1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
/// An iterator that produces only the `T` values as long as the
/// inner iterator produces `Ok(T)`.
///
/// Used by [`process_results`](crate::process_results), see its docs
/// for more information.
#[must_use = "iterator adaptors are lazy and do nothing unless consumed"]
#[derive(Debug)]
pub struct ProcessResults<'a, I, E: 'a> {
error: &'a mut Result<(), E>,
iter: I,
}
impl<'a, I, T, E> Iterator for ProcessResults<'a, I, E>
where I: Iterator<Item = Result<T, E>>
{
type Item = T;
fn next(&mut self) -> Option<Self::Item> {
match self.iter.next() {
Some(Ok(x)) => Some(x),
Some(Err(e)) => {
*self.error = Err(e);
None
}
None => None,
}
}
fn size_hint(&self) -> (usize, Option<usize>) {
(0, self.iter.size_hint().1)
}
fn fold<B, F>(mut self, init: B, mut f: F) -> B
where
Self: Sized,
F: FnMut(B, Self::Item) -> B,
{
let error = self.error;
self.iter
.try_fold(init, |acc, opt| match opt {
Ok(x) => Ok(f(acc, x)),
Err(e) => {
*error = Err(e);
Err(acc)
}
})
.unwrap_or_else(|e| e)
}
}
/// “Lift” a function of the values of an iterator so that it can process
/// an iterator of `Result` values instead.
///
/// `iterable` is an iterator or iterable with `Result<T, E>` elements, where
/// `T` is the value type and `E` the error type.
///
/// `processor` is a closure that receives an adapted version of the iterable
/// as the only argument — the adapted iterator produces elements of type `T`,
/// as long as the original iterator produces `Ok` values.
///
/// If the original iterable produces an error at any point, the adapted
/// iterator ends and the `process_results` function will return the
/// error iself.
///
/// Otherwise, the return value from the closure is returned wrapped
/// inside `Ok`.
///
/// # Example
///
/// ```
/// use itertools::process_results;
///
/// type R = Result<i32, &'static str>;
///
/// let first_values: Vec<R> = vec![Ok(1), Ok(0), Ok(3)];
/// let second_values: Vec<R> = vec![Ok(2), Ok(1), Err("overflow")];
///
/// // “Lift” the iterator .max() method to work on the values in Results using process_results
///
/// let first_max = process_results(first_values, |iter| iter.max().unwrap_or(0));
/// let second_max = process_results(second_values, |iter| iter.max().unwrap_or(0));
///
/// assert_eq!(first_max, Ok(3));
/// assert!(second_max.is_err());
/// ```
pub fn process_results<I, F, T, E, R>(iterable: I, processor: F) -> Result<R, E>
where I: IntoIterator<Item = Result<T, E>>,
F: FnOnce(ProcessResults<I::IntoIter, E>) -> R
{
let iter = iterable.into_iter();
let mut error = Ok(());
let result = processor(ProcessResults { error: &mut error, iter });
error.map(|_| result)
}