1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
#![cfg(feature = "use_std")]

use crate::MinMaxResult;
use std::collections::HashMap;
use std::cmp::Ordering;
use std::hash::Hash;
use std::iter::Iterator;
use std::ops::{Add, Mul};

/// A wrapper to allow for an easy [`into_grouping_map_by`](crate::Itertools::into_grouping_map_by)
#[derive(Clone, Debug)]
pub struct MapForGrouping<I, F>(I, F);

impl<I, F> MapForGrouping<I, F> {
    pub(crate) fn new(iter: I, key_mapper: F) -> Self {
        Self(iter, key_mapper)
    }
}

impl<K, V, I, F> Iterator for MapForGrouping<I, F>
    where I: Iterator<Item = V>,
          K: Hash + Eq,
          F: FnMut(&V) -> K,
{
    type Item = (K, V);
    fn next(&mut self) -> Option<Self::Item> {
        self.0.next().map(|val| ((self.1)(&val), val))
    }
}

/// Creates a new `GroupingMap` from `iter`
pub fn new<I, K, V>(iter: I) -> GroupingMap<I>
    where I: Iterator<Item = (K, V)>,
          K: Hash + Eq,
{
    GroupingMap { iter }
}

/// `GroupingMapBy` is an intermediate struct for efficient group-and-fold operations.
/// 
/// See [`GroupingMap`] for more informations.
pub type GroupingMapBy<I, F> = GroupingMap<MapForGrouping<I, F>>;

/// `GroupingMap` is an intermediate struct for efficient group-and-fold operations.
/// It groups elements by their key and at the same time fold each group
/// using some aggregating operation.
/// 
/// No method on this struct performs temporary allocations.
#[derive(Clone, Debug)]
#[must_use = "GroupingMap is lazy and do nothing unless consumed"]
pub struct GroupingMap<I> {
    iter: I,
}

impl<I, K, V> GroupingMap<I>
    where I: Iterator<Item = (K, V)>,
          K: Hash + Eq,
{
    /// This is the generic way to perform any operation on a `GroupingMap`.
    /// It's suggested to use this method only to implement custom operations
    /// when the already provided ones are not enough.
    /// 
    /// Groups elements from the `GroupingMap` source by key and applies `operation` to the elements
    /// of each group sequentially, passing the previously accumulated value, a reference to the key
    /// and the current element as arguments, and stores the results in an `HashMap`.
    ///
    /// The `operation` function is invoked on each element with the following parameters:
    ///  - the current value of the accumulator of the group if there is currently one;
    ///  - a reference to the key of the group this element belongs to;
    ///  - the element from the source being aggregated;
    /// 
    /// If `operation` returns `Some(element)` then the accumulator is updated with `element`,
    /// otherwise the previous accumulation is discarded.
    ///
    /// Return a `HashMap` associating the key of each group with the result of aggregation of
    /// that group's elements. If the aggregation of the last element of a group discards the
    /// accumulator then there won't be an entry associated to that group's key.
    /// 
    /// ```
    /// use itertools::Itertools;
    /// 
    /// let data = vec![2, 8, 5, 7, 9, 0, 4, 10];
    /// let lookup = data.into_iter()
    ///     .into_grouping_map_by(|&n| n % 4)
    ///     .aggregate(|acc, _key, val| {
    ///         if val == 0 || val == 10 {
    ///             None
    ///         } else {
    ///             Some(acc.unwrap_or(0) + val)
    ///         }
    ///     });
    /// 
    /// assert_eq!(lookup[&0], 4);        // 0 resets the accumulator so only 4 is summed
    /// assert_eq!(lookup[&1], 5 + 9);
    /// assert_eq!(lookup.get(&2), None); // 10 resets the accumulator and nothing is summed afterward
    /// assert_eq!(lookup[&3], 7);
    /// assert_eq!(lookup.len(), 3);      // The final keys are only 0, 1 and 2
    /// ```
    pub fn aggregate<FO, R>(self, mut operation: FO) -> HashMap<K, R>
        where FO: FnMut(Option<R>, &K, V) -> Option<R>,
    {
        let mut destination_map = HashMap::new();

        self.iter.for_each(|(key, val)| {
            let acc = destination_map.remove(&key);
            if let Some(op_res) = operation(acc, &key, val) {
                destination_map.insert(key, op_res);
            }
        });

        destination_map
    }

    /// Groups elements from the `GroupingMap` source by key and applies `operation` to the elements
    /// of each group sequentially, passing the previously accumulated value, a reference to the key
    /// and the current element as arguments, and stores the results in a new map.
    ///
    /// `init` is the value from which will be cloned the initial value of each accumulator.
    ///
    /// `operation` is a function that is invoked on each element with the following parameters:
    ///  - the current value of the accumulator of the group;
    ///  - a reference to the key of the group this element belongs to;
    ///  - the element from the source being accumulated.
    ///
    /// Return a `HashMap` associating the key of each group with the result of folding that group's elements.
    /// 
    /// ```
    /// use itertools::Itertools;
    /// 
    /// let lookup = (1..=7)
    ///     .into_grouping_map_by(|&n| n % 3)
    ///     .fold(0, |acc, _key, val| acc + val);
    /// 
    /// assert_eq!(lookup[&0], 3 + 6);
    /// assert_eq!(lookup[&1], 1 + 4 + 7);
    /// assert_eq!(lookup[&2], 2 + 5);
    /// assert_eq!(lookup.len(), 3);
    /// ```
    pub fn fold<FO, R>(self, init: R, mut operation: FO) -> HashMap<K, R>
        where R: Clone,
              FO: FnMut(R, &K, V) -> R,
    {
        self.aggregate(|acc, key, val| {
            let acc = acc.unwrap_or_else(|| init.clone());
            Some(operation(acc, key, val))
        })
    }

    /// Groups elements from the `GroupingMap` source by key and applies `operation` to the elements
    /// of each group sequentially, passing the previously accumulated value, a reference to the key
    /// and the current element as arguments, and stores the results in a new map.
    ///
    /// This is similar to [`fold`] but the initial value of the accumulator is the first element of the group.
    ///
    /// `operation` is a function that is invoked on each element with the following parameters:
    ///  - the current value of the accumulator of the group;
    ///  - a reference to the key of the group this element belongs to;
    ///  - the element from the source being accumulated.
    ///
    /// Return a `HashMap` associating the key of each group with the result of folding that group's elements.
    /// 
    /// [`fold`]: GroupingMap::fold
    /// 
    /// ```
    /// use itertools::Itertools;
    /// 
    /// let lookup = (1..=7)
    ///     .into_grouping_map_by(|&n| n % 3)
    ///     .fold_first(|acc, _key, val| acc + val);
    /// 
    /// assert_eq!(lookup[&0], 3 + 6);
    /// assert_eq!(lookup[&1], 1 + 4 + 7);
    /// assert_eq!(lookup[&2], 2 + 5);
    /// assert_eq!(lookup.len(), 3);
    /// ```
    pub fn fold_first<FO>(self, mut operation: FO) -> HashMap<K, V>
        where FO: FnMut(V, &K, V) -> V,
    {
        self.aggregate(|acc, key, val| {
            Some(match acc {
                Some(acc) => operation(acc, key, val),
                None => val,
            })
        })
    }

    /// Groups elements from the `GroupingMap` source by key and collects the elements of each group in
    /// an instance of `C`. The iteration order is preserved when inserting elements. 
    /// 
    /// Return a `HashMap` associating the key of each group with the collection containing that group's elements.
    /// 
    /// ```
    /// use itertools::Itertools;
    /// use std::collections::HashSet;
    /// 
    /// let lookup = vec![0, 1, 2, 3, 4, 5, 6, 2, 3, 6].into_iter()
    ///     .into_grouping_map_by(|&n| n % 3)
    ///     .collect::<HashSet<_>>();
    /// 
    /// assert_eq!(lookup[&0], vec![0, 3, 6].into_iter().collect::<HashSet<_>>());
    /// assert_eq!(lookup[&1], vec![1, 4].into_iter().collect::<HashSet<_>>());
    /// assert_eq!(lookup[&2], vec![2, 5].into_iter().collect::<HashSet<_>>());
    /// assert_eq!(lookup.len(), 3);
    /// ```
    pub fn collect<C>(self) -> HashMap<K, C>
        where C: Default + Extend<V>,
    {
        let mut destination_map = HashMap::new();

        self.iter.for_each(|(key, val)| {
            destination_map.entry(key).or_insert_with(C::default).extend(Some(val));
        });

        destination_map
    }

    /// Groups elements from the `GroupingMap` source by key and finds the maximum of each group.
    /// 
    /// If several elements are equally maximum, the last element is picked.
    /// 
    /// Returns a `HashMap` associating the key of each group with the maximum of that group's elements.
    /// 
    /// ```
    /// use itertools::Itertools;
    /// 
    /// let lookup = vec![1, 3, 4, 5, 7, 8, 9, 12].into_iter()
    ///     .into_grouping_map_by(|&n| n % 3)
    ///     .max();
    /// 
    /// assert_eq!(lookup[&0], 12);
    /// assert_eq!(lookup[&1], 7);
    /// assert_eq!(lookup[&2], 8);
    /// assert_eq!(lookup.len(), 3);
    /// ```
    pub fn max(self) -> HashMap<K, V>
        where V: Ord,
    {
        self.max_by(|_, v1, v2| V::cmp(v1, v2))
    }

    /// Groups elements from the `GroupingMap` source by key and finds the maximum of each group
    /// with respect to the specified comparison function.
    /// 
    /// If several elements are equally maximum, the last element is picked.
    /// 
    /// Returns a `HashMap` associating the key of each group with the maximum of that group's elements.
    /// 
    /// ```
    /// use itertools::Itertools;
    /// 
    /// let lookup = vec![1, 3, 4, 5, 7, 8, 9, 12].into_iter()
    ///     .into_grouping_map_by(|&n| n % 3)
    ///     .max_by(|_key, x, y| y.cmp(x));
    /// 
    /// assert_eq!(lookup[&0], 3);
    /// assert_eq!(lookup[&1], 1);
    /// assert_eq!(lookup[&2], 5);
    /// assert_eq!(lookup.len(), 3);
    /// ```
    pub fn max_by<F>(self, mut compare: F) -> HashMap<K, V>
        where F: FnMut(&K, &V, &V) -> Ordering,
    {
        self.fold_first(|acc, key, val| match compare(key, &acc, &val) {
            Ordering::Less | Ordering::Equal => val,
            Ordering::Greater => acc
        })
    }

    /// Groups elements from the `GroupingMap` source by key and finds the element of each group
    /// that gives the maximum from the specified function.
    /// 
    /// If several elements are equally maximum, the last element is picked.
    /// 
    /// Returns a `HashMap` associating the key of each group with the maximum of that group's elements.
    /// 
    /// ```
    /// use itertools::Itertools;
    /// 
    /// let lookup = vec![1, 3, 4, 5, 7, 8, 9, 12].into_iter()
    ///     .into_grouping_map_by(|&n| n % 3)
    ///     .max_by_key(|_key, &val| val % 4);
    /// 
    /// assert_eq!(lookup[&0], 3);
    /// assert_eq!(lookup[&1], 7);
    /// assert_eq!(lookup[&2], 5);
    /// assert_eq!(lookup.len(), 3);
    /// ```
    pub fn max_by_key<F, CK>(self, mut f: F) -> HashMap<K, V>
        where F: FnMut(&K, &V) -> CK,
              CK: Ord,
    {
        self.max_by(|key, v1, v2| f(key, v1).cmp(&f(key, v2)))
    }

    /// Groups elements from the `GroupingMap` source by key and finds the minimum of each group.
    /// 
    /// If several elements are equally minimum, the first element is picked.
    /// 
    /// Returns a `HashMap` associating the key of each group with the minimum of that group's elements.
    /// 
    /// ```
    /// use itertools::Itertools;
    /// 
    /// let lookup = vec![1, 3, 4, 5, 7, 8, 9, 12].into_iter()
    ///     .into_grouping_map_by(|&n| n % 3)
    ///     .min();
    /// 
    /// assert_eq!(lookup[&0], 3);
    /// assert_eq!(lookup[&1], 1);
    /// assert_eq!(lookup[&2], 5);
    /// assert_eq!(lookup.len(), 3);
    /// ```
    pub fn min(self) -> HashMap<K, V>
        where V: Ord,
    {
        self.min_by(|_, v1, v2| V::cmp(v1, v2))
    }

    /// Groups elements from the `GroupingMap` source by key and finds the minimum of each group
    /// with respect to the specified comparison function.
    /// 
    /// If several elements are equally minimum, the first element is picked.
    /// 
    /// Returns a `HashMap` associating the key of each group with the minimum of that group's elements.
    /// 
    /// ```
    /// use itertools::Itertools;
    /// 
    /// let lookup = vec![1, 3, 4, 5, 7, 8, 9, 12].into_iter()
    ///     .into_grouping_map_by(|&n| n % 3)
    ///     .min_by(|_key, x, y| y.cmp(x));
    /// 
    /// assert_eq!(lookup[&0], 12);
    /// assert_eq!(lookup[&1], 7);
    /// assert_eq!(lookup[&2], 8);
    /// assert_eq!(lookup.len(), 3);
    /// ```
    pub fn min_by<F>(self, mut compare: F) -> HashMap<K, V>
        where F: FnMut(&K, &V, &V) -> Ordering,
    {
        self.fold_first(|acc, key, val| match compare(key, &acc, &val) {
            Ordering::Less | Ordering::Equal => acc,
            Ordering::Greater => val
        })
    }

    /// Groups elements from the `GroupingMap` source by key and finds the element of each group
    /// that gives the minimum from the specified function.
    /// 
    /// If several elements are equally minimum, the first element is picked.
    /// 
    /// Returns a `HashMap` associating the key of each group with the minimum of that group's elements.
    /// 
    /// ```
    /// use itertools::Itertools;
    /// 
    /// let lookup = vec![1, 3, 4, 5, 7, 8, 9, 12].into_iter()
    ///     .into_grouping_map_by(|&n| n % 3)
    ///     .min_by_key(|_key, &val| val % 4);
    /// 
    /// assert_eq!(lookup[&0], 12);
    /// assert_eq!(lookup[&1], 4);
    /// assert_eq!(lookup[&2], 8);
    /// assert_eq!(lookup.len(), 3);
    /// ```
    pub fn min_by_key<F, CK>(self, mut f: F) -> HashMap<K, V>
        where F: FnMut(&K, &V) -> CK,
              CK: Ord,
    {
        self.min_by(|key, v1, v2| f(key, v1).cmp(&f(key, v2)))
    }

    /// Groups elements from the `GroupingMap` source by key and find the maximum and minimum of
    /// each group.
    /// 
    /// If several elements are equally maximum, the last element is picked.
    /// If several elements are equally minimum, the first element is picked.
    /// 
    /// See [.minmax()](crate::Itertools::minmax) for the non-grouping version.
    /// 
    /// Differences from the non grouping version:
    /// - It never produces a `MinMaxResult::NoElements`
    /// - It doesn't have any speedup
    /// 
    /// Returns a `HashMap` associating the key of each group with the minimum and maximum of that group's elements.
    /// 
    /// ```
    /// use itertools::Itertools;
    /// use itertools::MinMaxResult::{OneElement, MinMax};
    /// 
    /// let lookup = vec![1, 3, 4, 5, 7, 9, 12].into_iter()
    ///     .into_grouping_map_by(|&n| n % 3)
    ///     .minmax();
    /// 
    /// assert_eq!(lookup[&0], MinMax(3, 12));
    /// assert_eq!(lookup[&1], MinMax(1, 7));
    /// assert_eq!(lookup[&2], OneElement(5));
    /// assert_eq!(lookup.len(), 3);
    /// ```
    pub fn minmax(self) -> HashMap<K, MinMaxResult<V>>
        where V: Ord,
    {
        self.minmax_by(|_, v1, v2| V::cmp(v1, v2))
    }

    /// Groups elements from the `GroupingMap` source by key and find the maximum and minimum of
    /// each group with respect to the specified comparison function.
    /// 
    /// If several elements are equally maximum, the last element is picked.
    /// If several elements are equally minimum, the first element is picked.
    /// 
    /// It has the same differences from the non-grouping version as `minmax`.
    /// 
    /// Returns a `HashMap` associating the key of each group with the minimum and maximum of that group's elements.
    /// 
    /// ```
    /// use itertools::Itertools;
    /// use itertools::MinMaxResult::{OneElement, MinMax};
    /// 
    /// let lookup = vec![1, 3, 4, 5, 7, 9, 12].into_iter()
    ///     .into_grouping_map_by(|&n| n % 3)
    ///     .minmax_by(|_key, x, y| y.cmp(x));
    /// 
    /// assert_eq!(lookup[&0], MinMax(12, 3));
    /// assert_eq!(lookup[&1], MinMax(7, 1));
    /// assert_eq!(lookup[&2], OneElement(5));
    /// assert_eq!(lookup.len(), 3);
    /// ```
    pub fn minmax_by<F>(self, mut compare: F) -> HashMap<K, MinMaxResult<V>>
        where F: FnMut(&K, &V, &V) -> Ordering,
    {
        self.aggregate(|acc, key, val| {
            Some(match acc {
                Some(MinMaxResult::OneElement(e)) => {
                    if compare(key, &val, &e) == Ordering::Less {
                        MinMaxResult::MinMax(val, e)
                    } else {
                        MinMaxResult::MinMax(e, val)
                    }
                }
                Some(MinMaxResult::MinMax(min, max)) => {
                    if compare(key, &val, &min) == Ordering::Less {
                        MinMaxResult::MinMax(val, max)
                    } else if compare(key, &val, &max) != Ordering::Less {
                        MinMaxResult::MinMax(min, val)
                    } else {
                        MinMaxResult::MinMax(min, max)
                    }
                }
                None => MinMaxResult::OneElement(val),
                Some(MinMaxResult::NoElements) => unreachable!(),
            })
        })
    }

    /// Groups elements from the `GroupingMap` source by key and find the elements of each group
    /// that gives the minimum and maximum from the specified function.
    /// 
    /// If several elements are equally maximum, the last element is picked.
    /// If several elements are equally minimum, the first element is picked.
    /// 
    /// It has the same differences from the non-grouping version as `minmax`.
    /// 
    /// Returns a `HashMap` associating the key of each group with the minimum and maximum of that group's elements.
    /// 
    /// ```
    /// use itertools::Itertools;
    /// use itertools::MinMaxResult::{OneElement, MinMax};
    /// 
    /// let lookup = vec![1, 3, 4, 5, 7, 9, 12].into_iter()
    ///     .into_grouping_map_by(|&n| n % 3)
    ///     .minmax_by_key(|_key, &val| val % 4);
    /// 
    /// assert_eq!(lookup[&0], MinMax(12, 3));
    /// assert_eq!(lookup[&1], MinMax(4, 7));
    /// assert_eq!(lookup[&2], OneElement(5));
    /// assert_eq!(lookup.len(), 3);
    /// ```
    pub fn minmax_by_key<F, CK>(self, mut f: F) -> HashMap<K, MinMaxResult<V>>
        where F: FnMut(&K, &V) -> CK,
              CK: Ord,
    {
        self.minmax_by(|key, v1, v2| f(key, v1).cmp(&f(key, v2)))
    }
    
    /// Groups elements from the `GroupingMap` source by key and sums them.
    /// 
    /// This is just a shorthand for `self.fold_first(|acc, _, val| acc + val)`.
    /// It is more limited than `Iterator::sum` since it doesn't use the `Sum` trait.
    /// 
    /// Returns a `HashMap` associating the key of each group with the sum of that group's elements.
    /// 
    /// ```
    /// use itertools::Itertools;
    /// 
    /// let lookup = vec![1, 3, 4, 5, 7, 8, 9, 12].into_iter()
    ///     .into_grouping_map_by(|&n| n % 3)
    ///     .sum();
    /// 
    /// assert_eq!(lookup[&0], 3 + 9 + 12);
    /// assert_eq!(lookup[&1], 1 + 4 + 7);
    /// assert_eq!(lookup[&2], 5 + 8);
    /// assert_eq!(lookup.len(), 3);
    /// ```
    pub fn sum(self) -> HashMap<K, V>
        where V: Add<V, Output = V>
    {
        self.fold_first(|acc, _, val| acc + val)
    }

    /// Groups elements from the `GroupingMap` source by key and multiply them.
    /// 
    /// This is just a shorthand for `self.fold_first(|acc, _, val| acc * val)`.
    /// It is more limited than `Iterator::product` since it doesn't use the `Product` trait.
    /// 
    /// Returns a `HashMap` associating the key of each group with the product of that group's elements.
    /// 
    /// ```
    /// use itertools::Itertools;
    /// 
    /// let lookup = vec![1, 3, 4, 5, 7, 8, 9, 12].into_iter()
    ///     .into_grouping_map_by(|&n| n % 3)
    ///     .product();
    /// 
    /// assert_eq!(lookup[&0], 3 * 9 * 12);
    /// assert_eq!(lookup[&1], 1 * 4 * 7);
    /// assert_eq!(lookup[&2], 5 * 8);
    /// assert_eq!(lookup.len(), 3);
    /// ```
    pub fn product(self) -> HashMap<K, V>
        where V: Mul<V, Output = V>,
    {
        self.fold_first(|acc, _, val| acc * val)
    }
}