1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
use crate::distribution::{Discrete, DiscreteCDF};
use crate::statistics::*;
use crate::{Result, StatsError};
use rand::Rng;
use std::f64;

/// Implements the
/// [Categorical](https://en.wikipedia.org/wiki/Categorical_distribution)
/// distribution, also known as the generalized Bernoulli or discrete
/// distribution
///
/// # Examples
///
/// ```
///
/// use statrs::distribution::{Categorical, Discrete};
/// use statrs::statistics::Distribution;
/// use statrs::prec;
///
/// let n = Categorical::new(&[0.0, 1.0, 2.0]).unwrap();
/// assert!(prec::almost_eq(n.mean().unwrap(), 5.0 / 3.0, 1e-15));
/// assert_eq!(n.pmf(1), 1.0 / 3.0);
/// ```
#[derive(Debug, Clone, PartialEq)]
pub struct Categorical {
    norm_pmf: Vec<f64>,
    cdf: Vec<f64>,
}

impl Categorical {
    /// Constructs a new categorical distribution
    /// with the probabilities masses defined by `prob_mass`
    ///
    /// # Errors
    ///
    /// Returns an error if `prob_mass` is empty, the sum of
    /// the elements in `prob_mass` is 0, or any element is less than
    /// 0 or is `f64::NAN`
    ///
    /// # Note
    ///
    /// The elements in `prob_mass` do not need to be normalized
    ///
    /// # Examples
    ///
    /// ```
    /// use statrs::distribution::Categorical;
    ///
    /// let mut result = Categorical::new(&[0.0, 1.0, 2.0]);
    /// assert!(result.is_ok());
    ///
    /// result = Categorical::new(&[0.0, -1.0, 2.0]);
    /// assert!(result.is_err());
    /// ```
    pub fn new(prob_mass: &[f64]) -> Result<Categorical> {
        if !super::internal::is_valid_multinomial(prob_mass, true) {
            Err(StatsError::BadParams)
        } else {
            // extract un-normalized cdf
            let cdf = prob_mass_to_cdf(prob_mass);
            // extract normalized probability mass
            let sum = cdf[cdf.len() - 1];
            let mut norm_pmf = vec![0.0; prob_mass.len()];
            norm_pmf
                .iter_mut()
                .zip(prob_mass.iter())
                .for_each(|(np, pm)| *np = *pm / sum);
            Ok(Categorical { norm_pmf, cdf })
        }
    }

    fn cdf_max(&self) -> f64 {
        *self.cdf.last().unwrap()
    }
}

impl ::rand::distributions::Distribution<f64> for Categorical {
    fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> f64 {
        sample_unchecked(rng, &self.cdf)
    }
}

impl DiscreteCDF<u64, f64> for Categorical {
    /// Calculates the cumulative distribution function for the categorical
    /// distribution at `x`
    ///
    /// # Formula
    ///
    /// ```ignore
    /// sum(p_j) from 0..x
    /// ```
    ///
    /// where `p_j` is the probability mass for the `j`th category
    fn cdf(&self, x: u64) -> f64 {
        if x >= self.cdf.len() as u64 {
            1.0
        } else {
            self.cdf.get(x as usize).unwrap() / self.cdf_max()
        }
    }
    /// Calculates the inverse cumulative distribution function for the
    /// categorical
    /// distribution at `x`
    ///
    /// # Panics
    ///
    /// If `x <= 0.0` or `x >= 1.0`
    ///
    /// # Formula
    ///
    /// ```ignore
    /// i
    /// ```
    ///
    /// where `i` is the first index such that `x < f(i)`
    /// and `f(x)` is defined as `p_x + f(x - 1)` and `f(0) = p_0` where
    /// `p_x` is the `x`th probability mass
    fn inverse_cdf(&self, x: f64) -> u64 {
        if x >= 1.0 || x <= 0.0 {
            panic!("x must be in [0, 1]")
        }
        let denorm_prob = x * self.cdf_max();
        binary_index(&self.cdf, denorm_prob) as u64
    }
}

impl Min<u64> for Categorical {
    /// Returns the minimum value in the domain of the
    /// categorical distribution representable by a 64-bit
    /// integer
    ///
    /// # Formula
    ///
    /// ```ignore
    /// 0
    /// ```
    fn min(&self) -> u64 {
        0
    }
}

impl Max<u64> for Categorical {
    /// Returns the maximum value in the domain of the
    /// categorical distribution representable by a 64-bit
    /// integer
    ///
    /// # Formula
    ///
    /// ```ignore
    /// n
    /// ```
    fn max(&self) -> u64 {
        self.cdf.len() as u64 - 1
    }
}

impl Distribution<f64> for Categorical {
    /// Returns the mean of the categorical distribution
    ///
    /// # Formula
    ///
    /// ```ignore
    /// Σ(j * p_j)
    /// ```
    ///
    /// where `p_j` is the `j`th probability mass,
    /// `Σ` is the sum from `0` to `k - 1`,
    /// and `k` is the number of categories
    fn mean(&self) -> Option<f64> {
        Some(
            self.norm_pmf
                .iter()
                .enumerate()
                .fold(0.0, |acc, (idx, &val)| acc + idx as f64 * val),
        )
    }
    /// Returns the variance of the categorical distribution
    ///
    /// # Formula
    ///
    /// ```ignore
    /// Σ(p_j * (j - μ)^2)
    /// ```
    ///
    /// where `p_j` is the `j`th probability mass, `μ` is the mean,
    /// `Σ` is the sum from `0` to `k - 1`,
    /// and `k` is the number of categories
    fn variance(&self) -> Option<f64> {
        let mu = self.mean()?;
        let var = self
            .norm_pmf
            .iter()
            .enumerate()
            .fold(0.0, |acc, (idx, &val)| {
                let r = idx as f64 - mu;
                acc + r * r * val
            });
        Some(var)
    }
    /// Returns the entropy of the categorical distribution
    ///
    /// # Formula
    ///
    /// ```ignore
    /// -Σ(p_j * ln(p_j))
    /// ```
    ///
    /// where `p_j` is the `j`th probability mass,
    /// `Σ` is the sum from `0` to `k - 1`,
    /// and `k` is the number of categories
    fn entropy(&self) -> Option<f64> {
        let entr = -self
            .norm_pmf
            .iter()
            .filter(|&&p| p > 0.0)
            .map(|p| p * p.ln())
            .sum::<f64>();
        Some(entr)
    }
}
impl Median<f64> for Categorical {
    /// Returns the median of the categorical distribution
    ///
    /// # Formula
    ///
    /// ```ignore
    /// CDF^-1(0.5)
    /// ```
    fn median(&self) -> f64 {
        self.inverse_cdf(0.5) as f64
    }
}

impl Discrete<u64, f64> for Categorical {
    /// Calculates the probability mass function for the categorical
    /// distribution at `x`
    ///
    /// # Formula
    ///
    /// ```ignore
    /// p_x
    /// ```
    fn pmf(&self, x: u64) -> f64 {
        *self.norm_pmf.get(x as usize).unwrap_or(&0.0)
    }

    /// Calculates the log probability mass function for the categorical
    /// distribution at `x`
    fn ln_pmf(&self, x: u64) -> f64 {
        self.pmf(x).ln()
    }
}

/// Draws a sample from the categorical distribution described by `cdf`
/// without doing any bounds checking
pub fn sample_unchecked<R: Rng + ?Sized>(rng: &mut R, cdf: &[f64]) -> f64 {
    let draw = rng.gen::<f64>() * cdf.last().unwrap();
    cdf.iter()
        .enumerate()
        .find(|(_, val)| **val >= draw)
        .map(|(i, _)| i)
        .unwrap() as f64
}

/// Computes the cdf from the given probability masses. Performs
/// no parameter or bounds checking.
pub fn prob_mass_to_cdf(prob_mass: &[f64]) -> Vec<f64> {
    let mut cdf = Vec::with_capacity(prob_mass.len());
    prob_mass.iter().fold(0.0, |s, p| {
        let sum = s + p;
        cdf.push(sum);
        sum
    });
    cdf
}

// Returns the index of val if placed into the sorted search array.
// If val is greater than all elements, it therefore would return
// the length of the array (N). If val is less than all elements, it would
// return 0. Otherwise val returns the index of the first element larger than
// it within the search array.
fn binary_index(search: &[f64], val: f64) -> usize {
    use std::cmp;

    let mut low = 0_isize;
    let mut high = search.len() as isize - 1;
    while low <= high {
        let mid = low + ((high - low) / 2);
        let el = *search.get(mid as usize).unwrap();
        if el > val {
            high = mid - 1;
        } else if el < val {
            low = mid.saturating_add(1);
        } else {
            return mid as usize;
        }
    }
    cmp::min(search.len(), cmp::max(low, 0) as usize)
}

#[test]
fn test_prob_mass_to_cdf() {
    let arr = [0.0, 0.5, 0.5, 3.0, 1.1];
    let res = prob_mass_to_cdf(&arr);
    assert_eq!(res, [0.0, 0.5, 1.0, 4.0, 5.1]);
}

#[test]
fn test_binary_index() {
    let arr = [0.0, 3.0, 5.0, 9.0, 10.0];
    assert_eq!(0, binary_index(&arr, -1.0));
    assert_eq!(2, binary_index(&arr, 5.0));
    assert_eq!(3, binary_index(&arr, 5.2));
    assert_eq!(5, binary_index(&arr, 10.1));
}

#[rustfmt::skip]
#[cfg(test)]
mod tests {
    use std::fmt::Debug;
    use crate::statistics::*;
    use crate::distribution::{Categorical, Discrete, DiscreteCDF};
    use crate::distribution::internal::*;
    use crate::consts::ACC;

    fn try_create(prob_mass: &[f64]) -> Categorical {
        let n = Categorical::new(prob_mass);
        assert!(n.is_ok());
        n.unwrap()
    }

    fn create_case(prob_mass: &[f64]) {
        try_create(prob_mass);
    }

    fn bad_create_case(prob_mass: &[f64]) {
        let n = Categorical::new(prob_mass);
        assert!(n.is_err());
    }

    fn get_value<T, F>(prob_mass: &[f64], eval: F) -> T
        where T: PartialEq + Debug,
              F: Fn(Categorical) -> T
    {
        let n = try_create(prob_mass);
        eval(n)
    }

    fn test_case<T, F>(prob_mass: &[f64], expected: T, eval: F)
        where T: PartialEq + Debug,
              F: Fn(Categorical) -> T
    {
        let x = get_value(prob_mass, eval);
        assert_eq!(expected, x);
    }

    fn test_almost<F>(prob_mass: &[f64], expected: f64, acc: f64, eval: F)
        where F: Fn(Categorical) -> f64
    {
        let x = get_value(prob_mass, eval);
        assert_almost_eq!(expected, x, acc);
    }

    #[test]
    fn test_create() {
        create_case(&[1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0]);
    }

    #[test]
    fn test_bad_create() {
        bad_create_case(&[-1.0, 1.0]);
        bad_create_case(&[0.0, 0.0]);
    }

    #[test]
    fn test_mean() {
        let mean = |x: Categorical| x.mean().unwrap();
        test_case(&[0.0, 0.25, 0.5, 0.25], 2.0, mean);
        test_case(&[0.0, 1.0, 2.0, 1.0], 2.0, mean);
        test_case(&[0.0, 0.5, 0.5], 1.5, mean);
        test_case(&[0.75, 0.25], 0.25, mean);
        test_case(&[1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0], 5.0, mean);
    }

    #[test]
    fn test_variance() {
        let variance = |x: Categorical| x.variance().unwrap();
        test_case(&[0.0, 0.25, 0.5, 0.25], 0.5, variance);
        test_case(&[0.0, 1.0, 2.0, 1.0], 0.5, variance);
        test_case(&[0.0, 0.5, 0.5], 0.25, variance);
        test_case(&[0.75, 0.25], 0.1875, variance);
        test_case(&[1.0, 0.0, 1.0], 1.0, variance);
    }

    #[test]
    fn test_entropy() {
        let entropy = |x: Categorical| x.entropy().unwrap();
        test_case(&[0.0, 1.0], 0.0, entropy);
        test_almost(&[0.0, 1.0, 1.0], 2f64.ln(), 1e-15, entropy);
        test_almost(&[1.0, 1.0, 1.0], 3f64.ln(), 1e-15, entropy);
        test_almost(&vec![1.0; 100], 100f64.ln(), 1e-14, entropy);
        test_almost(&[0.0, 0.25, 0.5, 0.25], 1.0397207708399179, 1e-15, entropy);
    }

    #[test]
    fn test_median() {
        let median = |x: Categorical| x.median();
        test_case(&[0.0, 3.0, 1.0, 1.0], 1.0, median);
        test_case(&[4.0, 2.5, 2.5, 1.0], 1.0, median);
    }

    #[test]
    fn test_min_max() {
        let min = |x: Categorical| x.min();
        let max = |x: Categorical| x.max();
        test_case(&[4.0, 2.5, 2.5, 1.0], 0, min);
        test_case(&[4.0, 2.5, 2.5, 1.0], 3, max);
    }

    #[test]
    fn test_pmf() {
        let pmf = |arg: u64| move |x: Categorical| x.pmf(arg);
        test_case(&[0.0, 0.25, 0.5, 0.25], 0.0, pmf(0));
        test_case(&[0.0, 0.25, 0.5, 0.25], 0.25, pmf(1));
        test_case(&[0.0, 0.25, 0.5, 0.25], 0.25, pmf(3));
    }

    #[test]
    fn test_pmf_x_too_high() {
        let pmf = |arg: u64| move |x: Categorical| x.pmf(arg);
        test_case(&[4.0, 2.5, 2.5, 1.0], 0.0, pmf(4));
    }

    #[test]
    fn test_ln_pmf() {
        let ln_pmf = |arg: u64| move |x: Categorical| x.ln_pmf(arg);
        test_case(&[0.0, 0.25, 0.5, 0.25], 0f64.ln(), ln_pmf(0));
        test_case(&[0.0, 0.25, 0.5, 0.25], 0.25f64.ln(), ln_pmf(1));
        test_case(&[0.0, 0.25, 0.5, 0.25], 0.25f64.ln(), ln_pmf(3));
    }

    #[test]
    fn test_ln_pmf_x_too_high() {
        let ln_pmf = |arg: u64| move |x: Categorical| x.ln_pmf(arg);
        test_case(&[4.0, 2.5, 2.5, 1.0], f64::NEG_INFINITY, ln_pmf(4));
    }

    #[test]
    fn test_cdf() {
        let cdf = |arg: u64| move |x: Categorical| x.cdf(arg);
        test_case(&[0.0, 3.0, 1.0, 1.0], 3.0 / 5.0, cdf(1));
        test_case(&[1.0, 1.0, 1.0, 1.0], 0.25, cdf(0));
        test_case(&[4.0, 2.5, 2.5, 1.0], 0.4, cdf(0));
        test_case(&[4.0, 2.5, 2.5, 1.0], 1.0, cdf(3));
        test_case(&[4.0, 2.5, 2.5, 1.0], 1.0, cdf(4));
    }

    #[test]
    fn test_cdf_input_high() {
        let cdf = |arg: u64| move |x: Categorical| x.cdf(arg);
        test_case(&[4.0, 2.5, 2.5, 1.0], 1.0, cdf(4));
    }

    #[test]
    fn test_inverse_cdf() {
        let inverse_cdf = |arg: f64| move |x: Categorical| x.inverse_cdf(arg);
        test_case(&[0.0, 3.0, 1.0, 1.0], 1, inverse_cdf(0.2));
        test_case(&[0.0, 3.0, 1.0, 1.0], 1, inverse_cdf(0.5));
        test_case(&[0.0, 3.0, 1.0, 1.0], 3, inverse_cdf(0.95));
        test_case(&[4.0, 2.5, 2.5, 1.0], 0, inverse_cdf(0.2));
        test_case(&[4.0, 2.5, 2.5, 1.0], 1, inverse_cdf(0.5));
        test_case(&[4.0, 2.5, 2.5, 1.0], 3, inverse_cdf(0.95));
    }

    #[test]
    #[should_panic]
    fn test_inverse_cdf_input_low() {
        let inverse_cdf = |arg: f64| move |x: Categorical| x.inverse_cdf(arg);
        get_value(&[4.0, 2.5, 2.5, 1.0], inverse_cdf(0.0));
    }

    #[test]
    #[should_panic]
    fn test_inverse_cdf_input_high() {
        let inverse_cdf = |arg: f64| move |x: Categorical| x.inverse_cdf(arg);
        get_value(&[4.0, 2.5, 2.5, 1.0], inverse_cdf(1.0));
    }

    #[test]
    fn test_discrete() {
        test::check_discrete_distribution(&try_create(&[1.0, 2.0, 3.0, 4.0]), 4);
        test::check_discrete_distribution(&try_create(&[0.0, 1.0, 2.0, 3.0, 4.0]), 5);
    }
}