = isa.pointer_type();
let mut pos = FuncCursor::new(pos.func).at_inst(inst);
pos.use_srcloc(inst);
let addr = pos.ins().dynamic_stack_addr(addr_ty, dynamic_stack_slot);
// Stack slots are required to be accessible and aligned.
let mflags = MemFlags::trusted();
pos.func.dfg.replace(inst).load(ty, mflags, addr, 0);
}
InstructionData::DynamicStackStore {
opcode: ir::Opcode::DynamicStackStore,
arg,
dynamic_stack_slot,
} => {
pos.use_srcloc(inst);
let addr_ty = isa.pointer_type();
let vector_ty = pos.func.dfg.value_type(arg);
assert!(vector_ty.is_dynamic_vector());
let addr = pos.ins().dynamic_stack_addr(addr_ty, dynamic_stack_slot);
let mut mflags = MemFlags::new();
// Stack slots are required to be accessible and aligned.
mflags.set_notrap();
mflags.set_aligned();
pos.func.dfg.replace(inst).store(mflags, arg, addr, 0);
}
InstructionData::TableAddr {
opcode: ir::Opcode::TableAddr,
table,
arg,
offset,
} => expand_table_addr(isa, inst, &mut pos.func, table, arg, offset),
InstructionData::BinaryImm64 { opcode, arg, imm } => {
let is_signed = match opcode {
ir::Opcode::IaddImm
| ir::Opcode::IrsubImm
| ir::Opcode::ImulImm
| ir::Opcode::SdivImm
| ir::Opcode::SremImm
| ir::Opcode::IfcmpImm => true,
_ => false,
};
let imm = imm_const(&mut pos, arg, imm, is_signed);
let replace = pos.func.dfg.replace(inst);
match opcode {
// bitops
ir::Opcode::BandImm => {
replace.band(arg, imm);
}
ir::Opcode::BorImm => {
replace.bor(arg, imm);
}
ir::Opcode::BxorImm => {
replace.bxor(arg, imm);
}
// bitshifting
ir::Opcode::IshlImm => {
replace.ishl(arg, imm);
}
ir::Opcode::RotlImm => {
replace.rotl(arg, imm);
}
ir::Opcode::RotrImm => {
replace.rotr(arg, imm);
}
ir::Opcode::SshrImm => {
replace.sshr(arg, imm);
}
ir::Opcode::UshrImm => {
replace.ushr(arg, imm);
}
// math
ir::Opcode::IaddImm => {
replace.iadd(arg, imm);
}
ir::Opcode::IrsubImm => {
// note: arg order reversed
replace.isub(imm, arg);
}
ir::Opcode::ImulImm => {
replace.imul(arg, imm);
}
ir::Opcode::SdivImm => {
replace.sdiv(arg, imm);
}
ir::Opcode::SremImm => {
replace.srem(arg, imm);
}
ir::Opcode::UdivImm => {
replace.udiv(arg, imm);
}
ir::Opcode::UremImm => {
replace.urem(arg, imm);
}
// comparisons
ir::Opcode::IfcmpImm => {
replace.ifcmp(arg, imm);
}
_ => prev_pos = pos.position(),
};
}
// comparisons
InstructionData::IntCompareImm {
opcode: ir::Opcode::IcmpImm,
cond,
arg,
imm,
} => {
let imm = imm_const(&mut pos, arg, imm, true);
pos.func.dfg.replace(inst).icmp(cond, arg, imm);
}
_ => {
prev_pos = pos.position();
continue;
}
}
// Legalization implementations require fixpoint loop here.
// TODO: fix this.
pos.set_position(prev_pos);
}
}
}
/// Custom expansion for conditional trap instructions.
fn expand_cond_trap(
inst: ir::Inst,
func: &mut ir::Function,
cfg: &mut ControlFlowGraph,
opcode: ir::Opcode,
arg: ir::Value,
code: ir::TrapCode,
) {
// Parse the instruction.
let trapz = match opcode {
ir::Opcode::Trapz => true,
ir::Opcode::Trapnz | ir::Opcode::ResumableTrapnz => false,
_ => panic!("Expected cond trap: {}", func.dfg.display_inst(inst)),
};
// Split the block after `inst`:
//
// trapnz arg
// ..
//
// Becomes:
//
// brz arg, new_block_resume
// jump new_block_trap
//
// new_block_trap:
// trap
//
// new_block_resume:
// ..
let old_block = func.layout.pp_block(inst);
let new_block_trap = func.dfg.make_block();
let new_block_resume = func.dfg.make_block();
// Replace trap instruction by the inverted condition.
if trapz {
func.dfg.replace(inst).brnz(arg, new_block_resume, &[]);
} else {
func.dfg.replace(inst).brz(arg, new_block_resume, &[]);
}
// Add jump instruction after the inverted branch.
let mut pos = FuncCursor::new(func).after_inst(inst);
pos.use_srcloc(inst);
pos.ins().jump(new_block_trap, &[]);
// Insert the new label and the unconditional trap terminator.
pos.insert_block(new_block_trap);
match opcode {
ir::Opcode::Trapz | ir::Opcode::Trapnz => {
pos.ins().trap(code);
}
ir::Opcode::ResumableTrapnz => {
pos.ins().resumable_trap(code);
pos.ins().jump(new_block_resume, &[]);
}
_ => unreachable!(),
}
// Insert the new label and resume the execution when the trap fails.
pos.insert_block(new_block_resume);
// Finally update the CFG.
cfg.recompute_block(pos.func, old_block);
cfg.recompute_block(pos.func, new_block_resume);
cfg.recompute_block(pos.func, new_block_trap);
}