1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
use approx::{AbsDiffEq, RelativeEq, UlpsEq};
use num::Zero;
use std::fmt;
use std::hash;

#[cfg(feature = "abomonation-serialize")]
use std::io::{Result as IOResult, Write};

#[cfg(feature = "serde-serialize-no-std")]
use serde::{Deserialize, Serialize};

#[cfg(feature = "abomonation-serialize")]
use abomonation::Abomonation;

use simba::scalar::{RealField, SubsetOf};
use simba::simd::SimdRealField;

use crate::base::allocator::Allocator;
use crate::base::dimension::{DimNameAdd, DimNameSum, U1};
use crate::base::storage::Owned;
use crate::base::{Const, DefaultAllocator, OMatrix, SVector, Scalar};
use crate::geometry::{AbstractRotation, Isometry, Point, Translation};

/// A similarity, i.e., an uniform scaling, followed by a rotation, followed by a translation.
#[repr(C)]
#[derive(Debug)]
#[cfg_attr(feature = "serde-serialize-no-std", derive(Serialize, Deserialize))]
#[cfg_attr(
    feature = "serde-serialize-no-std",
    serde(bound(serialize = "T: Serialize,
                     R: Serialize,
                     DefaultAllocator: Allocator<T, Const<D>>,
                     Owned<T, Const<D>>: Serialize"))
)]
#[cfg_attr(
    feature = "serde-serialize-no-std",
    serde(bound(deserialize = "T: Deserialize<'de>,
                       R: Deserialize<'de>,
                       DefaultAllocator: Allocator<T, Const<D>>,
                       Owned<T, Const<D>>: Deserialize<'de>"))
)]
pub struct Similarity<T: Scalar, R, const D: usize> {
    /// The part of this similarity that does not include the scaling factor.
    pub isometry: Isometry<T, R, D>,
    scaling: T,
}

#[cfg(feature = "abomonation-serialize")]
impl<T: Scalar, R, const D: usize> Abomonation for Similarity<T, R, D>
where
    Isometry<T, R, D>: Abomonation,
{
    unsafe fn entomb<W: Write>(&self, writer: &mut W) -> IOResult<()> {
        self.isometry.entomb(writer)
    }

    fn extent(&self) -> usize {
        self.isometry.extent()
    }

    unsafe fn exhume<'a, 'b>(&'a mut self, bytes: &'b mut [u8]) -> Option<&'b mut [u8]> {
        self.isometry.exhume(bytes)
    }
}

impl<T: Scalar + hash::Hash, R: hash::Hash, const D: usize> hash::Hash for Similarity<T, R, D>
where
    Owned<T, Const<D>>: hash::Hash,
{
    fn hash<H: hash::Hasher>(&self, state: &mut H) {
        self.isometry.hash(state);
        self.scaling.hash(state);
    }
}

impl<T: Scalar + Copy + Zero, R: AbstractRotation<T, D> + Copy, const D: usize> Copy
    for Similarity<T, R, D>
where
    Owned<T, Const<D>>: Copy,
{
}

impl<T: Scalar + Zero, R: AbstractRotation<T, D> + Clone, const D: usize> Clone
    for Similarity<T, R, D>
{
    #[inline]
    fn clone(&self) -> Self {
        Similarity::from_isometry(self.isometry.clone(), self.scaling.clone())
    }
}

impl<T: Scalar + Zero, R, const D: usize> Similarity<T, R, D>
where
    R: AbstractRotation<T, D>,
{
    /// Creates a new similarity from its rotational and translational parts.
    #[inline]
    pub fn from_parts(translation: Translation<T, D>, rotation: R, scaling: T) -> Self {
        Self::from_isometry(Isometry::from_parts(translation, rotation), scaling)
    }

    /// Creates a new similarity from its rotational and translational parts.
    #[inline]
    pub fn from_isometry(isometry: Isometry<T, R, D>, scaling: T) -> Self {
        assert!(!scaling.is_zero(), "The scaling factor must not be zero.");

        Self { isometry, scaling }
    }

    /// The scaling factor of this similarity transformation.
    #[inline]
    pub fn set_scaling(&mut self, scaling: T) {
        assert!(
            !scaling.is_zero(),
            "The similarity scaling factor must not be zero."
        );

        self.scaling = scaling;
    }
}

impl<T: Scalar, R, const D: usize> Similarity<T, R, D> {
    /// The scaling factor of this similarity transformation.
    #[inline]
    pub fn scaling(&self) -> T {
        self.scaling.inlined_clone()
    }
}

impl<T: SimdRealField, R, const D: usize> Similarity<T, R, D>
where
    T::Element: SimdRealField,
    R: AbstractRotation<T, D>,
{
    /// Creates a new similarity that applies only a scaling factor.
    #[inline]
    pub fn from_scaling(scaling: T) -> Self {
        Self::from_isometry(Isometry::identity(), scaling)
    }

    /// Inverts `self`.
    #[inline]
    #[must_use = "Did you mean to use inverse_mut()?"]
    pub fn inverse(&self) -> Self {
        let mut res = self.clone();
        res.inverse_mut();
        res
    }

    /// Inverts `self` in-place.
    #[inline]
    pub fn inverse_mut(&mut self) {
        self.scaling = T::one() / self.scaling;
        self.isometry.inverse_mut();
        self.isometry.translation.vector *= self.scaling;
    }

    /// The similarity transformation that applies a scaling factor `scaling` before `self`.
    #[inline]
    #[must_use = "Did you mean to use prepend_scaling_mut()?"]
    pub fn prepend_scaling(&self, scaling: T) -> Self {
        assert!(
            !scaling.is_zero(),
            "The similarity scaling factor must not be zero."
        );

        Self::from_isometry(self.isometry.clone(), self.scaling * scaling)
    }

    /// The similarity transformation that applies a scaling factor `scaling` after `self`.
    #[inline]
    #[must_use = "Did you mean to use append_scaling_mut()?"]
    pub fn append_scaling(&self, scaling: T) -> Self {
        assert!(
            !scaling.is_zero(),
            "The similarity scaling factor must not be zero."
        );

        Self::from_parts(
            Translation::from(&self.isometry.translation.vector * scaling),
            self.isometry.rotation.clone(),
            self.scaling * scaling,
        )
    }

    /// Sets `self` to the similarity transformation that applies a scaling factor `scaling` before `self`.
    #[inline]
    pub fn prepend_scaling_mut(&mut self, scaling: T) {
        assert!(
            !scaling.is_zero(),
            "The similarity scaling factor must not be zero."
        );

        self.scaling *= scaling
    }

    /// Sets `self` to the similarity transformation that applies a scaling factor `scaling` after `self`.
    #[inline]
    pub fn append_scaling_mut(&mut self, scaling: T) {
        assert!(
            !scaling.is_zero(),
            "The similarity scaling factor must not be zero."
        );

        self.isometry.translation.vector *= scaling;
        self.scaling *= scaling;
    }

    /// Appends to `self` the given translation in-place.
    #[inline]
    pub fn append_translation_mut(&mut self, t: &Translation<T, D>) {
        self.isometry.append_translation_mut(t)
    }

    /// Appends to `self` the given rotation in-place.
    #[inline]
    pub fn append_rotation_mut(&mut self, r: &R) {
        self.isometry.append_rotation_mut(r)
    }

    /// Appends in-place to `self` a rotation centered at the point `p`, i.e., the rotation that
    /// lets `p` invariant.
    #[inline]
    pub fn append_rotation_wrt_point_mut(&mut self, r: &R, p: &Point<T, D>) {
        self.isometry.append_rotation_wrt_point_mut(r, p)
    }

    /// Appends in-place to `self` a rotation centered at the point with coordinates
    /// `self.translation`.
    #[inline]
    pub fn append_rotation_wrt_center_mut(&mut self, r: &R) {
        self.isometry.append_rotation_wrt_center_mut(r)
    }

    /// Transform the given point by this similarity.
    ///
    /// This is the same as the multiplication `self * pt`.
    ///
    /// # Example
    /// ```
    /// # #[macro_use] extern crate approx;
    /// # use std::f32;
    /// # use nalgebra::{Point3, Similarity3, Vector3};
    /// let axisangle = Vector3::y() * f32::consts::FRAC_PI_2;
    /// let translation = Vector3::new(1.0, 2.0, 3.0);
    /// let sim = Similarity3::new(translation, axisangle, 3.0);
    /// let transformed_point = sim.transform_point(&Point3::new(4.0, 5.0, 6.0));
    /// assert_relative_eq!(transformed_point, Point3::new(19.0, 17.0, -9.0), epsilon = 1.0e-5);
    /// ```
    #[inline]
    pub fn transform_point(&self, pt: &Point<T, D>) -> Point<T, D> {
        self * pt
    }

    /// Transform the given vector by this similarity, ignoring the translational
    /// component.
    ///
    /// This is the same as the multiplication `self * t`.
    ///
    /// # Example
    /// ```
    /// # #[macro_use] extern crate approx;
    /// # use std::f32;
    /// # use nalgebra::{Similarity3, Vector3};
    /// let axisangle = Vector3::y() * f32::consts::FRAC_PI_2;
    /// let translation = Vector3::new(1.0, 2.0, 3.0);
    /// let sim = Similarity3::new(translation, axisangle, 3.0);
    /// let transformed_vector = sim.transform_vector(&Vector3::new(4.0, 5.0, 6.0));
    /// assert_relative_eq!(transformed_vector, Vector3::new(18.0, 15.0, -12.0), epsilon = 1.0e-5);
    /// ```
    #[inline]
    pub fn transform_vector(&self, v: &SVector<T, D>) -> SVector<T, D> {
        self * v
    }

    /// Transform the given point by the inverse of this similarity. This may
    /// be cheaper than inverting the similarity and then transforming the
    /// given point.
    ///
    /// # Example
    /// ```
    /// # #[macro_use] extern crate approx;
    /// # use std::f32;
    /// # use nalgebra::{Point3, Similarity3, Vector3};
    /// let axisangle = Vector3::y() * f32::consts::FRAC_PI_2;
    /// let translation = Vector3::new(1.0, 2.0, 3.0);
    /// let sim = Similarity3::new(translation, axisangle, 2.0);
    /// let transformed_point = sim.inverse_transform_point(&Point3::new(4.0, 5.0, 6.0));
    /// assert_relative_eq!(transformed_point, Point3::new(-1.5, 1.5, 1.5), epsilon = 1.0e-5);
    /// ```
    #[inline]
    pub fn inverse_transform_point(&self, pt: &Point<T, D>) -> Point<T, D> {
        self.isometry.inverse_transform_point(pt) / self.scaling()
    }

    /// Transform the given vector by the inverse of this similarity,
    /// ignoring the translational component. This may be cheaper than
    /// inverting the similarity and then transforming the given vector.
    ///
    /// # Example
    /// ```
    /// # #[macro_use] extern crate approx;
    /// # use std::f32;
    /// # use nalgebra::{Similarity3, Vector3};
    /// let axisangle = Vector3::y() * f32::consts::FRAC_PI_2;
    /// let translation = Vector3::new(1.0, 2.0, 3.0);
    /// let sim = Similarity3::new(translation, axisangle, 2.0);
    /// let transformed_vector = sim.inverse_transform_vector(&Vector3::new(4.0, 5.0, 6.0));
    /// assert_relative_eq!(transformed_vector, Vector3::new(-3.0, 2.5, 2.0), epsilon = 1.0e-5);
    /// ```
    #[inline]
    pub fn inverse_transform_vector(&self, v: &SVector<T, D>) -> SVector<T, D> {
        self.isometry.inverse_transform_vector(v) / self.scaling()
    }
}

// NOTE: we don't require `R: Rotation<...>` here because this is not useful for the implementation
// and makes it harder to use it, e.g., for Transform × Isometry implementation.
// This is OK since all constructors of the isometry enforce the Rotation bound already (and
// explicit struct construction is prevented by the private scaling factor).
impl<T: SimdRealField, R, const D: usize> Similarity<T, R, D> {
    /// Converts this similarity into its equivalent homogeneous transformation matrix.
    #[inline]
    pub fn to_homogeneous(&self) -> OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>
    where
        Const<D>: DimNameAdd<U1>,
        R: SubsetOf<OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>>,
        DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
    {
        let mut res = self.isometry.to_homogeneous();

        for e in res.fixed_slice_mut::<D, D>(0, 0).iter_mut() {
            *e *= self.scaling
        }

        res
    }
}

impl<T: SimdRealField, R, const D: usize> Eq for Similarity<T, R, D> where
    R: AbstractRotation<T, D> + Eq
{
}

impl<T: SimdRealField, R, const D: usize> PartialEq for Similarity<T, R, D>
where
    R: AbstractRotation<T, D> + PartialEq,
{
    #[inline]
    fn eq(&self, right: &Self) -> bool {
        self.isometry == right.isometry && self.scaling == right.scaling
    }
}

impl<T: RealField, R, const D: usize> AbsDiffEq for Similarity<T, R, D>
where
    R: AbstractRotation<T, D> + AbsDiffEq<Epsilon = T::Epsilon>,
    T::Epsilon: Copy,
{
    type Epsilon = T::Epsilon;

    #[inline]
    fn default_epsilon() -> Self::Epsilon {
        T::default_epsilon()
    }

    #[inline]
    fn abs_diff_eq(&self, other: &Self, epsilon: Self::Epsilon) -> bool {
        self.isometry.abs_diff_eq(&other.isometry, epsilon)
            && self.scaling.abs_diff_eq(&other.scaling, epsilon)
    }
}

impl<T: RealField, R, const D: usize> RelativeEq for Similarity<T, R, D>
where
    R: AbstractRotation<T, D> + RelativeEq<Epsilon = T::Epsilon>,
    T::Epsilon: Copy,
{
    #[inline]
    fn default_max_relative() -> Self::Epsilon {
        T::default_max_relative()
    }

    #[inline]
    fn relative_eq(
        &self,
        other: &Self,
        epsilon: Self::Epsilon,
        max_relative: Self::Epsilon,
    ) -> bool {
        self.isometry
            .relative_eq(&other.isometry, epsilon, max_relative)
            && self
                .scaling
                .relative_eq(&other.scaling, epsilon, max_relative)
    }
}

impl<T: RealField, R, const D: usize> UlpsEq for Similarity<T, R, D>
where
    R: AbstractRotation<T, D> + UlpsEq<Epsilon = T::Epsilon>,
    T::Epsilon: Copy,
{
    #[inline]
    fn default_max_ulps() -> u32 {
        T::default_max_ulps()
    }

    #[inline]
    fn ulps_eq(&self, other: &Self, epsilon: Self::Epsilon, max_ulps: u32) -> bool {
        self.isometry.ulps_eq(&other.isometry, epsilon, max_ulps)
            && self.scaling.ulps_eq(&other.scaling, epsilon, max_ulps)
    }
}

/*
 *
 * Display
 *
 */
impl<T, R, const D: usize> fmt::Display for Similarity<T, R, D>
where
    T: RealField + fmt::Display,
    R: AbstractRotation<T, D> + fmt::Display,
{
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        let precision = f.precision().unwrap_or(3);

        writeln!(f, "Similarity {{")?;
        write!(f, "{:.*}", precision, self.isometry)?;
        write!(f, "Scaling: {:.*}", precision, self.scaling)?;
        writeln!(f, "}}")
    }
}