1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353
// pest. The Elegant Parser
// Copyright (c) 2018 Dragoș Tiselice
//
// Licensed under the Apache License, Version 2.0
// <LICENSE-APACHE or http://www.apache.org/licenses/LICENSE-2.0> or the MIT
// license <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. All files in the project carrying such notice may not be copied,
// modified, or distributed except according to those terms.
//! Types for the pest's abstract syntax tree.
/// A grammar rule
#[derive(Clone, Debug, Eq, PartialEq)]
pub struct Rule {
/// The name of the rule
pub name: String,
/// The rule's type (silent, atomic, ...)
pub ty: RuleType,
/// The rule's expression
pub expr: Expr,
}
/// All possible rule types
#[derive(Clone, Copy, Debug, Eq, PartialEq)]
pub enum RuleType {
/// The normal rule type
Normal,
/// Silent rules are just like normal rules
/// — when run, they function the same way —
/// except they do not produce pairs or tokens.
/// If a rule is silent, it will never appear in a parse result.
/// (their syntax is `_{ ... }`)
Silent,
/// atomic rule prevent implicit whitespace: inside an atomic rule,
/// the tilde ~ means "immediately followed by",
/// and repetition operators (asterisk * and plus sign +)
/// have no implicit separation. In addition, all other rules
/// called from an atomic rule are also treated as atomic.
/// In an atomic rule, interior matching rules are silent.
/// (their syntax is `@{ ... }`)
Atomic,
/// Compound atomic rules are similar to atomic rules,
/// but they produce inner tokens as normal.
/// (their syntax is `${ ... }`)
CompoundAtomic,
/// Non-atomic rules cancel the effect of atomic rules.
/// (their syntax is `!{ ... }`)
NonAtomic,
}
/// All possible rule expressions
///
/// # Warning: Semantic Versioning
/// There may be non-breaking changes to the meta-grammar
/// between minor versions. Those non-breaking changes, however,
/// may translate into semver-breaking changes due to the additional variants
/// propaged from the `Rule` enum. This is a known issue and will be fixed in the
/// future (e.g. by increasing MSRV and non_exhaustive annotations).
#[derive(Clone, Debug, Eq, PartialEq)]
pub enum Expr {
/// Matches an exact string, e.g. `"a"`
Str(String),
/// Matches an exact string, case insensitively (ASCII only), e.g. `^"a"`
Insens(String),
/// Matches one character in the range, e.g. `'a'..'z'`
Range(String, String),
/// Matches the rule with the given name, e.g. `a`
Ident(String),
/// Matches a custom part of the stack, e.g. `PEEK[..]`
PeekSlice(i32, Option<i32>),
/// Positive lookahead; matches expression without making progress, e.g. `&e`
PosPred(Box<Expr>),
/// Negative lookahead; matches if expression doesn't match, without making progress, e.g. `!e`
NegPred(Box<Expr>),
/// Matches a sequence of two expressions, e.g. `e1 ~ e2`
Seq(Box<Expr>, Box<Expr>),
/// Matches either of two expressions, e.g. `e1 | e2`
Choice(Box<Expr>, Box<Expr>),
/// Optionally matches an expression, e.g. `e?`
Opt(Box<Expr>),
/// Matches an expression zero or more times, e.g. `e*`
Rep(Box<Expr>),
/// Matches an expression one or more times, e.g. `e+`
RepOnce(Box<Expr>),
/// Matches an expression an exact number of times, e.g. `e{n}`
RepExact(Box<Expr>, u32),
/// Matches an expression at least a number of times, e.g. `e{n,}`
RepMin(Box<Expr>, u32),
/// Matches an expression at most a number of times, e.g. `e{,n}`
RepMax(Box<Expr>, u32),
/// Matches an expression a number of times within a range, e.g. `e{m, n}`
RepMinMax(Box<Expr>, u32, u32),
/// Continues to match expressions until one of the strings in the `Vec` is found
Skip(Vec<String>),
/// Matches an expression and pushes it to the stack, e.g. `push(e)`
Push(Box<Expr>),
}
impl Expr {
/// Returns the iterator that steps the expression from top to bottom.
pub fn iter_top_down(&self) -> ExprTopDownIterator {
ExprTopDownIterator::new(self)
}
/// Applies `f` to the expression and all its children (top to bottom).
pub fn map_top_down<F>(self, mut f: F) -> Expr
where
F: FnMut(Expr) -> Expr,
{
fn map_internal<F>(expr: Expr, f: &mut F) -> Expr
where
F: FnMut(Expr) -> Expr,
{
let expr = f(expr);
match expr {
// TODO: Use box syntax when it gets stabilized.
Expr::PosPred(expr) => {
let mapped = Box::new(map_internal(*expr, f));
Expr::PosPred(mapped)
}
Expr::NegPred(expr) => {
let mapped = Box::new(map_internal(*expr, f));
Expr::NegPred(mapped)
}
Expr::Seq(lhs, rhs) => {
let mapped_lhs = Box::new(map_internal(*lhs, f));
let mapped_rhs = Box::new(map_internal(*rhs, f));
Expr::Seq(mapped_lhs, mapped_rhs)
}
Expr::Choice(lhs, rhs) => {
let mapped_lhs = Box::new(map_internal(*lhs, f));
let mapped_rhs = Box::new(map_internal(*rhs, f));
Expr::Choice(mapped_lhs, mapped_rhs)
}
Expr::Rep(expr) => {
let mapped = Box::new(map_internal(*expr, f));
Expr::Rep(mapped)
}
Expr::RepOnce(expr) => {
let mapped = Box::new(map_internal(*expr, f));
Expr::RepOnce(mapped)
}
Expr::RepExact(expr, max) => {
let mapped = Box::new(map_internal(*expr, f));
Expr::RepExact(mapped, max)
}
Expr::RepMin(expr, num) => {
let mapped = Box::new(map_internal(*expr, f));
Expr::RepMin(mapped, num)
}
Expr::RepMax(expr, num) => {
let mapped = Box::new(map_internal(*expr, f));
Expr::RepMax(mapped, num)
}
Expr::RepMinMax(expr, min, max) => {
let mapped = Box::new(map_internal(*expr, f));
Expr::RepMinMax(mapped, min, max)
}
Expr::Opt(expr) => {
let mapped = Box::new(map_internal(*expr, f));
Expr::Opt(mapped)
}
Expr::Push(expr) => {
let mapped = Box::new(map_internal(*expr, f));
Expr::Push(mapped)
}
expr => expr,
}
}
map_internal(self, &mut f)
}
/// Applies `f` to the expression and all its children (bottom up).
pub fn map_bottom_up<F>(self, mut f: F) -> Expr
where
F: FnMut(Expr) -> Expr,
{
fn map_internal<F>(expr: Expr, f: &mut F) -> Expr
where
F: FnMut(Expr) -> Expr,
{
let mapped = match expr {
Expr::PosPred(expr) => {
// TODO: Use box syntax when it gets stabilized.
let mapped = Box::new(map_internal(*expr, f));
Expr::PosPred(mapped)
}
Expr::NegPred(expr) => {
let mapped = Box::new(map_internal(*expr, f));
Expr::NegPred(mapped)
}
Expr::Seq(lhs, rhs) => {
let mapped_lhs = Box::new(map_internal(*lhs, f));
let mapped_rhs = Box::new(map_internal(*rhs, f));
Expr::Seq(mapped_lhs, mapped_rhs)
}
Expr::Choice(lhs, rhs) => {
let mapped_lhs = Box::new(map_internal(*lhs, f));
let mapped_rhs = Box::new(map_internal(*rhs, f));
Expr::Choice(mapped_lhs, mapped_rhs)
}
Expr::Rep(expr) => {
let mapped = Box::new(map_internal(*expr, f));
Expr::Rep(mapped)
}
Expr::RepOnce(expr) => {
let mapped = Box::new(map_internal(*expr, f));
Expr::RepOnce(mapped)
}
Expr::RepExact(expr, num) => {
let mapped = Box::new(map_internal(*expr, f));
Expr::RepExact(mapped, num)
}
Expr::RepMin(expr, max) => {
let mapped = Box::new(map_internal(*expr, f));
Expr::RepMin(mapped, max)
}
Expr::RepMax(expr, max) => {
let mapped = Box::new(map_internal(*expr, f));
Expr::RepMax(mapped, max)
}
Expr::RepMinMax(expr, min, max) => {
let mapped = Box::new(map_internal(*expr, f));
Expr::RepMinMax(mapped, min, max)
}
Expr::Opt(expr) => {
let mapped = Box::new(map_internal(*expr, f));
Expr::Opt(mapped)
}
Expr::Push(expr) => {
let mapped = Box::new(map_internal(*expr, f));
Expr::Push(mapped)
}
expr => expr,
};
f(mapped)
}
map_internal(self, &mut f)
}
}
/// The top down iterator for an expression.
pub struct ExprTopDownIterator {
current: Option<Expr>,
next: Option<Expr>,
right_branches: Vec<Expr>,
}
impl ExprTopDownIterator {
/// Constructs a top-down iterator from the expression.
pub fn new(expr: &Expr) -> Self {
let mut iter = ExprTopDownIterator {
current: None,
next: None,
right_branches: vec![],
};
iter.iterate_expr(expr.clone());
iter
}
fn iterate_expr(&mut self, expr: Expr) {
self.current = Some(expr.clone());
match expr {
Expr::Seq(lhs, rhs) => {
self.right_branches.push(*rhs);
self.next = Some(*lhs);
}
Expr::Choice(lhs, rhs) => {
self.right_branches.push(*rhs);
self.next = Some(*lhs);
}
Expr::PosPred(expr)
| Expr::NegPred(expr)
| Expr::Rep(expr)
| Expr::RepOnce(expr)
| Expr::RepExact(expr, _)
| Expr::RepMin(expr, _)
| Expr::RepMax(expr, _)
| Expr::RepMinMax(expr, ..)
| Expr::Opt(expr)
| Expr::Push(expr) => {
self.next = Some(*expr);
}
_ => {
self.next = None;
}
}
}
}
impl Iterator for ExprTopDownIterator {
type Item = Expr;
fn next(&mut self) -> Option<Self::Item> {
let result = self.current.take();
if let Some(expr) = self.next.take() {
self.iterate_expr(expr);
} else if let Some(expr) = self.right_branches.pop() {
self.iterate_expr(expr);
}
result
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn top_down_iterator() {
let expr = Expr::Choice(
Box::new(Expr::Str(String::from("a"))),
Box::new(Expr::Str(String::from("b"))),
);
let mut top_down = expr.iter_top_down();
assert_eq!(top_down.next(), Some(expr));
assert_eq!(top_down.next(), Some(Expr::Str(String::from("a"))));
assert_eq!(top_down.next(), Some(Expr::Str(String::from("b"))));
assert_eq!(top_down.next(), None);
}
#[test]
fn identity() {
let expr = Expr::Choice(
Box::new(Expr::Seq(
Box::new(Expr::Ident("a".to_owned())),
Box::new(Expr::Str("b".to_owned())),
)),
Box::new(Expr::PosPred(Box::new(Expr::NegPred(Box::new(Expr::Rep(
Box::new(Expr::RepOnce(Box::new(Expr::Opt(Box::new(Expr::Choice(
Box::new(Expr::Insens("c".to_owned())),
Box::new(Expr::Push(Box::new(Expr::Range(
"'d'".to_owned(),
"'e'".to_owned(),
)))),
)))))),
)))))),
);
assert_eq!(
expr.clone()
.map_bottom_up(|expr| expr)
.map_top_down(|expr| expr),
expr
);
}
}