1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466
use crate::enums::ProtocolVersion;
use crate::error::Error;
use crate::key;
#[cfg(feature = "logging")]
use crate::log::{debug, error, trace, warn};
use crate::msgs::alert::AlertMessagePayload;
use crate::msgs::base::Payload;
use crate::msgs::deframer::MessageDeframer;
use crate::msgs::enums::HandshakeType;
use crate::msgs::enums::{AlertDescription, AlertLevel, ContentType};
use crate::msgs::fragmenter::MessageFragmenter;
use crate::msgs::handshake::Random;
use crate::msgs::hsjoiner::{HandshakeJoiner, JoinerError};
use crate::msgs::message::{
BorrowedPlainMessage, Message, MessagePayload, OpaqueMessage, PlainMessage,
};
#[cfg(feature = "quic")]
use crate::quic;
use crate::record_layer;
use crate::suites::SupportedCipherSuite;
#[cfg(feature = "secret_extraction")]
use crate::suites::{ExtractedSecrets, PartiallyExtractedSecrets};
#[cfg(feature = "tls12")]
use crate::tls12::ConnectionSecrets;
use crate::vecbuf::ChunkVecBuffer;
#[cfg(feature = "quic")]
use std::collections::VecDeque;
use std::convert::TryFrom;
use std::fmt::Debug;
use std::io;
use std::mem;
use std::ops::{Deref, DerefMut};
/// A client or server connection.
#[derive(Debug)]
pub enum Connection {
/// A client connection
Client(crate::client::ClientConnection),
/// A server connection
Server(crate::server::ServerConnection),
}
impl Connection {
/// Read TLS content from `rd`.
///
/// See [`ConnectionCommon::read_tls()`] for more information.
pub fn read_tls(&mut self, rd: &mut dyn io::Read) -> Result<usize, io::Error> {
match self {
Self::Client(conn) => conn.read_tls(rd),
Self::Server(conn) => conn.read_tls(rd),
}
}
/// Returns an object that allows reading plaintext.
pub fn reader(&mut self) -> Reader {
match self {
Self::Client(conn) => conn.reader(),
Self::Server(conn) => conn.reader(),
}
}
/// Returns an object that allows writing plaintext.
pub fn writer(&mut self) -> Writer {
match self {
Self::Client(conn) => Writer::new(&mut **conn),
Self::Server(conn) => Writer::new(&mut **conn),
}
}
/// Processes any new packets read by a previous call to [`Connection::read_tls`].
///
/// See [`ConnectionCommon::process_new_packets()`] for more information.
pub fn process_new_packets(&mut self) -> Result<IoState, Error> {
match self {
Self::Client(conn) => conn.process_new_packets(),
Self::Server(conn) => conn.process_new_packets(),
}
}
/// Derives key material from the agreed connection secrets.
///
/// See [`ConnectionCommon::export_keying_material()`] for more information.
pub fn export_keying_material(
&self,
output: &mut [u8],
label: &[u8],
context: Option<&[u8]>,
) -> Result<(), Error> {
match self {
Self::Client(conn) => conn.export_keying_material(output, label, context),
Self::Server(conn) => conn.export_keying_material(output, label, context),
}
}
/// Extract secrets, to set up kTLS for example
#[cfg(feature = "secret_extraction")]
pub fn extract_secrets(self) -> Result<ExtractedSecrets, Error> {
match self {
Self::Client(conn) => conn.extract_secrets(),
Self::Server(conn) => conn.extract_secrets(),
}
}
/// This function uses `io` to complete any outstanding IO for this connection.
///
/// See [`ConnectionCommon::complete_io()`] for more information.
pub fn complete_io<T>(&mut self, io: &mut T) -> Result<(usize, usize), io::Error>
where
Self: Sized,
T: io::Read + io::Write,
{
match self {
Self::Client(conn) => conn.complete_io(io),
Self::Server(conn) => conn.complete_io(io),
}
}
}
#[cfg(feature = "quic")]
impl crate::quic::QuicExt for Connection {
fn quic_transport_parameters(&self) -> Option<&[u8]> {
match self {
Self::Client(conn) => conn.quic_transport_parameters(),
Self::Server(conn) => conn.quic_transport_parameters(),
}
}
fn zero_rtt_keys(&self) -> Option<quic::DirectionalKeys> {
match self {
Self::Client(conn) => conn.zero_rtt_keys(),
Self::Server(conn) => conn.zero_rtt_keys(),
}
}
fn read_hs(&mut self, plaintext: &[u8]) -> Result<(), Error> {
match self {
Self::Client(conn) => conn.read_quic_hs(plaintext),
Self::Server(conn) => conn.read_quic_hs(plaintext),
}
}
fn write_hs(&mut self, buf: &mut Vec<u8>) -> Option<quic::KeyChange> {
match self {
Self::Client(conn) => quic::write_hs(conn, buf),
Self::Server(conn) => quic::write_hs(conn, buf),
}
}
fn alert(&self) -> Option<AlertDescription> {
match self {
Self::Client(conn) => conn.alert(),
Self::Server(conn) => conn.alert(),
}
}
}
impl Deref for Connection {
type Target = CommonState;
fn deref(&self) -> &Self::Target {
match self {
Self::Client(conn) => &conn.common_state,
Self::Server(conn) => &conn.common_state,
}
}
}
impl DerefMut for Connection {
fn deref_mut(&mut self) -> &mut Self::Target {
match self {
Self::Client(conn) => &mut conn.common_state,
Self::Server(conn) => &mut conn.common_state,
}
}
}
/// Values of this structure are returned from [`Connection::process_new_packets`]
/// and tell the caller the current I/O state of the TLS connection.
#[derive(Debug, Eq, PartialEq)]
pub struct IoState {
tls_bytes_to_write: usize,
plaintext_bytes_to_read: usize,
peer_has_closed: bool,
}
impl IoState {
/// How many bytes could be written by [`CommonState::write_tls`] if called
/// right now. A non-zero value implies [`CommonState::wants_write`].
pub fn tls_bytes_to_write(&self) -> usize {
self.tls_bytes_to_write
}
/// How many plaintext bytes could be obtained via [`std::io::Read`]
/// without further I/O.
pub fn plaintext_bytes_to_read(&self) -> usize {
self.plaintext_bytes_to_read
}
/// True if the peer has sent us a close_notify alert. This is
/// the TLS mechanism to securely half-close a TLS connection,
/// and signifies that the peer will not send any further data
/// on this connection.
///
/// This is also signalled via returning `Ok(0)` from
/// [`std::io::Read`], after all the received bytes have been
/// retrieved.
pub fn peer_has_closed(&self) -> bool {
self.peer_has_closed
}
}
/// A structure that implements [`std::io::Read`] for reading plaintext.
pub struct Reader<'a> {
received_plaintext: &'a mut ChunkVecBuffer,
peer_cleanly_closed: bool,
has_seen_eof: bool,
}
impl<'a> io::Read for Reader<'a> {
/// Obtain plaintext data received from the peer over this TLS connection.
///
/// If the peer closes the TLS session cleanly, this returns `Ok(0)` once all
/// the pending data has been read. No further data can be received on that
/// connection, so the underlying TCP connection should be half-closed too.
///
/// If the peer closes the TLS session uncleanly (a TCP EOF without sending a
/// `close_notify` alert) this function returns `Err(ErrorKind::UnexpectedEof.into())`
/// once any pending data has been read.
///
/// Note that support for `close_notify` varies in peer TLS libraries: many do not
/// support it and uncleanly close the TCP connection (this might be
/// vulnerable to truncation attacks depending on the application protocol).
/// This means applications using rustls must both handle EOF
/// from this function, *and* unexpected EOF of the underlying TCP connection.
///
/// If there are no bytes to read, this returns `Err(ErrorKind::WouldBlock.into())`.
///
/// You may learn the number of bytes available at any time by inspecting
/// the return of [`Connection::process_new_packets`].
fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
let len = self.received_plaintext.read(buf)?;
if len == 0 && !buf.is_empty() {
// No bytes available:
match (self.peer_cleanly_closed, self.has_seen_eof) {
// cleanly closed; don't care about TCP EOF: express this as Ok(0)
(true, _) => {}
// unclean closure
(false, true) => return Err(io::ErrorKind::UnexpectedEof.into()),
// connection still going, but need more data: signal `WouldBlock` so that
// the caller knows this
(false, false) => return Err(io::ErrorKind::WouldBlock.into()),
}
}
Ok(len)
}
/// Obtain plaintext data received from the peer over this TLS connection.
///
/// If the peer closes the TLS session, this returns `Ok(())` without filling
/// any more of the buffer once all the pending data has been read. No further
/// data can be received on that connection, so the underlying TCP connection
/// should be half-closed too.
///
/// If the peer closes the TLS session uncleanly (a TCP EOF without sending a
/// `close_notify` alert) this function returns `Err(ErrorKind::UnexpectedEof.into())`
/// once any pending data has been read.
///
/// Note that support for `close_notify` varies in peer TLS libraries: many do not
/// support it and uncleanly close the TCP connection (this might be
/// vulnerable to truncation attacks depending on the application protocol).
/// This means applications using rustls must both handle EOF
/// from this function, *and* unexpected EOF of the underlying TCP connection.
///
/// If there are no bytes to read, this returns `Err(ErrorKind::WouldBlock.into())`.
///
/// You may learn the number of bytes available at any time by inspecting
/// the return of [`Connection::process_new_packets`].
#[cfg(read_buf)]
fn read_buf(&mut self, mut cursor: io::BorrowedCursor<'_>) -> io::Result<()> {
let before = cursor.written();
self.received_plaintext
.read_buf(cursor.reborrow())?;
let len = cursor.written() - before;
if len == 0 && cursor.capacity() > 0 {
// No bytes available:
match (self.peer_cleanly_closed, self.has_seen_eof) {
// cleanly closed; don't care about TCP EOF: express this as Ok(0)
(true, _) => {}
// unclean closure
(false, true) => return Err(io::ErrorKind::UnexpectedEof.into()),
// connection still going, but need more data: signal `WouldBlock` so that
// the caller knows this
(false, false) => return Err(io::ErrorKind::WouldBlock.into()),
}
}
Ok(())
}
}
/// Internal trait implemented by the [`ServerConnection`]/[`ClientConnection`]
/// allowing them to be the subject of a [`Writer`].
pub trait PlaintextSink {
fn write(&mut self, buf: &[u8]) -> io::Result<usize>;
fn write_vectored(&mut self, bufs: &[io::IoSlice<'_>]) -> io::Result<usize>;
fn flush(&mut self) -> io::Result<()>;
}
impl<T> PlaintextSink for ConnectionCommon<T> {
fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
Ok(self.send_some_plaintext(buf))
}
fn write_vectored(&mut self, bufs: &[io::IoSlice<'_>]) -> io::Result<usize> {
let mut sz = 0;
for buf in bufs {
sz += self.send_some_plaintext(buf);
}
Ok(sz)
}
fn flush(&mut self) -> io::Result<()> {
Ok(())
}
}
/// A structure that implements [`std::io::Write`] for writing plaintext.
pub struct Writer<'a> {
sink: &'a mut dyn PlaintextSink,
}
impl<'a> Writer<'a> {
/// Create a new Writer.
///
/// This is not an external interface. Get one of these objects
/// from [`Connection::writer`].
#[doc(hidden)]
pub fn new(sink: &'a mut dyn PlaintextSink) -> Writer<'a> {
Writer { sink }
}
}
impl<'a> io::Write for Writer<'a> {
/// Send the plaintext `buf` to the peer, encrypting
/// and authenticating it. Once this function succeeds
/// you should call [`CommonState::write_tls`] which will output the
/// corresponding TLS records.
///
/// This function buffers plaintext sent before the
/// TLS handshake completes, and sends it as soon
/// as it can. See [`CommonState::set_buffer_limit`] to control
/// the size of this buffer.
fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
self.sink.write(buf)
}
fn write_vectored(&mut self, bufs: &[io::IoSlice<'_>]) -> io::Result<usize> {
self.sink.write_vectored(bufs)
}
fn flush(&mut self) -> io::Result<()> {
self.sink.flush()
}
}
#[derive(Copy, Clone, Eq, PartialEq, Debug)]
pub(crate) enum Protocol {
Tcp,
#[cfg(feature = "quic")]
Quic,
}
#[derive(Debug)]
pub(crate) struct ConnectionRandoms {
pub(crate) client: [u8; 32],
pub(crate) server: [u8; 32],
}
/// How many ChangeCipherSpec messages we accept and drop in TLS1.3 handshakes.
/// The spec says 1, but implementations (namely the boringssl test suite) get
/// this wrong. BoringSSL itself accepts up to 32.
static TLS13_MAX_DROPPED_CCS: u8 = 2u8;
impl ConnectionRandoms {
pub(crate) fn new(client: Random, server: Random) -> Self {
Self {
client: client.0,
server: server.0,
}
}
}
// --- Common (to client and server) connection functions ---
fn is_valid_ccs(msg: &OpaqueMessage) -> bool {
// nb. this is prior to the record layer, so is unencrypted. see
// third paragraph of section 5 in RFC8446.
msg.typ == ContentType::ChangeCipherSpec && msg.payload.0 == [0x01]
}
enum Limit {
Yes,
No,
}
/// Interface shared by client and server connections.
pub struct ConnectionCommon<Data> {
state: Result<Box<dyn State<Data>>, Error>,
pub(crate) data: Data,
pub(crate) common_state: CommonState,
message_deframer: MessageDeframer,
handshake_joiner: HandshakeJoiner,
}
impl<Data> ConnectionCommon<Data> {
pub(crate) fn new(state: Box<dyn State<Data>>, data: Data, common_state: CommonState) -> Self {
Self {
state: Ok(state),
data,
common_state,
message_deframer: MessageDeframer::new(),
handshake_joiner: HandshakeJoiner::new(),
}
}
/// Returns an object that allows reading plaintext.
pub fn reader(&mut self) -> Reader {
Reader {
received_plaintext: &mut self.common_state.received_plaintext,
/// Are we done? i.e., have we processed all received messages, and received a
/// close_notify to indicate that no new messages will arrive?
peer_cleanly_closed: self
.common_state
.has_received_close_notify
&& !self.message_deframer.has_pending(),
has_seen_eof: self.common_state.has_seen_eof,
}
}
/// Returns an object that allows writing plaintext.
pub fn writer(&mut self) -> Writer {
Writer::new(self)
}
/// This function uses `io` to complete any outstanding IO for
/// this connection.
///
/// This is a convenience function which solely uses other parts
/// of the public API.
///
/// What this means depends on the connection state:
///
/// - If the connection [`is_handshaking`], then IO is performed until
/// the handshake is complete.
/// - Otherwise, if [`wants_write`] is true, [`write_tls`] is invoked
/// until it is all written.
/// - Otherwise, if [`wants_read`] is true, [`read_tls`] is invoked
/// once.
///
/// The return value is the number of bytes read from and written
/// to `io`, respectively.
///
/// This function will block if `io` blocks.
///
/// Errors from TLS record handling (i.e., from [`process_new_packets`])
/// are wrapped in an `io::ErrorKind::InvalidData`-kind error.
///
/// [`is_handshaking`]: CommonState::is_handshaking
/// [`wants_read`]: CommonState::wants_read
/// [`wants_write`]: CommonState::wants_write
/// [`write_tls`]: CommonState::write_tls
/// [`read_tls`]: ConnectionCommon::read_tls
/// [`process_new_packets`]: ConnectionCommon::process_new_packets
pub fn complete_io<T>(&mut self, io: &mut T) -> Result<(usize, usize), io::Error>
where
Self: Sized,
T: io::Read + io::Write,
{
let until_handshaked = self.is_handshaking();
let mut eof = false;
let mut wrlen = 0;
let mut rdlen = 0;
loop {
while self.wants_write() {
wrlen += self.write_tls(io)?;
}
if !until_handshaked && wrlen > 0 {
return Ok((rdlen, wrlen));
}
while !eof && self.wants_read() {
let read_size = match self.read_tls(io) {
Ok(0) => {
eof = true;
Some(0)
}
Ok(n) => {
rdlen += n;
Some(n)
}
Err(ref err) if err.kind() == io::ErrorKind::Interrupted => None, // nothing to do
Err(err) => return Err(err),
};
if read_size.is_some() {
break;
}
}
match self.process_new_packets() {
Ok(_) => {}
Err(e) => {
// In case we have an alert to send describing this error,
// try a last-gasp write -- but don't predate the primary
// error.
let _ignored = self.write_tls(io);
return Err(io::Error::new(io::ErrorKind::InvalidData, e));
}
};
match (eof, until_handshaked, self.is_handshaking()) {
(_, true, false) => return Ok((rdlen, wrlen)),
(_, false, _) => return Ok((rdlen, wrlen)),
(true, true, true) => return Err(io::Error::from(io::ErrorKind::UnexpectedEof)),
(..) => {}
}
}
}
/// Extract the first handshake message.
///
/// This is a shortcut to the `process_new_packets()` -> `process_msg()` ->
/// `process_handshake_messages()` path, specialized for the first handshake message.
pub(crate) fn first_handshake_message(&mut self) -> Result<Option<Message>, Error> {
let msg = match self.message_deframer.pop()? {
Some(msg) => msg,
None => return Ok(None),
};
let msg = msg.into_plain_message();
self.handshake_joiner
.push(msg)
.and_then(|aligned| {
self.common_state.aligned_handshake = aligned;
self.handshake_joiner.pop()
})
.map_err(|_| {
self.common_state
.send_fatal_alert(AlertDescription::DecodeError);
Error::CorruptMessagePayload(ContentType::Handshake)
})
}
pub(crate) fn replace_state(&mut self, new: Box<dyn State<Data>>) {
self.state = Ok(new);
}
fn process_msg(
&mut self,
msg: OpaqueMessage,
state: Box<dyn State<Data>>,
) -> Result<Box<dyn State<Data>>, Error> {
// Drop CCS messages during handshake in TLS1.3
if msg.typ == ContentType::ChangeCipherSpec
&& !self
.common_state
.may_receive_application_data
&& self.common_state.is_tls13()
{
if !is_valid_ccs(&msg)
|| self.common_state.received_middlebox_ccs > TLS13_MAX_DROPPED_CCS
{
// "An implementation which receives any other change_cipher_spec value or
// which receives a protected change_cipher_spec record MUST abort the
// handshake with an "unexpected_message" alert."
self.common_state
.send_fatal_alert(AlertDescription::UnexpectedMessage);
return Err(Error::PeerMisbehavedError(
"illegal middlebox CCS received".into(),
));
} else {
self.common_state.received_middlebox_ccs += 1;
trace!("Dropping CCS");
return Ok(state);
}
}
// Decrypt if demanded by current state.
let msg = match self
.common_state
.record_layer
.is_decrypting()
{
true => match self.common_state.decrypt_incoming(msg) {
Ok(None) => {
// message dropped
return Ok(state);
}
Err(e) => {
return Err(e);
}
Ok(Some(msg)) => msg,
},
false => msg.into_plain_message(),
};
// For handshake messages, we need to join them before parsing and processing.
let msg = match self.handshake_joiner.push(msg) {
// Handshake message, we handle these in another method.
Ok(aligned) => {
self.common_state.aligned_handshake = aligned;
// First decryptable handshake message concludes trial decryption
self.common_state
.record_layer
.finish_trial_decryption();
return self.process_new_handshake_messages(state);
}
// Not a handshake message, continue to handle it here.
Err(JoinerError::Unwanted(msg)) => msg,
// Decoding the handshake message failed, yield an error.
Err(JoinerError::Decode) => {
self.common_state
.send_fatal_alert(AlertDescription::DecodeError);
return Err(Error::CorruptMessagePayload(ContentType::Handshake));
}
};
// Now we can fully parse the message payload.
let msg = Message::try_from(msg)?;
// For alerts, we have separate logic.
if let MessagePayload::Alert(alert) = &msg.payload {
self.common_state.process_alert(alert)?;
return Ok(state);
}
self.common_state
.process_main_protocol(msg, state, &mut self.data)
}
/// Processes any new packets read by a previous call to
/// [`Connection::read_tls`].
///
/// Errors from this function relate to TLS protocol errors, and
/// are fatal to the connection. Future calls after an error will do
/// no new work and will return the same error. After an error is
/// received from [`process_new_packets`], you should not call [`read_tls`]
/// any more (it will fill up buffers to no purpose). However, you
/// may call the other methods on the connection, including `write`,
/// `send_close_notify`, and `write_tls`. Most likely you will want to
/// call `write_tls` to send any alerts queued by the error and then
/// close the underlying connection.
///
/// Success from this function comes with some sundry state data
/// about the connection.
///
/// [`read_tls`]: Connection::read_tls
/// [`process_new_packets`]: Connection::process_new_packets
pub fn process_new_packets(&mut self) -> Result<IoState, Error> {
let mut state = match mem::replace(&mut self.state, Err(Error::HandshakeNotComplete)) {
Ok(state) => state,
Err(e) => {
self.state = Err(e.clone());
return Err(e);
}
};
while let Some(msg) = self.message_deframer.pop()? {
match self.process_msg(msg, state) {
Ok(new) => state = new,
Err(e) => {
self.state = Err(e.clone());
return Err(e);
}
}
}
self.state = Ok(state);
Ok(self.common_state.current_io_state())
}
fn process_new_handshake_messages(
&mut self,
mut state: Box<dyn State<Data>>,
) -> Result<Box<dyn State<Data>>, Error> {
loop {
match self.handshake_joiner.pop() {
Ok(Some(msg)) => {
state = self
.common_state
.process_main_protocol(msg, state, &mut self.data)?;
}
Ok(None) => return Ok(state),
Err(_) => {
#[cfg(feature = "quic")]
if self.common_state.is_quic() {
self.common_state.quic.alert = Some(AlertDescription::DecodeError);
}
if !self.common_state.is_quic() {
self.common_state
.send_fatal_alert(AlertDescription::DecodeError);
}
return Err(Error::CorruptMessagePayload(ContentType::Handshake));
}
}
}
}
pub(crate) fn send_some_plaintext(&mut self, buf: &[u8]) -> usize {
if let Ok(st) = &mut self.state {
st.perhaps_write_key_update(&mut self.common_state);
}
self.common_state
.send_some_plaintext(buf)
}
/// Read TLS content from `rd` into the internal buffer.
///
/// Due to the internal buffering, `rd` can supply TLS messages in arbitrary-sized chunks (like
/// a socket or pipe might).
///
/// You should call [`process_new_packets()`] each time a call to this function succeeds in order
/// to empty the incoming TLS data buffer.
///
/// This function returns `Ok(0)` when the underlying `rd` does so. This typically happens when
/// a socket is cleanly closed, or a file is at EOF. Errors may result from the IO done through
/// `rd`; additionally, errors of `ErrorKind::Other` are emitted to signal backpressure:
///
/// * In order to empty the incoming TLS data buffer, you should call [`process_new_packets()`]
/// each time a call to this function succeeds.
/// * In order to empty the incoming plaintext data buffer, you should empty it through
/// the [`reader()`] after the call to [`process_new_packets()`].
///
/// [`process_new_packets()`]: ConnectionCommon::process_new_packets
/// [`reader()`]: ConnectionCommon::reader
pub fn read_tls(&mut self, rd: &mut dyn io::Read) -> Result<usize, io::Error> {
if self.received_plaintext.is_full() {
return Err(io::Error::new(
io::ErrorKind::Other,
"received plaintext buffer full",
));
}
let res = self.message_deframer.read(rd);
if let Ok(0) = res {
self.common_state.has_seen_eof = true;
}
res
}
/// Derives key material from the agreed connection secrets.
///
/// This function fills in `output` with `output.len()` bytes of key
/// material derived from the master session secret using `label`
/// and `context` for diversification.
///
/// See RFC5705 for more details on what this does and is for.
///
/// For TLS1.3 connections, this function does not use the
/// "early" exporter at any point.
///
/// This function fails if called prior to the handshake completing;
/// check with [`CommonState::is_handshaking`] first.
pub fn export_keying_material(
&self,
output: &mut [u8],
label: &[u8],
context: Option<&[u8]>,
) -> Result<(), Error> {
match self.state.as_ref() {
Ok(st) => st.export_keying_material(output, label, context),
Err(e) => Err(e.clone()),
}
}
/// Extract secrets, so they can be used when configuring kTLS, for example.
#[cfg(feature = "secret_extraction")]
pub fn extract_secrets(self) -> Result<ExtractedSecrets, Error> {
if !self.enable_secret_extraction {
return Err(Error::General("Secret extraction is disabled".into()));
}
let st = self.state?;
let record_layer = self.common_state.record_layer;
let PartiallyExtractedSecrets { tx, rx } = st.extract_secrets()?;
Ok(ExtractedSecrets {
tx: (record_layer.write_seq(), tx),
rx: (record_layer.read_seq(), rx),
})
}
}
#[cfg(feature = "quic")]
impl<Data> ConnectionCommon<Data> {
pub(crate) fn read_quic_hs(&mut self, plaintext: &[u8]) -> Result<(), Error> {
let state = match mem::replace(&mut self.state, Err(Error::HandshakeNotComplete)) {
Ok(state) => state,
Err(e) => {
self.state = Err(e.clone());
return Err(e);
}
};
let msg = PlainMessage {
typ: ContentType::Handshake,
version: ProtocolVersion::TLSv1_3,
payload: Payload::new(plaintext.to_vec()),
};
if self.handshake_joiner.push(msg).is_err() {
self.common_state.quic.alert = Some(AlertDescription::DecodeError);
return Err(Error::CorruptMessage);
}
self.process_new_handshake_messages(state)
.map(|state| self.state = Ok(state))
}
}
impl<T> Deref for ConnectionCommon<T> {
type Target = CommonState;
fn deref(&self) -> &Self::Target {
&self.common_state
}
}
impl<T> DerefMut for ConnectionCommon<T> {
fn deref_mut(&mut self) -> &mut Self::Target {
&mut self.common_state
}
}
/// Connection state common to both client and server connections.
pub struct CommonState {
pub(crate) negotiated_version: Option<ProtocolVersion>,
pub(crate) side: Side,
pub(crate) record_layer: record_layer::RecordLayer,
pub(crate) suite: Option<SupportedCipherSuite>,
pub(crate) alpn_protocol: Option<Vec<u8>>,
aligned_handshake: bool,
pub(crate) may_send_application_data: bool,
pub(crate) may_receive_application_data: bool,
pub(crate) early_traffic: bool,
sent_fatal_alert: bool,
/// If the peer has signaled end of stream.
has_received_close_notify: bool,
has_seen_eof: bool,
received_middlebox_ccs: u8,
pub(crate) peer_certificates: Option<Vec<key::Certificate>>,
message_fragmenter: MessageFragmenter,
received_plaintext: ChunkVecBuffer,
sendable_plaintext: ChunkVecBuffer,
pub(crate) sendable_tls: ChunkVecBuffer,
#[allow(dead_code)] // only read for QUIC
/// Protocol whose key schedule should be used. Unused for TLS < 1.3.
pub(crate) protocol: Protocol,
#[cfg(feature = "quic")]
pub(crate) quic: Quic,
#[cfg(feature = "secret_extraction")]
pub(crate) enable_secret_extraction: bool,
}
impl CommonState {
pub(crate) fn new(side: Side) -> Self {
Self {
negotiated_version: None,
side,
record_layer: record_layer::RecordLayer::new(),
suite: None,
alpn_protocol: None,
aligned_handshake: true,
may_send_application_data: false,
may_receive_application_data: false,
early_traffic: false,
sent_fatal_alert: false,
has_received_close_notify: false,
has_seen_eof: false,
received_middlebox_ccs: 0,
peer_certificates: None,
message_fragmenter: MessageFragmenter::default(),
received_plaintext: ChunkVecBuffer::new(Some(DEFAULT_RECEIVED_PLAINTEXT_LIMIT)),
sendable_plaintext: ChunkVecBuffer::new(Some(DEFAULT_BUFFER_LIMIT)),
sendable_tls: ChunkVecBuffer::new(Some(DEFAULT_BUFFER_LIMIT)),
protocol: Protocol::Tcp,
#[cfg(feature = "quic")]
quic: Quic::new(),
#[cfg(feature = "secret_extraction")]
enable_secret_extraction: false,
}
}
/// Returns true if the caller should call [`CommonState::write_tls`] as soon
/// as possible.
pub fn wants_write(&self) -> bool {
!self.sendable_tls.is_empty()
}
/// Returns true if the connection is currently performing the TLS handshake.
///
/// During this time plaintext written to the connection is buffered in memory. After
/// [`Connection::process_new_packets`] has been called, this might start to return `false`
/// while the final handshake packets still need to be extracted from the connection's buffers.
pub fn is_handshaking(&self) -> bool {
!(self.may_send_application_data && self.may_receive_application_data)
}
/// Retrieves the certificate chain used by the peer to authenticate.
///
/// The order of the certificate chain is as it appears in the TLS
/// protocol: the first certificate relates to the peer, the
/// second certifies the first, the third certifies the second, and
/// so on.
///
/// This is made available for both full and resumed handshakes.
///
/// For clients, this is the certificate chain of the server.
///
/// For servers, this is the certificate chain of the client,
/// if client authentication was completed.
///
/// The return value is None until this value is available.
pub fn peer_certificates(&self) -> Option<&[key::Certificate]> {
self.peer_certificates.as_deref()
}
/// Retrieves the protocol agreed with the peer via ALPN.
///
/// A return value of `None` after handshake completion
/// means no protocol was agreed (because no protocols
/// were offered or accepted by the peer).
pub fn alpn_protocol(&self) -> Option<&[u8]> {
self.get_alpn_protocol()
}
/// Retrieves the ciphersuite agreed with the peer.
///
/// This returns None until the ciphersuite is agreed.
pub fn negotiated_cipher_suite(&self) -> Option<SupportedCipherSuite> {
self.suite
}
/// Retrieves the protocol version agreed with the peer.
///
/// This returns `None` until the version is agreed.
pub fn protocol_version(&self) -> Option<ProtocolVersion> {
self.negotiated_version
}
pub(crate) fn is_tls13(&self) -> bool {
matches!(self.negotiated_version, Some(ProtocolVersion::TLSv1_3))
}
fn process_main_protocol<Data>(
&mut self,
msg: Message,
mut state: Box<dyn State<Data>>,
data: &mut Data,
) -> Result<Box<dyn State<Data>>, Error> {
// For TLS1.2, outside of the handshake, send rejection alerts for
// renegotiation requests. These can occur any time.
if self.may_receive_application_data && !self.is_tls13() {
let reject_ty = match self.side {
Side::Client => HandshakeType::HelloRequest,
Side::Server => HandshakeType::ClientHello,
};
if msg.is_handshake_type(reject_ty) {
self.send_warning_alert(AlertDescription::NoRenegotiation);
return Ok(state);
}
}
let mut cx = Context { common: self, data };
match state.handle(&mut cx, msg) {
Ok(next) => {
state = next;
Ok(state)
}
Err(e @ Error::InappropriateMessage { .. })
| Err(e @ Error::InappropriateHandshakeMessage { .. }) => {
self.send_fatal_alert(AlertDescription::UnexpectedMessage);
Err(e)
}
Err(e) => Err(e),
}
}
/// Send plaintext application data, fragmenting and
/// encrypting it as it goes out.
///
/// If internal buffers are too small, this function will not accept
/// all the data.
pub(crate) fn send_some_plaintext(&mut self, data: &[u8]) -> usize {
self.send_plain(data, Limit::Yes)
}
pub(crate) fn send_early_plaintext(&mut self, data: &[u8]) -> usize {
debug_assert!(self.early_traffic);
debug_assert!(self.record_layer.is_encrypting());
if data.is_empty() {
// Don't send empty fragments.
return 0;
}
self.send_appdata_encrypt(data, Limit::Yes)
}
// Changing the keys must not span any fragmented handshake
// messages. Otherwise the defragmented messages will have
// been protected with two different record layer protections,
// which is illegal. Not mentioned in RFC.
pub(crate) fn check_aligned_handshake(&mut self) -> Result<(), Error> {
if !self.aligned_handshake {
self.send_fatal_alert(AlertDescription::UnexpectedMessage);
Err(Error::PeerMisbehavedError(
"key epoch or handshake flight with pending fragment".to_string(),
))
} else {
Ok(())
}
}
pub(crate) fn illegal_param(&mut self, why: &str) -> Error {
self.send_fatal_alert(AlertDescription::IllegalParameter);
Error::PeerMisbehavedError(why.to_string())
}
pub(crate) fn decrypt_incoming(
&mut self,
encr: OpaqueMessage,
) -> Result<Option<PlainMessage>, Error> {
if self
.record_layer
.wants_close_before_decrypt()
{
self.send_close_notify();
}
let encrypted_len = encr.payload.0.len();
let plain = self.record_layer.decrypt_incoming(encr);
match plain {
Err(Error::PeerSentOversizedRecord) => {
self.send_fatal_alert(AlertDescription::RecordOverflow);
Err(Error::PeerSentOversizedRecord)
}
Err(Error::DecryptError)
if self
.record_layer
.doing_trial_decryption(encrypted_len) =>
{
trace!("Dropping undecryptable message after aborted early_data");
Ok(None)
}
Err(Error::DecryptError) => {
self.send_fatal_alert(AlertDescription::BadRecordMac);
Err(Error::DecryptError)
}
Err(e) => Err(e),
Ok(plain) => Ok(Some(plain)),
}
}
/// Fragment `m`, encrypt the fragments, and then queue
/// the encrypted fragments for sending.
pub(crate) fn send_msg_encrypt(&mut self, m: PlainMessage) {
let iter = self
.message_fragmenter
.fragment_message(&m);
for m in iter {
self.send_single_fragment(m);
}
}
/// Like send_msg_encrypt, but operate on an appdata directly.
fn send_appdata_encrypt(&mut self, payload: &[u8], limit: Limit) -> usize {
// Here, the limit on sendable_tls applies to encrypted data,
// but we're respecting it for plaintext data -- so we'll
// be out by whatever the cipher+record overhead is. That's a
// constant and predictable amount, so it's not a terrible issue.
let len = match limit {
Limit::Yes => self
.sendable_tls
.apply_limit(payload.len()),
Limit::No => payload.len(),
};
let iter = self.message_fragmenter.fragment_slice(
ContentType::ApplicationData,
ProtocolVersion::TLSv1_2,
&payload[..len],
);
for m in iter {
self.send_single_fragment(m);
}
len
}
fn send_single_fragment(&mut self, m: BorrowedPlainMessage) {
// Close connection once we start to run out of
// sequence space.
if self
.record_layer
.wants_close_before_encrypt()
{
self.send_close_notify();
}
// Refuse to wrap counter at all costs. This
// is basically untestable unfortunately.
if self.record_layer.encrypt_exhausted() {
return;
}
let em = self.record_layer.encrypt_outgoing(m);
self.queue_tls_message(em);
}
/// Writes TLS messages to `wr`.
///
/// On success, this function returns `Ok(n)` where `n` is a number of bytes written to `wr`
/// (after encoding and encryption).
///
/// After this function returns, the connection buffer may not yet be fully flushed. The
/// [`CommonState::wants_write`] function can be used to check if the output buffer is empty.
pub fn write_tls(&mut self, wr: &mut dyn io::Write) -> Result<usize, io::Error> {
self.sendable_tls.write_to(wr)
}
/// Encrypt and send some plaintext `data`. `limit` controls
/// whether the per-connection buffer limits apply.
///
/// Returns the number of bytes written from `data`: this might
/// be less than `data.len()` if buffer limits were exceeded.
fn send_plain(&mut self, data: &[u8], limit: Limit) -> usize {
if !self.may_send_application_data {
// If we haven't completed handshaking, buffer
// plaintext to send once we do.
let len = match limit {
Limit::Yes => self
.sendable_plaintext
.append_limited_copy(data),
Limit::No => self
.sendable_plaintext
.append(data.to_vec()),
};
return len;
}
debug_assert!(self.record_layer.is_encrypting());
if data.is_empty() {
// Don't send empty fragments.
return 0;
}
self.send_appdata_encrypt(data, limit)
}
pub(crate) fn start_outgoing_traffic(&mut self) {
self.may_send_application_data = true;
self.flush_plaintext();
}
pub(crate) fn start_traffic(&mut self) {
self.may_receive_application_data = true;
self.start_outgoing_traffic();
}
/// Sets a limit on the internal buffers used to buffer
/// unsent plaintext (prior to completing the TLS handshake)
/// and unsent TLS records. This limit acts only on application
/// data written through [`Connection::writer`].
///
/// By default the limit is 64KB. The limit can be set
/// at any time, even if the current buffer use is higher.
///
/// [`None`] means no limit applies, and will mean that written
/// data is buffered without bound -- it is up to the application
/// to appropriately schedule its plaintext and TLS writes to bound
/// memory usage.
///
/// For illustration: `Some(1)` means a limit of one byte applies:
/// [`Connection::writer`] will accept only one byte, encrypt it and
/// add a TLS header. Once this is sent via [`CommonState::write_tls`],
/// another byte may be sent.
///
/// # Internal write-direction buffering
/// rustls has two buffers whose size are bounded by this setting:
///
/// ## Buffering of unsent plaintext data prior to handshake completion
///
/// Calls to [`Connection::writer`] before or during the handshake
/// are buffered (up to the limit specified here). Once the
/// handshake completes this data is encrypted and the resulting
/// TLS records are added to the outgoing buffer.
///
/// ## Buffering of outgoing TLS records
///
/// This buffer is used to store TLS records that rustls needs to
/// send to the peer. It is used in these two circumstances:
///
/// - by [`Connection::process_new_packets`] when a handshake or alert
/// TLS record needs to be sent.
/// - by [`Connection::writer`] post-handshake: the plaintext is
/// encrypted and the resulting TLS record is buffered.
///
/// This buffer is emptied by [`CommonState::write_tls`].
pub fn set_buffer_limit(&mut self, limit: Option<usize>) {
self.sendable_plaintext.set_limit(limit);
self.sendable_tls.set_limit(limit);
}
/// Send any buffered plaintext. Plaintext is buffered if
/// written during handshake.
fn flush_plaintext(&mut self) {
if !self.may_send_application_data {
return;
}
while let Some(buf) = self.sendable_plaintext.pop() {
self.send_plain(&buf, Limit::No);
}
}
// Put m into sendable_tls for writing.
fn queue_tls_message(&mut self, m: OpaqueMessage) {
self.sendable_tls.append(m.encode());
}
/// Send a raw TLS message, fragmenting it if needed.
pub(crate) fn send_msg(&mut self, m: Message, must_encrypt: bool) {
#[cfg(feature = "quic")]
{
if let Protocol::Quic = self.protocol {
if let MessagePayload::Alert(alert) = m.payload {
self.quic.alert = Some(alert.description);
} else {
debug_assert!(
matches!(m.payload, MessagePayload::Handshake { .. }),
"QUIC uses TLS for the cryptographic handshake only"
);
let mut bytes = Vec::new();
m.payload.encode(&mut bytes);
self.quic
.hs_queue
.push_back((must_encrypt, bytes));
}
return;
}
}
if !must_encrypt {
let msg = &m.into();
let iter = self
.message_fragmenter
.fragment_message(msg);
for m in iter {
self.queue_tls_message(m.to_unencrypted_opaque());
}
} else {
self.send_msg_encrypt(m.into());
}
}
pub(crate) fn take_received_plaintext(&mut self, bytes: Payload) {
self.received_plaintext.append(bytes.0);
}
#[cfg(feature = "tls12")]
pub(crate) fn start_encryption_tls12(&mut self, secrets: &ConnectionSecrets, side: Side) {
let (dec, enc) = secrets.make_cipher_pair(side);
self.record_layer
.prepare_message_encrypter(enc);
self.record_layer
.prepare_message_decrypter(dec);
}
#[cfg(feature = "quic")]
pub(crate) fn missing_extension(&mut self, why: &str) -> Error {
self.send_fatal_alert(AlertDescription::MissingExtension);
Error::PeerMisbehavedError(why.to_string())
}
fn send_warning_alert(&mut self, desc: AlertDescription) {
warn!("Sending warning alert {:?}", desc);
self.send_warning_alert_no_log(desc);
}
fn process_alert(&mut self, alert: &AlertMessagePayload) -> Result<(), Error> {
// Reject unknown AlertLevels.
if let AlertLevel::Unknown(_) = alert.level {
self.send_fatal_alert(AlertDescription::IllegalParameter);
}
// If we get a CloseNotify, make a note to declare EOF to our
// caller.
if alert.description == AlertDescription::CloseNotify {
self.has_received_close_notify = true;
return Ok(());
}
// Warnings are nonfatal for TLS1.2, but outlawed in TLS1.3
// (except, for no good reason, user_cancelled).
if alert.level == AlertLevel::Warning {
if self.is_tls13() && alert.description != AlertDescription::UserCanceled {
self.send_fatal_alert(AlertDescription::DecodeError);
} else {
warn!("TLS alert warning received: {:#?}", alert);
return Ok(());
}
}
error!("TLS alert received: {:#?}", alert);
Err(Error::AlertReceived(alert.description))
}
pub(crate) fn send_fatal_alert(&mut self, desc: AlertDescription) {
warn!("Sending fatal alert {:?}", desc);
debug_assert!(!self.sent_fatal_alert);
let m = Message::build_alert(AlertLevel::Fatal, desc);
self.send_msg(m, self.record_layer.is_encrypting());
self.sent_fatal_alert = true;
}
/// Queues a close_notify warning alert to be sent in the next
/// [`CommonState::write_tls`] call. This informs the peer that the
/// connection is being closed.
pub fn send_close_notify(&mut self) {
debug!("Sending warning alert {:?}", AlertDescription::CloseNotify);
self.send_warning_alert_no_log(AlertDescription::CloseNotify);
}
fn send_warning_alert_no_log(&mut self, desc: AlertDescription) {
let m = Message::build_alert(AlertLevel::Warning, desc);
self.send_msg(m, self.record_layer.is_encrypting());
}
pub(crate) fn set_max_fragment_size(&mut self, new: Option<usize>) -> Result<(), Error> {
self.message_fragmenter
.set_max_fragment_size(new)
}
pub(crate) fn get_alpn_protocol(&self) -> Option<&[u8]> {
self.alpn_protocol
.as_ref()
.map(AsRef::as_ref)
}
/// Returns true if the caller should call [`Connection::read_tls`] as soon
/// as possible.
///
/// If there is pending plaintext data to read with [`Connection::reader`],
/// this returns false. If your application respects this mechanism,
/// only one full TLS message will be buffered by rustls.
pub fn wants_read(&self) -> bool {
// We want to read more data all the time, except when we have unprocessed plaintext.
// This provides back-pressure to the TCP buffers. We also don't want to read more after
// the peer has sent us a close notification.
//
// In the handshake case we don't have readable plaintext before the handshake has
// completed, but also don't want to read if we still have sendable tls.
self.received_plaintext.is_empty()
&& !self.has_received_close_notify
&& (self.may_send_application_data || self.sendable_tls.is_empty())
}
fn current_io_state(&self) -> IoState {
IoState {
tls_bytes_to_write: self.sendable_tls.len(),
plaintext_bytes_to_read: self.received_plaintext.len(),
peer_has_closed: self.has_received_close_notify,
}
}
pub(crate) fn is_quic(&self) -> bool {
#[cfg(feature = "quic")]
{
self.protocol == Protocol::Quic
}
#[cfg(not(feature = "quic"))]
false
}
}
pub(crate) trait State<Data>: Send + Sync {
fn handle(
self: Box<Self>,
cx: &mut Context<'_, Data>,
message: Message,
) -> Result<Box<dyn State<Data>>, Error>;
fn export_keying_material(
&self,
_output: &mut [u8],
_label: &[u8],
_context: Option<&[u8]>,
) -> Result<(), Error> {
Err(Error::HandshakeNotComplete)
}
#[cfg(feature = "secret_extraction")]
fn extract_secrets(&self) -> Result<PartiallyExtractedSecrets, Error> {
Err(Error::HandshakeNotComplete)
}
fn perhaps_write_key_update(&mut self, _cx: &mut CommonState) {}
}
pub(crate) struct Context<'a, Data> {
pub(crate) common: &'a mut CommonState,
pub(crate) data: &'a mut Data,
}
#[cfg(feature = "quic")]
pub(crate) struct Quic {
/// QUIC transport parameters received from the peer during the handshake
pub(crate) params: Option<Vec<u8>>,
pub(crate) alert: Option<AlertDescription>,
pub(crate) hs_queue: VecDeque<(bool, Vec<u8>)>,
pub(crate) early_secret: Option<ring::hkdf::Prk>,
pub(crate) hs_secrets: Option<quic::Secrets>,
pub(crate) traffic_secrets: Option<quic::Secrets>,
/// Whether keys derived from traffic_secrets have been passed to the QUIC implementation
pub(crate) returned_traffic_keys: bool,
}
#[cfg(feature = "quic")]
impl Quic {
fn new() -> Self {
Self {
params: None,
alert: None,
hs_queue: VecDeque::new(),
early_secret: None,
hs_secrets: None,
traffic_secrets: None,
returned_traffic_keys: false,
}
}
}
#[derive(Clone, Copy, Debug, PartialEq)]
pub(crate) enum Side {
Client,
Server,
}
/// Data specific to the peer's side (client or server).
pub trait SideData {}
const DEFAULT_RECEIVED_PLAINTEXT_LIMIT: usize = 16 * 1024;
const DEFAULT_BUFFER_LIMIT: usize = 64 * 1024;