1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
// -*- mode: rust; -*-
//
// This file is part of schnorrkel.
// Copyright (c) 2019 Web 3 Foundation
// See LICENSE for licensing information.
//
// Authors:
// - jeffrey Burdges <jeff@web3.foundation>

//! ### Schnorr signature creation and verification, including batch verification.


use core::fmt::{Debug};

use curve25519_dalek::constants;
use curve25519_dalek::ristretto::{CompressedRistretto,RistrettoPoint};
use curve25519_dalek::scalar::Scalar;

use super::*;
use crate::context::{SigningTranscript,SigningContext};


// === Actual signature type === //

/// The length of a curve25519 EdDSA `Signature`, in bytes.
pub const SIGNATURE_LENGTH: usize = 64;

/// A Ristretto Schnorr signature "detached" from the signed message.
///
/// These cannot be converted to any Ed25519 signature because they hash
/// curve points in the Ristretto encoding.
#[allow(non_snake_case)]
#[derive(Clone, Copy, Eq, PartialEq)]
pub struct Signature {
    /// `R` is a `RistrettoPoint`, formed by using an hash function with
    /// 512-bits output to produce the digest of:
    ///
    /// - the nonce half of the `SecretKey`, and
    /// - the message to be signed.
    ///
    /// This digest is then interpreted as a `Scalar` and reduced into an
    /// element in ℤ/lℤ.  The scalar is then multiplied by the distinguished
    /// basepoint to produce `R`, and `RistrettoPoint`.
    pub (crate) R: CompressedRistretto,

    /// `s` is a `Scalar`, formed by using an hash function with 512-bits output
    /// to produce the digest of:
    ///
    /// - the `r` portion of this `Signature`,
    /// - the `PublicKey` which should be used to verify this `Signature`, and
    /// - the message to be signed.
    ///
    /// This digest is then interpreted as a `Scalar` and reduced into an
    /// element in ℤ/lℤ.
    pub (crate) s: Scalar,
}

impl Debug for Signature {
    fn fmt(&self, f: &mut ::core::fmt::Formatter<'_>) -> ::core::fmt::Result {
        write!(f, "Signature( R: {:?}, s: {:?} )", &self.R, &self.s)
    }
}

fn check_scalar(bytes: [u8; 32]) -> SignatureResult<Scalar> {
    // Since this is only used in signature deserialisation (i.e. upon
    // verification), we can do a "succeed fast" trick by checking that the most
    // significant 4 bits are unset.  If they are unset, we can succeed fast
    // because we are guaranteed that the scalar is fully reduced.  However, if
    // the 4th most significant bit is set, we must do the full reduction check,
    // as the order of the basepoint is roughly a 2^(252.5) bit number.
    //
    // This succeed-fast trick should succeed for roughly half of all scalars.
    if bytes[31] & 240 == 0 {
        return Ok(Scalar::from_bits(bytes))
    }

    Scalar::from_canonical_bytes(bytes).ok_or(SignatureError::ScalarFormatError)
}

impl Signature {
    const DESCRIPTION : &'static str = "A 64 byte Ristretto Schnorr signature";
    /*
    const DESCRIPTION_LONG : &'static str = 
        "A 64 byte Ristretto Schnorr signature, similar to an ed25519 \
         signature as specified in RFC8032, except the Ristretto point \
         compression is used for the curve point in the first 32 bytes";
    */

    /// Convert this `Signature` to a byte array.
    #[inline]
    pub fn to_bytes(&self) -> [u8; SIGNATURE_LENGTH] {
        let mut bytes: [u8; SIGNATURE_LENGTH] = [0u8; SIGNATURE_LENGTH];
        bytes[..32].copy_from_slice(&self.R.as_bytes()[..]);
        bytes[32..].copy_from_slice(&self.s.as_bytes()[..]);
        bytes[63] |= 128;
        bytes
    }

    /// Construct a `Signature` from a slice of bytes.
    ///
    /// We distinguish schnorrkell signatures from ed25519 signatures
    /// by setting the high bit of byte 31.  We return an error if
    /// this marker remains unset because otherwise schnorrkel 
    /// signatures would be indistinguishable from ed25519 signatures.
    /// We cannot always distinguish between schnorrkel and ed25519
    /// public keys either, so without this market bit we could not
    /// do batch verification in systems that support precisely
    /// ed25519 and schnorrkel.  
    ///
    /// We cannot distinguish amongst different `SigningTranscript`
    /// types using these markey bits, but protocol should not need
    /// two different transcript types.
    #[inline]
    pub fn from_bytes(bytes: &[u8]) -> SignatureResult<Signature> {
        if bytes.len() != SIGNATURE_LENGTH {
            return Err(SignatureError::BytesLengthError {
                name: "Signature",
                description: Signature::DESCRIPTION,
                length: SIGNATURE_LENGTH
            });
        }

        let mut lower: [u8; 32] = [0u8; 32];
        let mut upper: [u8; 32] = [0u8; 32];
        lower.copy_from_slice(&bytes[..32]);
        upper.copy_from_slice(&bytes[32..]);
        if upper[31] & 128 == 0 {
            return Err(SignatureError::NotMarkedSchnorrkel);
        }
        upper[31] &= 127;

        Ok(Signature{ R: CompressedRistretto(lower), s: check_scalar(upper) ? })
    }

    /// Depricated construction of a `Signature` from a slice of bytes
    /// without checking the bit distinguishing from ed25519.  Deprecated.
    #[inline]
    pub fn from_bytes_not_distinguished_from_ed25519(bytes: &[u8]) -> SignatureResult<Signature> {
        if bytes.len() != SIGNATURE_LENGTH {
            return Err(SignatureError::BytesLengthError {
                name: "Signature",
                description: Signature::DESCRIPTION,
                length: SIGNATURE_LENGTH
            });
        }
        let mut bytes0: [u8; SIGNATURE_LENGTH] = [0u8; SIGNATURE_LENGTH];
        bytes0.copy_from_slice(bytes);
        bytes0[63] |= 128;
        Signature::from_bytes(&bytes0[..])
    }
}

serde_boilerplate!(Signature);


// === Implement signing and verification operations on key types === //

impl SecretKey {
    /// Sign a transcript with this `SecretKey`.
    ///
    /// Requires a `SigningTranscript`, normally created from a
    /// `SigningContext` and a message, as well as the public key
    /// correspodning to `self`.  Returns a Schnorr signature.
    ///
    /// We employ a randomized nonce here, but also incorporate the
    /// transcript like in a derandomized scheme, but only after first
    /// extending the transcript by the public key.  As a result, there
    /// should be no attacks even if both the random number generator
    /// fails and the function gets called with the wrong public key.
    #[allow(non_snake_case)]
    pub fn sign<T: SigningTranscript>(&self, mut t: T, public_key: &PublicKey) -> Signature 
    {
        t.proto_name(b"Schnorr-sig");
        t.commit_point(b"sign:pk",public_key.as_compressed());

        let mut r = t.witness_scalar(b"signing",&[&self.nonce]);  // context, message, A/public_key
        let R = (&r * &constants::RISTRETTO_BASEPOINT_TABLE).compress();

        t.commit_point(b"sign:R",&R);

        let k: Scalar = t.challenge_scalar(b"sign:c");  // context, message, A/public_key, R=rG
        let s: Scalar = &(&k * &self.key) + &r;

        ::zeroize::Zeroize::zeroize(&mut r);

        Signature{ R, s }
    }

    /// Sign a message with this `SecretKey`, but doublecheck the result.
    pub fn sign_doublecheck<T>(&self, t: T, public_key: &PublicKey) -> SignatureResult<Signature>
    where T: SigningTranscript+Clone
    {
        let sig = self.sign(t.clone(),public_key);
        let sig = Signature::from_bytes(& sig.to_bytes()) ?;
        PublicKey::from_bytes(& public_key.to_bytes()) ?
        .verify(t,&sig).map(|()| sig)
    }

    /// Sign a message with this `SecretKey`.
    pub fn sign_simple(&self, ctx: &[u8], msg: &[u8], public_key: &PublicKey) -> Signature
    {
        let t = SigningContext::new(ctx).bytes(msg);
        self.sign(t,public_key)
    }

    /// Sign a message with this `SecretKey`, but doublecheck the result.
    pub fn sign_simple_doublecheck(&self, ctx: &[u8], msg: &[u8], public_key: &PublicKey)
     -> SignatureResult<Signature>
    {
        let t = SigningContext::new(ctx).bytes(msg);
        let sig = self.sign(t,public_key);
        let sig = Signature::from_bytes(& sig.to_bytes()) ?;
        PublicKey::from_bytes(& public_key.to_bytes()) ?
        .verify_simple(ctx,msg,&sig).map(|()| sig)
    }
}


impl PublicKey {
    /// Verify a signature by this public key on a transcript.
    ///
    /// Requires a `SigningTranscript`, normally created from a
    /// `SigningContext` and a message, as well as the signature
    /// to be verified.
    #[allow(non_snake_case)]
    pub fn verify<T: SigningTranscript>(&self, mut t: T, signature: &Signature)
     -> SignatureResult<()>
    {
        let A: &RistrettoPoint = self.as_point();

        t.proto_name(b"Schnorr-sig");
        t.commit_point(b"sign:pk",self.as_compressed());
        t.commit_point(b"sign:R",&signature.R);

        let k: Scalar = t.challenge_scalar(b"sign:c");  // context, message, A/public_key, R=rG
        let R = RistrettoPoint::vartime_double_scalar_mul_basepoint(&k, &(-A), &signature.s);

        if R.compress() == signature.R { Ok(()) } else { Err(SignatureError::EquationFalse) }
    }

    /// Verify a signature by this public key on a message.
    pub fn verify_simple(&self, ctx: &[u8], msg: &[u8], signature: &Signature)
     -> SignatureResult<()>
    {
        let t = SigningContext::new(ctx).bytes(msg);
        self.verify(t,signature)
    }

    /// A temporary verification routine for use in transitioning substrate testnets only.
    #[cfg(feature = "preaudit_deprecated")]
    #[allow(non_snake_case)]
    pub fn verify_simple_preaudit_deprecated(&self, ctx: &'static [u8], msg: &[u8], sig: &[u8])
     -> SignatureResult<()>
    {
        let t = SigningContext::new(ctx).bytes(msg);

        if let Ok(signature) = Signature::from_bytes(sig) {
            return self.verify(t,&signature);
        }

        let signature = Signature::from_bytes_not_distinguished_from_ed25519(sig) ?;

        let mut t = merlin::Transcript::new(ctx);
        t.append_message(b"sign-bytes", msg);

        let A: &RistrettoPoint = self.as_point();

        t.proto_name(b"Schnorr-sig");
        t.commit_point(b"pk",self.as_compressed());
        t.commit_point(b"no",&signature.R);

        let k: Scalar = t.challenge_scalar(b"");  // context, message, A/public_key, R=rG
        let R = RistrettoPoint::vartime_double_scalar_mul_basepoint(&k, &(-A), &signature.s);

        if R.compress() == signature.R { Ok(()) } else { Err(SignatureError::EquationFalse) }
    }

}


impl Keypair {
    /// Sign a transcript with this keypair's secret key.
    ///
    /// Requires a `SigningTranscript`, normally created from a
    /// `SigningContext` and a message.  Returns a Schnorr signature.
    ///
    /// # Examples
    ///
    /// Internally, we manage signature transcripts using a 128 bit secure
    /// STROBE construction based on Keccak, which itself is extremly fast
    /// and secure.  You might however influence performance or security
    /// by prehashing your message, like
    ///
    /// ```
    /// use schnorrkel::{Signature,Keypair};
    /// use rand::prelude::*; // ThreadRng,thread_rng
    /// use sha3::Shake128;
    /// use sha3::digest::{Input};
    ///
    /// # #[cfg(all(feature = "std"))]
    /// # fn main() {
    /// let mut csprng: ThreadRng = thread_rng();
    /// let keypair: Keypair = Keypair::generate_with(&mut csprng);
    /// let message: &[u8] = b"All I want is to pet all of the dogs.";
    ///
    /// // Create a hash digest object and feed it the message:
    /// let prehashed = Shake128::default().chain(message);
    /// # }
    /// #
    /// # #[cfg(any(not(feature = "std")))]
    /// # fn main() { }
    /// ```
    ///
    /// We require a "context" string for all signatures, which should
    /// be chosen judiciously for your project.  It should represent the 
    /// role the signature plays in your application.  If you use the
    /// context in two purposes, and the same key, then a signature for
    /// one purpose can be substituted for the other.
    ///
    /// ```
    /// # use schnorrkel::{Keypair,Signature,signing_context};
    /// # use rand::prelude::*; // ThreadRng,thread_rng
    /// # use sha3::digest::Input;
    /// #
    /// # #[cfg(all(feature = "std"))]
    /// # fn main() {
    /// # let mut csprng: ThreadRng = thread_rng();
    /// # let keypair: Keypair = Keypair::generate_with(&mut csprng);
    /// # let message: &[u8] = b"All I want is to pet all of the dogs.";
    /// # let prehashed = ::sha3::Shake256::default().chain(message);
    /// #
    /// let ctx = signing_context(b"My Signing Context");
    ///
    /// let sig: Signature = keypair.sign(ctx.xof(prehashed));
    /// # }
    /// #
    /// # #[cfg(any(not(feature = "std")))]
    /// # fn main() { }
    /// ```
    ///
    // lol  [terrible_idea]: https://github.com/isislovecruft/scripts/blob/master/gpgkey2bc.py
    pub fn sign<T: SigningTranscript>(&self, t: T) -> Signature
    {
        self.secret.sign(t, &self.public)
    }

    /// Sign a message with this keypair's secret key.
    pub fn sign_simple(&self, ctx: &[u8], msg: &[u8]) -> Signature
    {
        self.secret.sign_simple(ctx, msg, &self.public)
    }

    /// Verify a signature by keypair's public key on a transcript.
    ///
    /// Requires a `SigningTranscript`, normally created from a
    /// `SigningContext` and a message, as well as the signature
    /// to be verified.
    ///
    /// # Examples
    ///
    /// ```
    /// use schnorrkel::{Keypair,Signature,signing_context};
    /// use rand::prelude::*; // ThreadRng,thread_rng
    ///
    /// # fn main() {
    /// let mut csprng: ThreadRng = thread_rng();
    /// let keypair: Keypair = Keypair::generate_with(&mut csprng);
    /// let message: &[u8] = b"All I want is to pet all of the dogs.";
    ///
    /// let ctx = signing_context(b"Some context string");
    ///
    /// let sig: Signature = keypair.sign(ctx.bytes(message));
    ///
    /// assert!( keypair.public.verify(ctx.bytes(message), &sig).is_ok() );
    /// # }
    /// ```
    pub fn verify<T: SigningTranscript>(&self, t: T, signature: &Signature) -> SignatureResult<()>
    {
        self.public.verify(t, signature)
    }

    /// Verify a signature by keypair's public key on a message.
    pub fn verify_simple(&self, ctx: &[u8], msg: &[u8], signature: &Signature) -> SignatureResult<()>
    {
        self.public.verify_simple(ctx, msg, signature)
    }


    /// Sign a message with this `SecretKey`, but doublecheck the result.
    pub fn sign_doublecheck<T>(&self, t: T) -> SignatureResult<Signature>
    where T: SigningTranscript+Clone
    {
        let sig = self.sign(t.clone());
        let sig = Signature::from_bytes(& sig.to_bytes()) ?;
        PublicKey::from_bytes(& self.public.to_bytes()) ?
        .verify(t,&sig).map(|()| sig)
    }

    /// Sign a message with this `SecretKey`, but doublecheck the result.
    pub fn sign_simple_doublecheck(&self, ctx: &[u8], msg: &[u8])
     -> SignatureResult<Signature>
    {
        let t = SigningContext::new(ctx).bytes(msg);
        let sig = self.sign(t);
        let sig = Signature::from_bytes(& sig.to_bytes()) ?;
        PublicKey::from_bytes(& self.public.to_bytes()) ?
        .verify_simple(ctx,msg,&sig).map(|()| sig)
    }

}


#[cfg(test)]
mod test {
    use sha3::Shake128;
    use curve25519_dalek::digest::{Input};

    use super::super::*;


    #[test]
    fn sign_verify_bytes() {
        let good_sig: Signature;
        let bad_sig:  Signature;

        let ctx = signing_context(b"good");
        
        let good: &[u8] = "test message".as_bytes();
        let bad:  &[u8] = "wrong message".as_bytes();

        // #[cfg(feature = "getrandom")]
        let mut csprng = ::rand_core::OsRng;
        
        let keypair = Keypair::generate_with(&mut csprng);
        good_sig = keypair.sign(ctx.bytes(&good));
        bad_sig  = keypair.sign(ctx.bytes(&bad));

        let good_sig = Signature::from_bytes(&good_sig.to_bytes()[..]).unwrap();
        let bad_sig  = Signature::from_bytes(&bad_sig.to_bytes()[..]).unwrap();

        assert!(keypair.verify(ctx.bytes(&good), &good_sig).is_ok(),
                "Verification of a valid signature failed!");
        assert!(!keypair.verify(ctx.bytes(&good), &bad_sig).is_ok(),
                "Verification of a signature on a different message passed!");
        assert!(!keypair.verify(ctx.bytes(&bad),  &good_sig).is_ok(),
                "Verification of a signature on a different message passed!");
        assert!(!keypair.verify(signing_context(b"bad").bytes(&good),  &good_sig).is_ok(),
                "Verification of a signature on a different message passed!");
    }

    #[test]
    fn sign_verify_xof() {
        let good_sig: Signature;
        let bad_sig:  Signature;

        let ctx = signing_context(b"testing testing 1 2 3");

        let good: &[u8] = b"test message";
        let bad:  &[u8] = b"wrong message";

        let prehashed_good: Shake128 = Shake128::default().chain(good);
        let prehashed_bad: Shake128 = Shake128::default().chain(bad);
        // You may verify that `Shake128: Copy` is possible, making these clones below correct.

        // #[cfg(feature = "getrandom")]
        let mut csprng = ::rand_core::OsRng;

        let keypair = Keypair::generate_with(&mut csprng);
        good_sig = keypair.sign(ctx.xof(prehashed_good.clone()));
        bad_sig  = keypair.sign(ctx.xof(prehashed_bad.clone()));

        let good_sig_d = Signature::from_bytes(&good_sig.to_bytes()[..]).unwrap();
        let bad_sig_d  = Signature::from_bytes(&bad_sig.to_bytes()[..]).unwrap();
        assert_eq!(good_sig, good_sig_d);
        assert_eq!(bad_sig, bad_sig_d);

        assert!(keypair.verify(ctx.xof(prehashed_good.clone()), &good_sig).is_ok(),
                "Verification of a valid signature failed!");
        assert!(! keypair.verify(ctx.xof(prehashed_good.clone()), &bad_sig).is_ok(),
                "Verification of a signature on a different message passed!");
        assert!(! keypair.verify(ctx.xof(prehashed_bad.clone()), &good_sig).is_ok(),
                "Verification of a signature on a different message passed!");
        assert!(! keypair.verify(signing_context(b"oops").xof(prehashed_good), &good_sig).is_ok(),
                "Verification of a signature on a different message passed!");
    }

    #[cfg(feature = "preaudit_deprecated")]
    #[test]
    fn can_verify_know_preaudit_deprecated_message() {
        use hex_literal::hex;
        const SIGNING_CTX : &'static [u8] = b"substrate";
        let message = b"Verifying that I am the owner of 5G9hQLdsKQswNPgB499DeA5PkFBbgkLPJWkkS6FAM6xGQ8xD. Hash: 221455a3\n";
        let public = hex!("b4bfa1f7a5166695eb75299fd1c4c03ea212871c342f2c5dfea0902b2c246918");
        let public = PublicKey::from_bytes(&public[..]).unwrap();
        let signature = hex!("5a9755f069939f45d96aaf125cf5ce7ba1db998686f87f2fb3cbdea922078741a73891ba265f70c31436e18a9acd14d189d73c12317ab6c313285cd938453202");
        assert!( public.verify_simple_preaudit_deprecated(SIGNING_CTX,message,&signature[..]).is_ok() );
    }
}