1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607
// Copyright 2016 - 2018 Ulrik Sverdrup "bluss"
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
#[cfg(feature="std")]
use core::cell::UnsafeCell;
use core::cmp::min;
use core::mem::size_of;
use core::ptr::copy_nonoverlapping;
use core::slice;
use crate::aligned_alloc::Alloc;
use crate::ptr::Ptr;
use crate::util::range_chunk;
use crate::util::round_up_to;
use crate::kernel::ConstNum;
use crate::kernel::Element;
use crate::kernel::GemmKernel;
use crate::kernel::GemmSelect;
#[cfg(feature = "cgemm")]
use crate::kernel::{c32, c64};
use crate::threading::{get_thread_pool, ThreadPoolCtx, LoopThreadConfig};
use crate::sgemm_kernel;
use crate::dgemm_kernel;
#[cfg(feature = "cgemm")]
use crate::cgemm_kernel;
#[cfg(feature = "cgemm")]
use crate::zgemm_kernel;
use rawpointer::PointerExt;
/// General matrix multiplication (f32)
///
/// C ← α A B + β C
///
/// + m, k, n: dimensions
/// + a, b, c: pointer to the first element in the matrix
/// + A: m by k matrix
/// + B: k by n matrix
/// + C: m by n matrix
/// + rs<em>x</em>: row stride of *x*
/// + cs<em>x</em>: col stride of *x*
///
/// Strides for A and B may be arbitrary. Strides for C must not result in
/// elements that alias each other, for example they can not be zero.
///
/// If β is zero, then C does not need to be initialized.
pub unsafe fn sgemm(
m: usize, k: usize, n: usize,
alpha: f32,
a: *const f32, rsa: isize, csa: isize,
b: *const f32, rsb: isize, csb: isize,
beta: f32,
c: *mut f32, rsc: isize, csc: isize)
{
sgemm_kernel::detect(GemmParameters { m, k, n,
alpha,
a, rsa, csa,
b, rsb, csb,
beta,
c, rsc, csc})
}
/// General matrix multiplication (f64)
///
/// C ← α A B + β C
///
/// + m, k, n: dimensions
/// + a, b, c: pointer to the first element in the matrix
/// + A: m by k matrix
/// + B: k by n matrix
/// + C: m by n matrix
/// + rs<em>x</em>: row stride of *x*
/// + cs<em>x</em>: col stride of *x*
///
/// Strides for A and B may be arbitrary. Strides for C must not result in
/// elements that alias each other, for example they can not be zero.
///
/// If β is zero, then C does not need to be initialized.
pub unsafe fn dgemm(
m: usize, k: usize, n: usize,
alpha: f64,
a: *const f64, rsa: isize, csa: isize,
b: *const f64, rsb: isize, csb: isize,
beta: f64,
c: *mut f64, rsc: isize, csc: isize)
{
dgemm_kernel::detect(GemmParameters { m, k, n,
alpha,
a, rsa, csa,
b, rsb, csb,
beta,
c, rsc, csc})
}
/// cgemm/zgemm per-operand options
///
/// TBD.
#[cfg(feature = "cgemm")]
#[non_exhaustive]
#[derive(Copy, Clone, Debug)]
pub enum CGemmOption {
/// Standard
Standard,
}
#[cfg(feature = "cgemm")]
/// General matrix multiplication (complex f32)
///
/// C ← α A B + β C
///
/// + m, k, n: dimensions
/// + a, b, c: pointer to the first element in the matrix
/// + A: m by k matrix
/// + B: k by n matrix
/// + C: m by n matrix
/// + rs<em>x</em>: row stride of *x*
/// + cs<em>x</em>: col stride of *x*
///
/// Strides for A and B may be arbitrary. Strides for C must not result in
/// elements that alias each other, for example they can not be zero.
///
/// If β is zero, then C does not need to be initialized.
///
/// Requires crate feature `"cgemm"`
pub unsafe fn cgemm(
flaga: CGemmOption, flagb: CGemmOption,
m: usize, k: usize, n: usize,
alpha: c32,
a: *const c32, rsa: isize, csa: isize,
b: *const c32, rsb: isize, csb: isize,
beta: c32,
c: *mut c32, rsc: isize, csc: isize)
{
let _ = (flaga, flagb);
cgemm_kernel::detect(GemmParameters { m, k, n,
alpha,
a, rsa, csa,
b, rsb, csb,
beta,
c, rsc, csc})
}
#[cfg(feature = "cgemm")]
/// General matrix multiplication (complex f64)
///
/// C ← α A B + β C
///
/// + m, k, n: dimensions
/// + a, b, c: pointer to the first element in the matrix
/// + A: m by k matrix
/// + B: k by n matrix
/// + C: m by n matrix
/// + rs<em>x</em>: row stride of *x*
/// + cs<em>x</em>: col stride of *x*
///
/// Strides for A and B may be arbitrary. Strides for C must not result in
/// elements that alias each other, for example they can not be zero.
///
/// If β is zero, then C does not need to be initialized.
///
/// Requires crate feature `"cgemm"`
pub unsafe fn zgemm(
flaga: CGemmOption, flagb: CGemmOption,
m: usize, k: usize, n: usize,
alpha: c64,
a: *const c64, rsa: isize, csa: isize,
b: *const c64, rsb: isize, csb: isize,
beta: c64,
c: *mut c64, rsc: isize, csc: isize)
{
let _ = (flaga, flagb);
zgemm_kernel::detect(GemmParameters { m, k, n,
alpha,
a, rsa, csa,
b, rsb, csb,
beta,
c, rsc, csc})
}
struct GemmParameters<T> {
// Parameters grouped logically in rows
m: usize, k: usize, n: usize,
alpha: T,
a: *const T, rsa: isize, csa: isize,
beta: T,
b: *const T, rsb: isize, csb: isize,
c: *mut T, rsc: isize, csc: isize,
}
impl<T> GemmSelect<T> for GemmParameters<T> {
fn select<K>(self, _kernel: K)
where K: GemmKernel<Elem=T>,
T: Element,
{
// This is where we enter with the configuration specific kernel
// We could cache kernel specific function pointers here, if we
// needed to support more constly configuration detection.
let GemmParameters {
m, k, n,
alpha,
a, rsa, csa,
b, rsb, csb,
beta,
c, rsc, csc} = self;
unsafe {
gemm_loop::<K>(
m, k, n,
alpha,
a, rsa, csa,
b, rsb, csb,
beta,
c, rsc, csc)
}
}
}
/// Ensure that GemmKernel parameters are supported
/// (alignment, microkernel size).
///
/// This function is optimized out for a supported configuration.
#[inline(always)]
fn ensure_kernel_params<K>()
where K: GemmKernel
{
let mr = K::MR;
let nr = K::NR;
// These are current limitations,
// can change if corresponding code in gemm_loop is updated.
assert!(mr > 0 && mr <= 8);
assert!(nr > 0 && nr <= 8);
assert!(mr * nr * size_of::<K::Elem>() <= 8 * 4 * 8);
assert!(K::align_to() <= 32);
// one row/col of the kernel is limiting the max align we can provide
let max_align = size_of::<K::Elem>() * min(mr, nr);
assert!(K::align_to() <= max_align);
assert!(K::MR <= K::mc());
assert!(K::mc() <= K::kc());
assert!(K::kc() <= K::nc());
assert!(K::nc() <= 65536);
}
/// Implement matrix multiply using packed buffers and a microkernel
/// strategy, the type parameter `K` is the gemm microkernel.
// no inline is best for the default case, where we support many K per
// gemm entry point. FIXME: make this conditional on feature detection
#[inline(never)]
unsafe fn gemm_loop<K>(
m: usize, k: usize, n: usize,
alpha: K::Elem,
a: *const K::Elem, rsa: isize, csa: isize,
b: *const K::Elem, rsb: isize, csb: isize,
beta: K::Elem,
c: *mut K::Elem, rsc: isize, csc: isize)
where K: GemmKernel
{
debug_assert!(m <= 1 || n == 0 || rsc != 0);
debug_assert!(m == 0 || n <= 1 || csc != 0);
// if A or B have no elements, compute C ← βC and return
if m == 0 || k == 0 || n == 0 {
return c_to_beta_c(m, n, beta, c, rsc, csc);
}
let knc = K::nc();
let kkc = K::kc();
let kmc = K::mc();
ensure_kernel_params::<K>();
let a = Ptr(a);
let b = Ptr(b);
let c = Ptr(c);
let (nthreads, tp) = get_thread_pool();
let thread_config = LoopThreadConfig::new::<K>(m, k, n, nthreads);
let nap = thread_config.num_pack_a();
let (mut packing_buffer, ap_size) = make_packing_buffer::<K>(m, k, n, nap);
let app = Ptr(packing_buffer.ptr_mut());
let bpp = app.add(ap_size * nap);
// LOOP 5: split n into nc parts (B, C)
for (l5, nc) in range_chunk(n, knc) {
dprint!("LOOP 5, {}, nc={}", l5, nc);
let b = b.stride_offset(csb, knc * l5);
let c = c.stride_offset(csc, knc * l5);
// LOOP 4: split k in kc parts (A, B)
// This particular loop can't be parallelized because the
// C chunk (writable) is shared between iterations.
for (l4, kc) in range_chunk(k, kkc) {
dprint!("LOOP 4, {}, kc={}", l4, kc);
let b = b.stride_offset(rsb, kkc * l4);
let a = a.stride_offset(csa, kkc * l4);
// Pack B -> B~
pack::<K::NRTy, _>(kc, nc, bpp.ptr(), b.ptr(), csb, rsb);
// First time writing to C, use user's `beta`, else accumulate
let betap = if l4 == 0 { beta } else { <_>::one() };
// LOOP 3: split m into mc parts (A, C)
range_chunk(m, kmc)
.parallel(thread_config.loop3, tp)
.thread_local(move |i, _nt| {
// a packing buffer A~ per thread
debug_assert!(i < nap);
app.add(ap_size * i)
})
.for_each(move |tp, &mut app, l3, mc| {
dprint!("LOOP 3, {}, mc={}", l3, mc);
let a = a.stride_offset(rsa, kmc * l3);
let c = c.stride_offset(rsc, kmc * l3);
// Pack A -> A~
pack::<K::MRTy, _>(kc, mc, app.ptr(), a.ptr(), rsa, csa);
// LOOP 2 and 1
gemm_packed::<K>(nc, kc, mc,
alpha,
app.to_const(), bpp.to_const(),
betap,
c, rsc, csc,
tp, thread_config);
});
}
}
}
// set up buffer for masked (redirected output of) kernel
const KERNEL_MAX_SIZE: usize = 8 * 8 * 4;
const KERNEL_MAX_ALIGN: usize = 32;
const MASK_BUF_SIZE: usize = KERNEL_MAX_SIZE + KERNEL_MAX_ALIGN - 1;
// Pointers into buffer will be manually aligned anyway, due to
// bugs we have seen on certain platforms (macos) that look like
// we don't get aligned allocations out of TLS (?).
#[repr(align(32))]
struct MaskBuffer {
buffer: [u8; MASK_BUF_SIZE],
}
// Use thread local if we can; this is faster even in the single threaded case because
// it is possible to skip zeroing out the array.
#[cfg(feature = "std")]
thread_local! {
static MASK_BUF: UnsafeCell<MaskBuffer> =
UnsafeCell::new(MaskBuffer { buffer: [0; MASK_BUF_SIZE] });
}
/// Loops 1 and 2 around the µ-kernel
///
/// + app: packed A (A~)
/// + bpp: packed B (B~)
/// + nc: columns of packed B
/// + kc: columns of packed A / rows of packed B
/// + mc: rows of packed A
unsafe fn gemm_packed<K>(nc: usize, kc: usize, mc: usize,
alpha: K::Elem,
app: Ptr<*const K::Elem>, bpp: Ptr<*const K::Elem>,
beta: K::Elem,
c: Ptr<*mut K::Elem>, rsc: isize, csc: isize,
tp: ThreadPoolCtx, thread_config: LoopThreadConfig)
where K: GemmKernel,
{
let mr = K::MR;
let nr = K::NR;
// check for the mask buffer that fits 8 x 8 f32 and 8 x 4 f64 kernels and alignment
assert!(mr * nr * size_of::<K::Elem>() <= KERNEL_MAX_SIZE && K::align_to() <= KERNEL_MAX_ALIGN);
#[cfg(not(feature = "std"))]
let mut mask_buf = MaskBuffer { buffer: [0; MASK_BUF_SIZE] };
// LOOP 2: through micropanels in packed `b` (B~, C)
range_chunk(nc, nr)
.parallel(thread_config.loop2, tp)
.thread_local(|_i, _nt| {
let mut ptr;
#[cfg(not(feature = "std"))]
{
debug_assert_eq!(_nt, 1);
ptr = mask_buf.buffer.as_mut_ptr();
}
#[cfg(feature = "std")]
{
ptr = MASK_BUF.with(|buf| (*buf.get()).buffer.as_mut_ptr());
}
ptr = align_ptr(K::align_to(), ptr);
slice::from_raw_parts_mut(ptr as *mut K::Elem, KERNEL_MAX_SIZE / size_of::<K::Elem>())
})
.for_each(move |_tp, mask_buf, l2, nr_| {
let bpp = bpp.stride_offset(1, kc * nr * l2);
let c = c.stride_offset(csc, nr * l2);
// LOOP 1: through micropanels in packed `a` while `b` is constant (A~, C)
for (l1, mr_) in range_chunk(mc, mr) {
let app = app.stride_offset(1, kc * mr * l1);
let c = c.stride_offset(rsc, mr * l1);
// GEMM KERNEL
// NOTE: For the rust kernels, it performs better to simply
// always use the masked kernel function!
if K::always_masked() || nr_ < nr || mr_ < mr {
masked_kernel::<_, K>(kc, alpha, &*app.ptr(), &*bpp.ptr(),
beta, &mut *c.ptr(), rsc, csc,
mr_, nr_, mask_buf);
continue;
} else {
K::kernel(kc, alpha, app.ptr(), bpp.ptr(), beta, c.ptr(), rsc, csc);
}
}
});
}
/// Allocate a vector of uninitialized data to be used for both packing buffers.
///
/// + A~ needs be KC x MC
/// + B~ needs be KC x NC
/// but we can make them smaller if the matrix is smaller than this (just ensure
/// we have rounded up to a multiple of the kernel size).
///
/// na: Number of buffers to alloc for A
///
/// Return packing buffer and size of A~ (The offset to B~ is A~ size times `na`).
unsafe fn make_packing_buffer<K>(m: usize, k: usize, n: usize, na: usize) -> (Alloc<K::Elem>, usize)
where K: GemmKernel,
{
// max alignment requirement is a multiple of min(MR, NR) * sizeof<Elem>
// because apack_size is a multiple of MR, start of b aligns fine
let m = min(m, K::mc());
let k = min(k, K::kc());
let n = min(n, K::nc());
// round up k, n to multiples of mr, nr
// round up to multiple of kc
debug_assert_ne!(na, 0);
debug_assert!(na <= 128);
let apack_size = k * round_up_to(m, K::MR);
let bpack_size = k * round_up_to(n, K::NR);
let nelem = apack_size * na + bpack_size;
dprint!("packed nelem={}, apack={}, bpack={},
m={} k={} n={}, na={}",
nelem, apack_size, bpack_size,
m,k,n, na);
(Alloc::new(nelem, K::align_to()), apack_size)
}
/// offset the ptr forwards to align to a specific byte count
/// Safety: align_to must be a power of two and ptr valid for the pointer arithmetic
#[inline]
unsafe fn align_ptr<T>(align_to: usize, mut ptr: *mut T) -> *mut T {
if align_to != 0 {
let cur_align = ptr as usize % align_to;
if cur_align != 0 {
ptr = ptr.offset(((align_to - cur_align) / size_of::<T>()) as isize);
}
}
ptr
}
/// Pack matrix into `pack`
///
/// + kc: length of the micropanel
/// + mc: number of rows/columns in the matrix to be packed
/// + pack: packing buffer
/// + a: matrix,
/// + rsa: row stride
/// + csa: column stride
///
/// + MR: kernel rows/columns that we round up to
unsafe fn pack<MR, T>(kc: usize, mc: usize, pack: *mut T,
a: *const T, rsa: isize, csa: isize)
where T: Element,
MR: ConstNum,
{
let mr = MR::VALUE;
let mut p = 0; // offset into pack
if rsa == 1 {
// if the matrix is contiguous in the same direction we are packing,
// copy a kernel row at a time.
for ir in 0..mc/mr {
let row_offset = ir * mr;
for j in 0..kc {
let a_row = a.stride_offset(rsa, row_offset)
.stride_offset(csa, j);
copy_nonoverlapping(a_row, pack.add(p), mr);
p += mr;
}
}
} else {
// general layout case
for ir in 0..mc/mr {
let row_offset = ir * mr;
for j in 0..kc {
for i in 0..mr {
let a_elt = a.stride_offset(rsa, i + row_offset)
.stride_offset(csa, j);
copy_nonoverlapping(a_elt, pack.add(p), 1);
p += 1;
}
}
}
}
let zero = <_>::zero();
// Pad with zeros to multiple of kernel size (uneven mc)
let rest = mc % mr;
if rest > 0 {
let row_offset = (mc/mr) * mr;
for j in 0..kc {
for i in 0..mr {
if i < rest {
let a_elt = a.stride_offset(rsa, i + row_offset)
.stride_offset(csa, j);
copy_nonoverlapping(a_elt, pack.add(p), 1);
} else {
*pack.add(p) = zero;
}
p += 1;
}
}
}
}
/// Call the GEMM kernel with a "masked" output C.
///
/// Simply redirect the MR by NR kernel output to the passed
/// in `mask_buf`, and copy the non masked region to the real
/// C.
///
/// + rows: rows of kernel unmasked
/// + cols: cols of kernel unmasked
#[inline(never)]
unsafe fn masked_kernel<T, K>(k: usize, alpha: T,
a: *const T,
b: *const T,
beta: T,
c: *mut T, rsc: isize, csc: isize,
rows: usize, cols: usize,
mask_buf: &mut [T])
where K: GemmKernel<Elem=T>, T: Element,
{
// use column major order for `mask_buf`
K::kernel(k, alpha, a, b, T::zero(), mask_buf.as_mut_ptr(), 1, K::MR as isize);
c_to_masked_ab_beta_c::<_, K>(beta, c, rsc, csc, rows, cols, &*mask_buf);
}
/// Copy output in `mask_buf` to the actual c matrix
///
/// C ← M + βC where M is the `mask_buf`
#[inline]
unsafe fn c_to_masked_ab_beta_c<T, K>(beta: T,
c: *mut T, rsc: isize, csc: isize,
rows: usize, cols: usize,
mask_buf: &[T])
where K: GemmKernel<Elem=T>, T: Element,
{
// note: use separate function here with `&T` argument for mask buf,
// so that the compiler sees that `c` and `mask_buf` never alias.
let mr = K::MR;
let nr = K::NR;
let mut ab = mask_buf.as_ptr();
for j in 0..nr {
for i in 0..mr {
if i < rows && j < cols {
let cptr = c.stride_offset(rsc, i)
.stride_offset(csc, j);
if beta.is_zero() {
*cptr = *ab; // initialize
} else {
(*cptr).mul_assign(beta);
(*cptr).add_assign(*ab);
}
}
ab.inc();
}
}
}
// Compute just C ← βC
unsafe fn c_to_beta_c<T>(m: usize, n: usize, beta: T,
c: *mut T, rsc: isize, csc: isize)
where T: Element
{
for i in 0..m {
for j in 0..n {
let cptr = c.stride_offset(rsc, i)
.stride_offset(csc, j);
if beta.is_zero() {
*cptr = T::zero(); // initialize C
} else {
(*cptr).mul_assign(beta);
}
}
}
}