1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658
// Copyright 2018-2020 Developers of the Rand project.
// Copyright 2017 The Rust Project Developers.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! A distribution uniformly sampling numbers within a given range.
//!
//! [`Uniform`] is the standard distribution to sample uniformly from a range;
//! e.g. `Uniform::new_inclusive(1, 6)` can sample integers from 1 to 6, like a
//! standard die. [`Rng::gen_range`] supports any type supported by
//! [`Uniform`].
//!
//! This distribution is provided with support for several primitive types
//! (all integer and floating-point types) as well as [`std::time::Duration`],
//! and supports extension to user-defined types via a type-specific *back-end*
//! implementation.
//!
//! The types [`UniformInt`], [`UniformFloat`] and [`UniformDuration`] are the
//! back-ends supporting sampling from primitive integer and floating-point
//! ranges as well as from [`std::time::Duration`]; these types do not normally
//! need to be used directly (unless implementing a derived back-end).
//!
//! # Example usage
//!
//! ```
//! use rand::{Rng, thread_rng};
//! use rand::distributions::Uniform;
//!
//! let mut rng = thread_rng();
//! let side = Uniform::new(-10.0, 10.0);
//!
//! // sample between 1 and 10 points
//! for _ in 0..rng.gen_range(1..=10) {
//! // sample a point from the square with sides -10 - 10 in two dimensions
//! let (x, y) = (rng.sample(side), rng.sample(side));
//! println!("Point: {}, {}", x, y);
//! }
//! ```
//!
//! # Extending `Uniform` to support a custom type
//!
//! To extend [`Uniform`] to support your own types, write a back-end which
//! implements the [`UniformSampler`] trait, then implement the [`SampleUniform`]
//! helper trait to "register" your back-end. See the `MyF32` example below.
//!
//! At a minimum, the back-end needs to store any parameters needed for sampling
//! (e.g. the target range) and implement `new`, `new_inclusive` and `sample`.
//! Those methods should include an assert to check the range is valid (i.e.
//! `low < high`). The example below merely wraps another back-end.
//!
//! The `new`, `new_inclusive` and `sample_single` functions use arguments of
//! type SampleBorrow<X> in order to support passing in values by reference or
//! by value. In the implementation of these functions, you can choose to
//! simply use the reference returned by [`SampleBorrow::borrow`], or you can choose
//! to copy or clone the value, whatever is appropriate for your type.
//!
//! ```
//! use rand::prelude::*;
//! use rand::distributions::uniform::{Uniform, SampleUniform,
//! UniformSampler, UniformFloat, SampleBorrow};
//!
//! struct MyF32(f32);
//!
//! #[derive(Clone, Copy, Debug)]
//! struct UniformMyF32(UniformFloat<f32>);
//!
//! impl UniformSampler for UniformMyF32 {
//! type X = MyF32;
//! fn new<B1, B2>(low: B1, high: B2) -> Self
//! where B1: SampleBorrow<Self::X> + Sized,
//! B2: SampleBorrow<Self::X> + Sized
//! {
//! UniformMyF32(UniformFloat::<f32>::new(low.borrow().0, high.borrow().0))
//! }
//! fn new_inclusive<B1, B2>(low: B1, high: B2) -> Self
//! where B1: SampleBorrow<Self::X> + Sized,
//! B2: SampleBorrow<Self::X> + Sized
//! {
//! UniformMyF32(UniformFloat::<f32>::new_inclusive(
//! low.borrow().0,
//! high.borrow().0,
//! ))
//! }
//! fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> Self::X {
//! MyF32(self.0.sample(rng))
//! }
//! }
//!
//! impl SampleUniform for MyF32 {
//! type Sampler = UniformMyF32;
//! }
//!
//! let (low, high) = (MyF32(17.0f32), MyF32(22.0f32));
//! let uniform = Uniform::new(low, high);
//! let x = uniform.sample(&mut thread_rng());
//! ```
//!
//! [`SampleUniform`]: crate::distributions::uniform::SampleUniform
//! [`UniformSampler`]: crate::distributions::uniform::UniformSampler
//! [`UniformInt`]: crate::distributions::uniform::UniformInt
//! [`UniformFloat`]: crate::distributions::uniform::UniformFloat
//! [`UniformDuration`]: crate::distributions::uniform::UniformDuration
//! [`SampleBorrow::borrow`]: crate::distributions::uniform::SampleBorrow::borrow
use core::time::Duration;
use core::ops::{Range, RangeInclusive};
use crate::distributions::float::IntoFloat;
use crate::distributions::utils::{BoolAsSIMD, FloatAsSIMD, FloatSIMDUtils, WideningMultiply};
use crate::distributions::Distribution;
use crate::{Rng, RngCore};
#[cfg(not(feature = "std"))]
#[allow(unused_imports)] // rustc doesn't detect that this is actually used
use crate::distributions::utils::Float;
#[cfg(feature = "simd_support")] use packed_simd::*;
#[cfg(feature = "serde1")]
use serde::{Serialize, Deserialize};
/// Sample values uniformly between two bounds.
///
/// [`Uniform::new`] and [`Uniform::new_inclusive`] construct a uniform
/// distribution sampling from the given range; these functions may do extra
/// work up front to make sampling of multiple values faster. If only one sample
/// from the range is required, [`Rng::gen_range`] can be more efficient.
///
/// When sampling from a constant range, many calculations can happen at
/// compile-time and all methods should be fast; for floating-point ranges and
/// the full range of integer types this should have comparable performance to
/// the `Standard` distribution.
///
/// Steps are taken to avoid bias which might be present in naive
/// implementations; for example `rng.gen::<u8>() % 170` samples from the range
/// `[0, 169]` but is twice as likely to select numbers less than 85 than other
/// values. Further, the implementations here give more weight to the high-bits
/// generated by the RNG than the low bits, since with some RNGs the low-bits
/// are of lower quality than the high bits.
///
/// Implementations must sample in `[low, high)` range for
/// `Uniform::new(low, high)`, i.e., excluding `high`. In particular, care must
/// be taken to ensure that rounding never results values `< low` or `>= high`.
///
/// # Example
///
/// ```
/// use rand::distributions::{Distribution, Uniform};
///
/// let between = Uniform::from(10..10000);
/// let mut rng = rand::thread_rng();
/// let mut sum = 0;
/// for _ in 0..1000 {
/// sum += between.sample(&mut rng);
/// }
/// println!("{}", sum);
/// ```
///
/// For a single sample, [`Rng::gen_range`] may be preferred:
///
/// ```
/// use rand::Rng;
///
/// let mut rng = rand::thread_rng();
/// println!("{}", rng.gen_range(0..10));
/// ```
///
/// [`new`]: Uniform::new
/// [`new_inclusive`]: Uniform::new_inclusive
/// [`Rng::gen_range`]: Rng::gen_range
#[derive(Clone, Copy, Debug, PartialEq)]
#[cfg_attr(feature = "serde1", derive(Serialize, Deserialize))]
#[cfg_attr(feature = "serde1", serde(bound(serialize = "X::Sampler: Serialize")))]
#[cfg_attr(feature = "serde1", serde(bound(deserialize = "X::Sampler: Deserialize<'de>")))]
pub struct Uniform<X: SampleUniform>(X::Sampler);
impl<X: SampleUniform> Uniform<X> {
/// Create a new `Uniform` instance which samples uniformly from the half
/// open range `[low, high)` (excluding `high`). Panics if `low >= high`.
pub fn new<B1, B2>(low: B1, high: B2) -> Uniform<X>
where
B1: SampleBorrow<X> + Sized,
B2: SampleBorrow<X> + Sized,
{
Uniform(X::Sampler::new(low, high))
}
/// Create a new `Uniform` instance which samples uniformly from the closed
/// range `[low, high]` (inclusive). Panics if `low > high`.
pub fn new_inclusive<B1, B2>(low: B1, high: B2) -> Uniform<X>
where
B1: SampleBorrow<X> + Sized,
B2: SampleBorrow<X> + Sized,
{
Uniform(X::Sampler::new_inclusive(low, high))
}
}
impl<X: SampleUniform> Distribution<X> for Uniform<X> {
fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> X {
self.0.sample(rng)
}
}
/// Helper trait for creating objects using the correct implementation of
/// [`UniformSampler`] for the sampling type.
///
/// See the [module documentation] on how to implement [`Uniform`] range
/// sampling for a custom type.
///
/// [module documentation]: crate::distributions::uniform
pub trait SampleUniform: Sized {
/// The `UniformSampler` implementation supporting type `X`.
type Sampler: UniformSampler<X = Self>;
}
/// Helper trait handling actual uniform sampling.
///
/// See the [module documentation] on how to implement [`Uniform`] range
/// sampling for a custom type.
///
/// Implementation of [`sample_single`] is optional, and is only useful when
/// the implementation can be faster than `Self::new(low, high).sample(rng)`.
///
/// [module documentation]: crate::distributions::uniform
/// [`sample_single`]: UniformSampler::sample_single
pub trait UniformSampler: Sized {
/// The type sampled by this implementation.
type X;
/// Construct self, with inclusive lower bound and exclusive upper bound
/// `[low, high)`.
///
/// Usually users should not call this directly but instead use
/// `Uniform::new`, which asserts that `low < high` before calling this.
fn new<B1, B2>(low: B1, high: B2) -> Self
where
B1: SampleBorrow<Self::X> + Sized,
B2: SampleBorrow<Self::X> + Sized;
/// Construct self, with inclusive bounds `[low, high]`.
///
/// Usually users should not call this directly but instead use
/// `Uniform::new_inclusive`, which asserts that `low <= high` before
/// calling this.
fn new_inclusive<B1, B2>(low: B1, high: B2) -> Self
where
B1: SampleBorrow<Self::X> + Sized,
B2: SampleBorrow<Self::X> + Sized;
/// Sample a value.
fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> Self::X;
/// Sample a single value uniformly from a range with inclusive lower bound
/// and exclusive upper bound `[low, high)`.
///
/// By default this is implemented using
/// `UniformSampler::new(low, high).sample(rng)`. However, for some types
/// more optimal implementations for single usage may be provided via this
/// method (which is the case for integers and floats).
/// Results may not be identical.
///
/// Note that to use this method in a generic context, the type needs to be
/// retrieved via `SampleUniform::Sampler` as follows:
/// ```
/// use rand::{thread_rng, distributions::uniform::{SampleUniform, UniformSampler}};
/// # #[allow(unused)]
/// fn sample_from_range<T: SampleUniform>(lb: T, ub: T) -> T {
/// let mut rng = thread_rng();
/// <T as SampleUniform>::Sampler::sample_single(lb, ub, &mut rng)
/// }
/// ```
fn sample_single<R: Rng + ?Sized, B1, B2>(low: B1, high: B2, rng: &mut R) -> Self::X
where
B1: SampleBorrow<Self::X> + Sized,
B2: SampleBorrow<Self::X> + Sized,
{
let uniform: Self = UniformSampler::new(low, high);
uniform.sample(rng)
}
/// Sample a single value uniformly from a range with inclusive lower bound
/// and inclusive upper bound `[low, high]`.
///
/// By default this is implemented using
/// `UniformSampler::new_inclusive(low, high).sample(rng)`. However, for
/// some types more optimal implementations for single usage may be provided
/// via this method.
/// Results may not be identical.
fn sample_single_inclusive<R: Rng + ?Sized, B1, B2>(low: B1, high: B2, rng: &mut R)
-> Self::X
where B1: SampleBorrow<Self::X> + Sized,
B2: SampleBorrow<Self::X> + Sized
{
let uniform: Self = UniformSampler::new_inclusive(low, high);
uniform.sample(rng)
}
}
impl<X: SampleUniform> From<Range<X>> for Uniform<X> {
fn from(r: ::core::ops::Range<X>) -> Uniform<X> {
Uniform::new(r.start, r.end)
}
}
impl<X: SampleUniform> From<RangeInclusive<X>> for Uniform<X> {
fn from(r: ::core::ops::RangeInclusive<X>) -> Uniform<X> {
Uniform::new_inclusive(r.start(), r.end())
}
}
/// Helper trait similar to [`Borrow`] but implemented
/// only for SampleUniform and references to SampleUniform in
/// order to resolve ambiguity issues.
///
/// [`Borrow`]: std::borrow::Borrow
pub trait SampleBorrow<Borrowed> {
/// Immutably borrows from an owned value. See [`Borrow::borrow`]
///
/// [`Borrow::borrow`]: std::borrow::Borrow::borrow
fn borrow(&self) -> &Borrowed;
}
impl<Borrowed> SampleBorrow<Borrowed> for Borrowed
where Borrowed: SampleUniform
{
#[inline(always)]
fn borrow(&self) -> &Borrowed {
self
}
}
impl<'a, Borrowed> SampleBorrow<Borrowed> for &'a Borrowed
where Borrowed: SampleUniform
{
#[inline(always)]
fn borrow(&self) -> &Borrowed {
*self
}
}
/// Range that supports generating a single sample efficiently.
///
/// Any type implementing this trait can be used to specify the sampled range
/// for `Rng::gen_range`.
pub trait SampleRange<T> {
/// Generate a sample from the given range.
fn sample_single<R: RngCore + ?Sized>(self, rng: &mut R) -> T;
/// Check whether the range is empty.
fn is_empty(&self) -> bool;
}
impl<T: SampleUniform + PartialOrd> SampleRange<T> for Range<T> {
#[inline]
fn sample_single<R: RngCore + ?Sized>(self, rng: &mut R) -> T {
T::Sampler::sample_single(self.start, self.end, rng)
}
#[inline]
fn is_empty(&self) -> bool {
!(self.start < self.end)
}
}
impl<T: SampleUniform + PartialOrd> SampleRange<T> for RangeInclusive<T> {
#[inline]
fn sample_single<R: RngCore + ?Sized>(self, rng: &mut R) -> T {
T::Sampler::sample_single_inclusive(self.start(), self.end(), rng)
}
#[inline]
fn is_empty(&self) -> bool {
!(self.start() <= self.end())
}
}
////////////////////////////////////////////////////////////////////////////////
// What follows are all back-ends.
/// The back-end implementing [`UniformSampler`] for integer types.
///
/// Unless you are implementing [`UniformSampler`] for your own type, this type
/// should not be used directly, use [`Uniform`] instead.
///
/// # Implementation notes
///
/// For simplicity, we use the same generic struct `UniformInt<X>` for all
/// integer types `X`. This gives us only one field type, `X`; to store unsigned
/// values of this size, we take use the fact that these conversions are no-ops.
///
/// For a closed range, the number of possible numbers we should generate is
/// `range = (high - low + 1)`. To avoid bias, we must ensure that the size of
/// our sample space, `zone`, is a multiple of `range`; other values must be
/// rejected (by replacing with a new random sample).
///
/// As a special case, we use `range = 0` to represent the full range of the
/// result type (i.e. for `new_inclusive($ty::MIN, $ty::MAX)`).
///
/// The optimum `zone` is the largest product of `range` which fits in our
/// (unsigned) target type. We calculate this by calculating how many numbers we
/// must reject: `reject = (MAX + 1) % range = (MAX - range + 1) % range`. Any (large)
/// product of `range` will suffice, thus in `sample_single` we multiply by a
/// power of 2 via bit-shifting (faster but may cause more rejections).
///
/// The smallest integer PRNGs generate is `u32`. For 8- and 16-bit outputs we
/// use `u32` for our `zone` and samples (because it's not slower and because
/// it reduces the chance of having to reject a sample). In this case we cannot
/// store `zone` in the target type since it is too large, however we know
/// `ints_to_reject < range <= $unsigned::MAX`.
///
/// An alternative to using a modulus is widening multiply: After a widening
/// multiply by `range`, the result is in the high word. Then comparing the low
/// word against `zone` makes sure our distribution is uniform.
#[derive(Clone, Copy, Debug, PartialEq)]
#[cfg_attr(feature = "serde1", derive(Serialize, Deserialize))]
pub struct UniformInt<X> {
low: X,
range: X,
z: X, // either ints_to_reject or zone depending on implementation
}
macro_rules! uniform_int_impl {
($ty:ty, $unsigned:ident, $u_large:ident) => {
impl SampleUniform for $ty {
type Sampler = UniformInt<$ty>;
}
impl UniformSampler for UniformInt<$ty> {
// We play free and fast with unsigned vs signed here
// (when $ty is signed), but that's fine, since the
// contract of this macro is for $ty and $unsigned to be
// "bit-equal", so casting between them is a no-op.
type X = $ty;
#[inline] // if the range is constant, this helps LLVM to do the
// calculations at compile-time.
fn new<B1, B2>(low_b: B1, high_b: B2) -> Self
where
B1: SampleBorrow<Self::X> + Sized,
B2: SampleBorrow<Self::X> + Sized,
{
let low = *low_b.borrow();
let high = *high_b.borrow();
assert!(low < high, "Uniform::new called with `low >= high`");
UniformSampler::new_inclusive(low, high - 1)
}
#[inline] // if the range is constant, this helps LLVM to do the
// calculations at compile-time.
fn new_inclusive<B1, B2>(low_b: B1, high_b: B2) -> Self
where
B1: SampleBorrow<Self::X> + Sized,
B2: SampleBorrow<Self::X> + Sized,
{
let low = *low_b.borrow();
let high = *high_b.borrow();
assert!(
low <= high,
"Uniform::new_inclusive called with `low > high`"
);
let unsigned_max = ::core::$u_large::MAX;
let range = high.wrapping_sub(low).wrapping_add(1) as $unsigned;
let ints_to_reject = if range > 0 {
let range = $u_large::from(range);
(unsigned_max - range + 1) % range
} else {
0
};
UniformInt {
low,
// These are really $unsigned values, but store as $ty:
range: range as $ty,
z: ints_to_reject as $unsigned as $ty,
}
}
#[inline]
fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> Self::X {
let range = self.range as $unsigned as $u_large;
if range > 0 {
let unsigned_max = ::core::$u_large::MAX;
let zone = unsigned_max - (self.z as $unsigned as $u_large);
loop {
let v: $u_large = rng.gen();
let (hi, lo) = v.wmul(range);
if lo <= zone {
return self.low.wrapping_add(hi as $ty);
}
}
} else {
// Sample from the entire integer range.
rng.gen()
}
}
#[inline]
fn sample_single<R: Rng + ?Sized, B1, B2>(low_b: B1, high_b: B2, rng: &mut R) -> Self::X
where
B1: SampleBorrow<Self::X> + Sized,
B2: SampleBorrow<Self::X> + Sized,
{
let low = *low_b.borrow();
let high = *high_b.borrow();
assert!(low < high, "UniformSampler::sample_single: low >= high");
Self::sample_single_inclusive(low, high - 1, rng)
}
#[inline]
fn sample_single_inclusive<R: Rng + ?Sized, B1, B2>(low_b: B1, high_b: B2, rng: &mut R) -> Self::X
where
B1: SampleBorrow<Self::X> + Sized,
B2: SampleBorrow<Self::X> + Sized,
{
let low = *low_b.borrow();
let high = *high_b.borrow();
assert!(low <= high, "UniformSampler::sample_single_inclusive: low > high");
let range = high.wrapping_sub(low).wrapping_add(1) as $unsigned as $u_large;
// If the above resulted in wrap-around to 0, the range is $ty::MIN..=$ty::MAX,
// and any integer will do.
if range == 0 {
return rng.gen();
}
let zone = if ::core::$unsigned::MAX <= ::core::u16::MAX as $unsigned {
// Using a modulus is faster than the approximation for
// i8 and i16. I suppose we trade the cost of one
// modulus for near-perfect branch prediction.
let unsigned_max: $u_large = ::core::$u_large::MAX;
let ints_to_reject = (unsigned_max - range + 1) % range;
unsigned_max - ints_to_reject
} else {
// conservative but fast approximation. `- 1` is necessary to allow the
// same comparison without bias.
(range << range.leading_zeros()).wrapping_sub(1)
};
loop {
let v: $u_large = rng.gen();
let (hi, lo) = v.wmul(range);
if lo <= zone {
return low.wrapping_add(hi as $ty);
}
}
}
}
};
}
uniform_int_impl! { i8, u8, u32 }
uniform_int_impl! { i16, u16, u32 }
uniform_int_impl! { i32, u32, u32 }
uniform_int_impl! { i64, u64, u64 }
uniform_int_impl! { i128, u128, u128 }
uniform_int_impl! { isize, usize, usize }
uniform_int_impl! { u8, u8, u32 }
uniform_int_impl! { u16, u16, u32 }
uniform_int_impl! { u32, u32, u32 }
uniform_int_impl! { u64, u64, u64 }
uniform_int_impl! { usize, usize, usize }
uniform_int_impl! { u128, u128, u128 }
#[cfg(feature = "simd_support")]
macro_rules! uniform_simd_int_impl {
($ty:ident, $unsigned:ident, $u_scalar:ident) => {
// The "pick the largest zone that can fit in an `u32`" optimization
// is less useful here. Multiple lanes complicate things, we don't
// know the PRNG's minimal output size, and casting to a larger vector
// is generally a bad idea for SIMD performance. The user can still
// implement it manually.
// TODO: look into `Uniform::<u32x4>::new(0u32, 100)` functionality
// perhaps `impl SampleUniform for $u_scalar`?
impl SampleUniform for $ty {
type Sampler = UniformInt<$ty>;
}
impl UniformSampler for UniformInt<$ty> {
type X = $ty;
#[inline] // if the range is constant, this helps LLVM to do the
// calculations at compile-time.
fn new<B1, B2>(low_b: B1, high_b: B2) -> Self
where B1: SampleBorrow<Self::X> + Sized,
B2: SampleBorrow<Self::X> + Sized
{
let low = *low_b.borrow();
let high = *high_b.borrow();
assert!(low.lt(high).all(), "Uniform::new called with `low >= high`");
UniformSampler::new_inclusive(low, high - 1)
}
#[inline] // if the range is constant, this helps LLVM to do the
// calculations at compile-time.
fn new_inclusive<B1, B2>(low_b: B1, high_b: B2) -> Self
where B1: SampleBorrow<Self::X> + Sized,
B2: SampleBorrow<Self::X> + Sized
{
let low = *low_b.borrow();
let high = *high_b.borrow();
assert!(low.le(high).all(),
"Uniform::new_inclusive called with `low > high`");
let unsigned_max = ::core::$u_scalar::MAX;
// NOTE: these may need to be replaced with explicitly
// wrapping operations if `packed_simd` changes
let range: $unsigned = ((high - low) + 1).cast();
// `% 0` will panic at runtime.
let not_full_range = range.gt($unsigned::splat(0));
// replacing 0 with `unsigned_max` allows a faster `select`
// with bitwise OR
let modulo = not_full_range.select(range, $unsigned::splat(unsigned_max));
// wrapping addition
let ints_to_reject = (unsigned_max - range + 1) % modulo;
// When `range` is 0, `lo` of `v.wmul(range)` will always be
// zero which means only one sample is needed.
let zone = unsigned_max - ints_to_reject;
UniformInt {
low,
// These are really $unsigned values, but store as $ty:
range: range.cast(),
z: zone.cast(),
}
}
fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> Self::X {
let range: $unsigned = self.range.cast();
let zone: $unsigned = self.z.cast();
// This might seem very slow, generating a whole new
// SIMD vector for every sample rejection. For most uses
// though, the chance of rejection is small and provides good
// general performance. With multiple lanes, that chance is
// multiplied. To mitigate this, we replace only the lanes of
// the vector which fail, iteratively reducing the chance of
// rejection. The replacement method does however add a little
// overhead. Benchmarking or calculating probabilities might
// reveal contexts where this replacement method is slower.
let mut v: $unsigned = rng.gen();
loop {
let (hi, lo) = v.wmul(range);
let mask = lo.le(zone);
if mask.all() {
let hi: $ty = hi.cast();
// wrapping addition
let result = self.low + hi;
// `select` here compiles to a blend operation
// When `range.eq(0).none()` the compare and blend
// operations are avoided.
let v: $ty = v.cast();
return range.gt($unsigned::splat(0)).select(result, v);
}
// Replace only the failing lanes
v = mask.select(v, rng.gen());
}
}
}
};
// bulk implementation
($(($unsigned:ident, $signed:ident),)+ $u_scalar:ident) => {
$(
uniform_simd_int_impl!($unsigned, $unsigned, $u_scalar);
uniform_simd_int_impl!($signed, $unsigned, $u_scalar);
)+
};
}
#[cfg(feature = "simd_support")]
uniform_simd_int_impl! {
(u64x2, i64x2),
(u64x4, i64x4),
(u64x8, i64x8),
u64
}
#[cfg(feature = "simd_support")]
uniform_simd_int_impl! {
(u32x2, i32x2),
(u32x4, i32x4),
(u32x8, i32x8),
(u32x16, i32x16),
u32
}
#[cfg(feature = "simd_support")]
uniform_simd_int_impl! {
(u16x2, i16x2),
(u16x4, i16x4),
(u16x8, i16x8),
(u16x16, i16x16),
(u16x32, i16x32),
u16
}
#[cfg(feature = "simd_support")]
uniform_simd_int_impl! {
(u8x2, i8x2),
(u8x4, i8x4),
(u8x8, i8x8),
(u8x16, i8x16),
(u8x32, i8x32),
(u8x64, i8x64),
u8
}
impl SampleUniform for char {
type Sampler = UniformChar;
}
/// The back-end implementing [`UniformSampler`] for `char`.
///
/// Unless you are implementing [`UniformSampler`] for your own type, this type
/// should not be used directly, use [`Uniform`] instead.
///
/// This differs from integer range sampling since the range `0xD800..=0xDFFF`
/// are used for surrogate pairs in UCS and UTF-16, and consequently are not
/// valid Unicode code points. We must therefore avoid sampling values in this
/// range.
#[derive(Clone, Copy, Debug)]
#[cfg_attr(feature = "serde1", derive(Serialize, Deserialize))]
pub struct UniformChar {
sampler: UniformInt<u32>,
}
/// UTF-16 surrogate range start
const CHAR_SURROGATE_START: u32 = 0xD800;
/// UTF-16 surrogate range size
const CHAR_SURROGATE_LEN: u32 = 0xE000 - CHAR_SURROGATE_START;
/// Convert `char` to compressed `u32`
fn char_to_comp_u32(c: char) -> u32 {
match c as u32 {
c if c >= CHAR_SURROGATE_START => c - CHAR_SURROGATE_LEN,
c => c,
}
}
impl UniformSampler for UniformChar {
type X = char;
#[inline] // if the range is constant, this helps LLVM to do the
// calculations at compile-time.
fn new<B1, B2>(low_b: B1, high_b: B2) -> Self
where
B1: SampleBorrow<Self::X> + Sized,
B2: SampleBorrow<Self::X> + Sized,
{
let low = char_to_comp_u32(*low_b.borrow());
let high = char_to_comp_u32(*high_b.borrow());
let sampler = UniformInt::<u32>::new(low, high);
UniformChar { sampler }
}
#[inline] // if the range is constant, this helps LLVM to do the
// calculations at compile-time.
fn new_inclusive<B1, B2>(low_b: B1, high_b: B2) -> Self
where
B1: SampleBorrow<Self::X> + Sized,
B2: SampleBorrow<Self::X> + Sized,
{
let low = char_to_comp_u32(*low_b.borrow());
let high = char_to_comp_u32(*high_b.borrow());
let sampler = UniformInt::<u32>::new_inclusive(low, high);
UniformChar { sampler }
}
fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> Self::X {
let mut x = self.sampler.sample(rng);
if x >= CHAR_SURROGATE_START {
x += CHAR_SURROGATE_LEN;
}
// SAFETY: x must not be in surrogate range or greater than char::MAX.
// This relies on range constructors which accept char arguments.
// Validity of input char values is assumed.
unsafe { core::char::from_u32_unchecked(x) }
}
}
/// The back-end implementing [`UniformSampler`] for floating-point types.
///
/// Unless you are implementing [`UniformSampler`] for your own type, this type
/// should not be used directly, use [`Uniform`] instead.
///
/// # Implementation notes
///
/// Instead of generating a float in the `[0, 1)` range using [`Standard`], the
/// `UniformFloat` implementation converts the output of an PRNG itself. This
/// way one or two steps can be optimized out.
///
/// The floats are first converted to a value in the `[1, 2)` interval using a
/// transmute-based method, and then mapped to the expected range with a
/// multiply and addition. Values produced this way have what equals 23 bits of
/// random digits for an `f32`, and 52 for an `f64`.
///
/// [`new`]: UniformSampler::new
/// [`new_inclusive`]: UniformSampler::new_inclusive
/// [`Standard`]: crate::distributions::Standard
#[derive(Clone, Copy, Debug, PartialEq)]
#[cfg_attr(feature = "serde1", derive(Serialize, Deserialize))]
pub struct UniformFloat<X> {
low: X,
scale: X,
}
macro_rules! uniform_float_impl {
($ty:ty, $uty:ident, $f_scalar:ident, $u_scalar:ident, $bits_to_discard:expr) => {
impl SampleUniform for $ty {
type Sampler = UniformFloat<$ty>;
}
impl UniformSampler for UniformFloat<$ty> {
type X = $ty;
fn new<B1, B2>(low_b: B1, high_b: B2) -> Self
where
B1: SampleBorrow<Self::X> + Sized,
B2: SampleBorrow<Self::X> + Sized,
{
let low = *low_b.borrow();
let high = *high_b.borrow();
debug_assert!(
low.all_finite(),
"Uniform::new called with `low` non-finite."
);
debug_assert!(
high.all_finite(),
"Uniform::new called with `high` non-finite."
);
assert!(low.all_lt(high), "Uniform::new called with `low >= high`");
let max_rand = <$ty>::splat(
(::core::$u_scalar::MAX >> $bits_to_discard).into_float_with_exponent(0) - 1.0,
);
let mut scale = high - low;
assert!(scale.all_finite(), "Uniform::new: range overflow");
loop {
let mask = (scale * max_rand + low).ge_mask(high);
if mask.none() {
break;
}
scale = scale.decrease_masked(mask);
}
debug_assert!(<$ty>::splat(0.0).all_le(scale));
UniformFloat { low, scale }
}
fn new_inclusive<B1, B2>(low_b: B1, high_b: B2) -> Self
where
B1: SampleBorrow<Self::X> + Sized,
B2: SampleBorrow<Self::X> + Sized,
{
let low = *low_b.borrow();
let high = *high_b.borrow();
debug_assert!(
low.all_finite(),
"Uniform::new_inclusive called with `low` non-finite."
);
debug_assert!(
high.all_finite(),
"Uniform::new_inclusive called with `high` non-finite."
);
assert!(
low.all_le(high),
"Uniform::new_inclusive called with `low > high`"
);
let max_rand = <$ty>::splat(
(::core::$u_scalar::MAX >> $bits_to_discard).into_float_with_exponent(0) - 1.0,
);
let mut scale = (high - low) / max_rand;
assert!(scale.all_finite(), "Uniform::new_inclusive: range overflow");
loop {
let mask = (scale * max_rand + low).gt_mask(high);
if mask.none() {
break;
}
scale = scale.decrease_masked(mask);
}
debug_assert!(<$ty>::splat(0.0).all_le(scale));
UniformFloat { low, scale }
}
fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> Self::X {
// Generate a value in the range [1, 2)
let value1_2 = (rng.gen::<$uty>() >> $bits_to_discard).into_float_with_exponent(0);
// Get a value in the range [0, 1) in order to avoid
// overflowing into infinity when multiplying with scale
let value0_1 = value1_2 - 1.0;
// We don't use `f64::mul_add`, because it is not available with
// `no_std`. Furthermore, it is slower for some targets (but
// faster for others). However, the order of multiplication and
// addition is important, because on some platforms (e.g. ARM)
// it will be optimized to a single (non-FMA) instruction.
value0_1 * self.scale + self.low
}
#[inline]
fn sample_single<R: Rng + ?Sized, B1, B2>(low_b: B1, high_b: B2, rng: &mut R) -> Self::X
where
B1: SampleBorrow<Self::X> + Sized,
B2: SampleBorrow<Self::X> + Sized,
{
let low = *low_b.borrow();
let high = *high_b.borrow();
debug_assert!(
low.all_finite(),
"UniformSampler::sample_single called with `low` non-finite."
);
debug_assert!(
high.all_finite(),
"UniformSampler::sample_single called with `high` non-finite."
);
assert!(
low.all_lt(high),
"UniformSampler::sample_single: low >= high"
);
let mut scale = high - low;
assert!(scale.all_finite(), "UniformSampler::sample_single: range overflow");
loop {
// Generate a value in the range [1, 2)
let value1_2 =
(rng.gen::<$uty>() >> $bits_to_discard).into_float_with_exponent(0);
// Get a value in the range [0, 1) in order to avoid
// overflowing into infinity when multiplying with scale
let value0_1 = value1_2 - 1.0;
// Doing multiply before addition allows some architectures
// to use a single instruction.
let res = value0_1 * scale + low;
debug_assert!(low.all_le(res) || !scale.all_finite());
if res.all_lt(high) {
return res;
}
// This handles a number of edge cases.
// * `low` or `high` is NaN. In this case `scale` and
// `res` are going to end up as NaN.
// * `low` is negative infinity and `high` is finite.
// `scale` is going to be infinite and `res` will be
// NaN.
// * `high` is positive infinity and `low` is finite.
// `scale` is going to be infinite and `res` will
// be infinite or NaN (if value0_1 is 0).
// * `low` is negative infinity and `high` is positive
// infinity. `scale` will be infinite and `res` will
// be NaN.
// * `low` and `high` are finite, but `high - low`
// overflows to infinite. `scale` will be infinite
// and `res` will be infinite or NaN (if value0_1 is 0).
// So if `high` or `low` are non-finite, we are guaranteed
// to fail the `res < high` check above and end up here.
//
// While we technically should check for non-finite `low`
// and `high` before entering the loop, by doing the checks
// here instead, we allow the common case to avoid these
// checks. But we are still guaranteed that if `low` or
// `high` are non-finite we'll end up here and can do the
// appropriate checks.
//
// Likewise `high - low` overflowing to infinity is also
// rare, so handle it here after the common case.
let mask = !scale.finite_mask();
if mask.any() {
assert!(
low.all_finite() && high.all_finite(),
"Uniform::sample_single: low and high must be finite"
);
scale = scale.decrease_masked(mask);
}
}
}
}
};
}
uniform_float_impl! { f32, u32, f32, u32, 32 - 23 }
uniform_float_impl! { f64, u64, f64, u64, 64 - 52 }
#[cfg(feature = "simd_support")]
uniform_float_impl! { f32x2, u32x2, f32, u32, 32 - 23 }
#[cfg(feature = "simd_support")]
uniform_float_impl! { f32x4, u32x4, f32, u32, 32 - 23 }
#[cfg(feature = "simd_support")]
uniform_float_impl! { f32x8, u32x8, f32, u32, 32 - 23 }
#[cfg(feature = "simd_support")]
uniform_float_impl! { f32x16, u32x16, f32, u32, 32 - 23 }
#[cfg(feature = "simd_support")]
uniform_float_impl! { f64x2, u64x2, f64, u64, 64 - 52 }
#[cfg(feature = "simd_support")]
uniform_float_impl! { f64x4, u64x4, f64, u64, 64 - 52 }
#[cfg(feature = "simd_support")]
uniform_float_impl! { f64x8, u64x8, f64, u64, 64 - 52 }
/// The back-end implementing [`UniformSampler`] for `Duration`.
///
/// Unless you are implementing [`UniformSampler`] for your own types, this type
/// should not be used directly, use [`Uniform`] instead.
#[derive(Clone, Copy, Debug)]
#[cfg_attr(feature = "serde1", derive(Serialize, Deserialize))]
pub struct UniformDuration {
mode: UniformDurationMode,
offset: u32,
}
#[derive(Debug, Copy, Clone)]
#[cfg_attr(feature = "serde1", derive(Serialize, Deserialize))]
enum UniformDurationMode {
Small {
secs: u64,
nanos: Uniform<u32>,
},
Medium {
nanos: Uniform<u64>,
},
Large {
max_secs: u64,
max_nanos: u32,
secs: Uniform<u64>,
},
}
impl SampleUniform for Duration {
type Sampler = UniformDuration;
}
impl UniformSampler for UniformDuration {
type X = Duration;
#[inline]
fn new<B1, B2>(low_b: B1, high_b: B2) -> Self
where
B1: SampleBorrow<Self::X> + Sized,
B2: SampleBorrow<Self::X> + Sized,
{
let low = *low_b.borrow();
let high = *high_b.borrow();
assert!(low < high, "Uniform::new called with `low >= high`");
UniformDuration::new_inclusive(low, high - Duration::new(0, 1))
}
#[inline]
fn new_inclusive<B1, B2>(low_b: B1, high_b: B2) -> Self
where
B1: SampleBorrow<Self::X> + Sized,
B2: SampleBorrow<Self::X> + Sized,
{
let low = *low_b.borrow();
let high = *high_b.borrow();
assert!(
low <= high,
"Uniform::new_inclusive called with `low > high`"
);
let low_s = low.as_secs();
let low_n = low.subsec_nanos();
let mut high_s = high.as_secs();
let mut high_n = high.subsec_nanos();
if high_n < low_n {
high_s -= 1;
high_n += 1_000_000_000;
}
let mode = if low_s == high_s {
UniformDurationMode::Small {
secs: low_s,
nanos: Uniform::new_inclusive(low_n, high_n),
}
} else {
let max = high_s
.checked_mul(1_000_000_000)
.and_then(|n| n.checked_add(u64::from(high_n)));
if let Some(higher_bound) = max {
let lower_bound = low_s * 1_000_000_000 + u64::from(low_n);
UniformDurationMode::Medium {
nanos: Uniform::new_inclusive(lower_bound, higher_bound),
}
} else {
// An offset is applied to simplify generation of nanoseconds
let max_nanos = high_n - low_n;
UniformDurationMode::Large {
max_secs: high_s,
max_nanos,
secs: Uniform::new_inclusive(low_s, high_s),
}
}
};
UniformDuration {
mode,
offset: low_n,
}
}
#[inline]
fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> Duration {
match self.mode {
UniformDurationMode::Small { secs, nanos } => {
let n = nanos.sample(rng);
Duration::new(secs, n)
}
UniformDurationMode::Medium { nanos } => {
let nanos = nanos.sample(rng);
Duration::new(nanos / 1_000_000_000, (nanos % 1_000_000_000) as u32)
}
UniformDurationMode::Large {
max_secs,
max_nanos,
secs,
} => {
// constant folding means this is at least as fast as `Rng::sample(Range)`
let nano_range = Uniform::new(0, 1_000_000_000);
loop {
let s = secs.sample(rng);
let n = nano_range.sample(rng);
if !(s == max_secs && n > max_nanos) {
let sum = n + self.offset;
break Duration::new(s, sum);
}
}
}
}
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::rngs::mock::StepRng;
#[test]
#[cfg(feature = "serde1")]
fn test_serialization_uniform_duration() {
let distr = UniformDuration::new(Duration::from_secs(10), Duration::from_secs(60));
let de_distr: UniformDuration = bincode::deserialize(&bincode::serialize(&distr).unwrap()).unwrap();
assert_eq!(
distr.offset, de_distr.offset
);
match (distr.mode, de_distr.mode) {
(UniformDurationMode::Small {secs: a_secs, nanos: a_nanos}, UniformDurationMode::Small {secs, nanos}) => {
assert_eq!(a_secs, secs);
assert_eq!(a_nanos.0.low, nanos.0.low);
assert_eq!(a_nanos.0.range, nanos.0.range);
assert_eq!(a_nanos.0.z, nanos.0.z);
}
(UniformDurationMode::Medium {nanos: a_nanos} , UniformDurationMode::Medium {nanos}) => {
assert_eq!(a_nanos.0.low, nanos.0.low);
assert_eq!(a_nanos.0.range, nanos.0.range);
assert_eq!(a_nanos.0.z, nanos.0.z);
}
(UniformDurationMode::Large {max_secs:a_max_secs, max_nanos:a_max_nanos, secs:a_secs}, UniformDurationMode::Large {max_secs, max_nanos, secs} ) => {
assert_eq!(a_max_secs, max_secs);
assert_eq!(a_max_nanos, max_nanos);
assert_eq!(a_secs.0.low, secs.0.low);
assert_eq!(a_secs.0.range, secs.0.range);
assert_eq!(a_secs.0.z, secs.0.z);
}
_ => panic!("`UniformDurationMode` was not serialized/deserialized correctly")
}
}
#[test]
#[cfg(feature = "serde1")]
fn test_uniform_serialization() {
let unit_box: Uniform<i32> = Uniform::new(-1, 1);
let de_unit_box: Uniform<i32> = bincode::deserialize(&bincode::serialize(&unit_box).unwrap()).unwrap();
assert_eq!(unit_box.0.low, de_unit_box.0.low);
assert_eq!(unit_box.0.range, de_unit_box.0.range);
assert_eq!(unit_box.0.z, de_unit_box.0.z);
let unit_box: Uniform<f32> = Uniform::new(-1., 1.);
let de_unit_box: Uniform<f32> = bincode::deserialize(&bincode::serialize(&unit_box).unwrap()).unwrap();
assert_eq!(unit_box.0.low, de_unit_box.0.low);
assert_eq!(unit_box.0.scale, de_unit_box.0.scale);
}
#[should_panic]
#[test]
fn test_uniform_bad_limits_equal_int() {
Uniform::new(10, 10);
}
#[test]
fn test_uniform_good_limits_equal_int() {
let mut rng = crate::test::rng(804);
let dist = Uniform::new_inclusive(10, 10);
for _ in 0..20 {
assert_eq!(rng.sample(dist), 10);
}
}
#[should_panic]
#[test]
fn test_uniform_bad_limits_flipped_int() {
Uniform::new(10, 5);
}
#[test]
#[cfg_attr(miri, ignore)] // Miri is too slow
fn test_integers() {
use core::{i128, u128};
use core::{i16, i32, i64, i8, isize};
use core::{u16, u32, u64, u8, usize};
let mut rng = crate::test::rng(251);
macro_rules! t {
($ty:ident, $v:expr, $le:expr, $lt:expr) => {{
for &(low, high) in $v.iter() {
let my_uniform = Uniform::new(low, high);
for _ in 0..1000 {
let v: $ty = rng.sample(my_uniform);
assert!($le(low, v) && $lt(v, high));
}
let my_uniform = Uniform::new_inclusive(low, high);
for _ in 0..1000 {
let v: $ty = rng.sample(my_uniform);
assert!($le(low, v) && $le(v, high));
}
let my_uniform = Uniform::new(&low, high);
for _ in 0..1000 {
let v: $ty = rng.sample(my_uniform);
assert!($le(low, v) && $lt(v, high));
}
let my_uniform = Uniform::new_inclusive(&low, &high);
for _ in 0..1000 {
let v: $ty = rng.sample(my_uniform);
assert!($le(low, v) && $le(v, high));
}
for _ in 0..1000 {
let v = <$ty as SampleUniform>::Sampler::sample_single(low, high, &mut rng);
assert!($le(low, v) && $lt(v, high));
}
for _ in 0..1000 {
let v = <$ty as SampleUniform>::Sampler::sample_single_inclusive(low, high, &mut rng);
assert!($le(low, v) && $le(v, high));
}
}
}};
// scalar bulk
($($ty:ident),*) => {{
$(t!(
$ty,
[(0, 10), (10, 127), ($ty::MIN, $ty::MAX)],
|x, y| x <= y,
|x, y| x < y
);)*
}};
// simd bulk
($($ty:ident),* => $scalar:ident) => {{
$(t!(
$ty,
[
($ty::splat(0), $ty::splat(10)),
($ty::splat(10), $ty::splat(127)),
($ty::splat($scalar::MIN), $ty::splat($scalar::MAX)),
],
|x: $ty, y| x.le(y).all(),
|x: $ty, y| x.lt(y).all()
);)*
}};
}
t!(i8, i16, i32, i64, isize, u8, u16, u32, u64, usize, i128, u128);
#[cfg(feature = "simd_support")]
{
t!(u8x2, u8x4, u8x8, u8x16, u8x32, u8x64 => u8);
t!(i8x2, i8x4, i8x8, i8x16, i8x32, i8x64 => i8);
t!(u16x2, u16x4, u16x8, u16x16, u16x32 => u16);
t!(i16x2, i16x4, i16x8, i16x16, i16x32 => i16);
t!(u32x2, u32x4, u32x8, u32x16 => u32);
t!(i32x2, i32x4, i32x8, i32x16 => i32);
t!(u64x2, u64x4, u64x8 => u64);
t!(i64x2, i64x4, i64x8 => i64);
}
}
#[test]
#[cfg_attr(miri, ignore)] // Miri is too slow
fn test_char() {
let mut rng = crate::test::rng(891);
let mut max = core::char::from_u32(0).unwrap();
for _ in 0..100 {
let c = rng.gen_range('A'..='Z');
assert!(('A'..='Z').contains(&c));
max = max.max(c);
}
assert_eq!(max, 'Z');
let d = Uniform::new(
core::char::from_u32(0xD7F0).unwrap(),
core::char::from_u32(0xE010).unwrap(),
);
for _ in 0..100 {
let c = d.sample(&mut rng);
assert!((c as u32) < 0xD800 || (c as u32) > 0xDFFF);
}
}
#[test]
#[cfg_attr(miri, ignore)] // Miri is too slow
fn test_floats() {
let mut rng = crate::test::rng(252);
let mut zero_rng = StepRng::new(0, 0);
let mut max_rng = StepRng::new(0xffff_ffff_ffff_ffff, 0);
macro_rules! t {
($ty:ty, $f_scalar:ident, $bits_shifted:expr) => {{
let v: &[($f_scalar, $f_scalar)] = &[
(0.0, 100.0),
(-1e35, -1e25),
(1e-35, 1e-25),
(-1e35, 1e35),
(<$f_scalar>::from_bits(0), <$f_scalar>::from_bits(3)),
(-<$f_scalar>::from_bits(10), -<$f_scalar>::from_bits(1)),
(-<$f_scalar>::from_bits(5), 0.0),
(-<$f_scalar>::from_bits(7), -0.0),
(0.1 * ::core::$f_scalar::MAX, ::core::$f_scalar::MAX),
(-::core::$f_scalar::MAX * 0.2, ::core::$f_scalar::MAX * 0.7),
];
for &(low_scalar, high_scalar) in v.iter() {
for lane in 0..<$ty>::lanes() {
let low = <$ty>::splat(0.0 as $f_scalar).replace(lane, low_scalar);
let high = <$ty>::splat(1.0 as $f_scalar).replace(lane, high_scalar);
let my_uniform = Uniform::new(low, high);
let my_incl_uniform = Uniform::new_inclusive(low, high);
for _ in 0..100 {
let v = rng.sample(my_uniform).extract(lane);
assert!(low_scalar <= v && v < high_scalar);
let v = rng.sample(my_incl_uniform).extract(lane);
assert!(low_scalar <= v && v <= high_scalar);
let v = <$ty as SampleUniform>::Sampler
::sample_single(low, high, &mut rng).extract(lane);
assert!(low_scalar <= v && v < high_scalar);
}
assert_eq!(
rng.sample(Uniform::new_inclusive(low, low)).extract(lane),
low_scalar
);
assert_eq!(zero_rng.sample(my_uniform).extract(lane), low_scalar);
assert_eq!(zero_rng.sample(my_incl_uniform).extract(lane), low_scalar);
assert_eq!(<$ty as SampleUniform>::Sampler
::sample_single(low, high, &mut zero_rng)
.extract(lane), low_scalar);
assert!(max_rng.sample(my_uniform).extract(lane) < high_scalar);
assert!(max_rng.sample(my_incl_uniform).extract(lane) <= high_scalar);
// Don't run this test for really tiny differences between high and low
// since for those rounding might result in selecting high for a very
// long time.
if (high_scalar - low_scalar) > 0.0001 {
let mut lowering_max_rng = StepRng::new(
0xffff_ffff_ffff_ffff,
(-1i64 << $bits_shifted) as u64,
);
assert!(
<$ty as SampleUniform>::Sampler
::sample_single(low, high, &mut lowering_max_rng)
.extract(lane) < high_scalar
);
}
}
}
assert_eq!(
rng.sample(Uniform::new_inclusive(
::core::$f_scalar::MAX,
::core::$f_scalar::MAX
)),
::core::$f_scalar::MAX
);
assert_eq!(
rng.sample(Uniform::new_inclusive(
-::core::$f_scalar::MAX,
-::core::$f_scalar::MAX
)),
-::core::$f_scalar::MAX
);
}};
}
t!(f32, f32, 32 - 23);
t!(f64, f64, 64 - 52);
#[cfg(feature = "simd_support")]
{
t!(f32x2, f32, 32 - 23);
t!(f32x4, f32, 32 - 23);
t!(f32x8, f32, 32 - 23);
t!(f32x16, f32, 32 - 23);
t!(f64x2, f64, 64 - 52);
t!(f64x4, f64, 64 - 52);
t!(f64x8, f64, 64 - 52);
}
}
#[test]
#[should_panic]
fn test_float_overflow() {
let _ = Uniform::from(::core::f64::MIN..::core::f64::MAX);
}
#[test]
#[should_panic]
fn test_float_overflow_single() {
let mut rng = crate::test::rng(252);
rng.gen_range(::core::f64::MIN..::core::f64::MAX);
}
#[test]
#[cfg(all(
feature = "std",
not(target_arch = "wasm32"),
not(target_arch = "asmjs")
))]
fn test_float_assertions() {
use super::SampleUniform;
use std::panic::catch_unwind;
fn range<T: SampleUniform>(low: T, high: T) {
let mut rng = crate::test::rng(253);
T::Sampler::sample_single(low, high, &mut rng);
}
macro_rules! t {
($ty:ident, $f_scalar:ident) => {{
let v: &[($f_scalar, $f_scalar)] = &[
(::std::$f_scalar::NAN, 0.0),
(1.0, ::std::$f_scalar::NAN),
(::std::$f_scalar::NAN, ::std::$f_scalar::NAN),
(1.0, 0.5),
(::std::$f_scalar::MAX, -::std::$f_scalar::MAX),
(::std::$f_scalar::INFINITY, ::std::$f_scalar::INFINITY),
(
::std::$f_scalar::NEG_INFINITY,
::std::$f_scalar::NEG_INFINITY,
),
(::std::$f_scalar::NEG_INFINITY, 5.0),
(5.0, ::std::$f_scalar::INFINITY),
(::std::$f_scalar::NAN, ::std::$f_scalar::INFINITY),
(::std::$f_scalar::NEG_INFINITY, ::std::$f_scalar::NAN),
(::std::$f_scalar::NEG_INFINITY, ::std::$f_scalar::INFINITY),
];
for &(low_scalar, high_scalar) in v.iter() {
for lane in 0..<$ty>::lanes() {
let low = <$ty>::splat(0.0 as $f_scalar).replace(lane, low_scalar);
let high = <$ty>::splat(1.0 as $f_scalar).replace(lane, high_scalar);
assert!(catch_unwind(|| range(low, high)).is_err());
assert!(catch_unwind(|| Uniform::new(low, high)).is_err());
assert!(catch_unwind(|| Uniform::new_inclusive(low, high)).is_err());
assert!(catch_unwind(|| range(low, low)).is_err());
assert!(catch_unwind(|| Uniform::new(low, low)).is_err());
}
}
}};
}
t!(f32, f32);
t!(f64, f64);
#[cfg(feature = "simd_support")]
{
t!(f32x2, f32);
t!(f32x4, f32);
t!(f32x8, f32);
t!(f32x16, f32);
t!(f64x2, f64);
t!(f64x4, f64);
t!(f64x8, f64);
}
}
#[test]
#[cfg_attr(miri, ignore)] // Miri is too slow
fn test_durations() {
let mut rng = crate::test::rng(253);
let v = &[
(Duration::new(10, 50000), Duration::new(100, 1234)),
(Duration::new(0, 100), Duration::new(1, 50)),
(
Duration::new(0, 0),
Duration::new(u64::max_value(), 999_999_999),
),
];
for &(low, high) in v.iter() {
let my_uniform = Uniform::new(low, high);
for _ in 0..1000 {
let v = rng.sample(my_uniform);
assert!(low <= v && v < high);
}
}
}
#[test]
fn test_custom_uniform() {
use crate::distributions::uniform::{
SampleBorrow, SampleUniform, UniformFloat, UniformSampler,
};
#[derive(Clone, Copy, PartialEq, PartialOrd)]
struct MyF32 {
x: f32,
}
#[derive(Clone, Copy, Debug)]
struct UniformMyF32(UniformFloat<f32>);
impl UniformSampler for UniformMyF32 {
type X = MyF32;
fn new<B1, B2>(low: B1, high: B2) -> Self
where
B1: SampleBorrow<Self::X> + Sized,
B2: SampleBorrow<Self::X> + Sized,
{
UniformMyF32(UniformFloat::<f32>::new(low.borrow().x, high.borrow().x))
}
fn new_inclusive<B1, B2>(low: B1, high: B2) -> Self
where
B1: SampleBorrow<Self::X> + Sized,
B2: SampleBorrow<Self::X> + Sized,
{
UniformSampler::new(low, high)
}
fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> Self::X {
MyF32 {
x: self.0.sample(rng),
}
}
}
impl SampleUniform for MyF32 {
type Sampler = UniformMyF32;
}
let (low, high) = (MyF32 { x: 17.0f32 }, MyF32 { x: 22.0f32 });
let uniform = Uniform::new(low, high);
let mut rng = crate::test::rng(804);
for _ in 0..100 {
let x: MyF32 = rng.sample(uniform);
assert!(low <= x && x < high);
}
}
#[test]
fn test_uniform_from_std_range() {
let r = Uniform::from(2u32..7);
assert_eq!(r.0.low, 2);
assert_eq!(r.0.range, 5);
let r = Uniform::from(2.0f64..7.0);
assert_eq!(r.0.low, 2.0);
assert_eq!(r.0.scale, 5.0);
}
#[test]
fn test_uniform_from_std_range_inclusive() {
let r = Uniform::from(2u32..=6);
assert_eq!(r.0.low, 2);
assert_eq!(r.0.range, 5);
let r = Uniform::from(2.0f64..=7.0);
assert_eq!(r.0.low, 2.0);
assert!(r.0.scale > 5.0);
assert!(r.0.scale < 5.0 + 1e-14);
}
#[test]
fn value_stability() {
fn test_samples<T: SampleUniform + Copy + core::fmt::Debug + PartialEq>(
lb: T, ub: T, expected_single: &[T], expected_multiple: &[T],
) where Uniform<T>: Distribution<T> {
let mut rng = crate::test::rng(897);
let mut buf = [lb; 3];
for x in &mut buf {
*x = T::Sampler::sample_single(lb, ub, &mut rng);
}
assert_eq!(&buf, expected_single);
let distr = Uniform::new(lb, ub);
for x in &mut buf {
*x = rng.sample(&distr);
}
assert_eq!(&buf, expected_multiple);
}
// We test on a sub-set of types; possibly we should do more.
// TODO: SIMD types
test_samples(11u8, 219, &[17, 66, 214], &[181, 93, 165]);
test_samples(11u32, 219, &[17, 66, 214], &[181, 93, 165]);
test_samples(0f32, 1e-2f32, &[0.0003070104, 0.0026630748, 0.00979833], &[
0.008194133,
0.00398172,
0.007428536,
]);
test_samples(
-1e10f64,
1e10f64,
&[-4673848682.871551, 6388267422.932352, 4857075081.198343],
&[1173375212.1808167, 1917642852.109581, 2365076174.3153973],
);
test_samples(
Duration::new(2, 0),
Duration::new(4, 0),
&[
Duration::new(2, 532615131),
Duration::new(3, 638826742),
Duration::new(3, 485707508),
],
&[
Duration::new(3, 117337521),
Duration::new(3, 191764285),
Duration::new(3, 236507617),
],
);
}
#[test]
fn uniform_distributions_can_be_compared() {
assert_eq!(Uniform::new(1.0, 2.0), Uniform::new(1.0, 2.0));
// To cover UniformInt
assert_eq!(Uniform::new(1 as u32, 2 as u32), Uniform::new(1 as u32, 2 as u32));
}
}