1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
// pest. The Elegant Parser
// Copyright (c) 2018 Dragoș Tiselice
//
// Licensed under the Apache License, Version 2.0
// <LICENSE-APACHE or http://www.apache.org/licenses/LICENSE-2.0> or the MIT
// license <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. All files in the project carrying such notice may not be copied,
// modified, or distributed except according to those terms.

//! Types for the pest's abstract syntax tree.

/// A grammar rule
#[derive(Clone, Debug, Eq, PartialEq)]
pub struct Rule {
    /// The name of the rule
    pub name: String,
    /// The rule's type (silent, atomic, ...)
    pub ty: RuleType,
    /// The rule's expression
    pub expr: Expr,
}

/// All possible rule types
#[derive(Clone, Copy, Debug, Eq, PartialEq)]
pub enum RuleType {
    /// The normal rule type
    Normal,
    /// Silent rules are just like normal rules
    /// — when run, they function the same way —
    /// except they do not produce pairs or tokens.
    /// If a rule is silent, it will never appear in a parse result.
    /// (their syntax is `_{ ... }`)
    Silent,
    /// atomic rule prevent implicit whitespace: inside an atomic rule,
    /// the tilde ~ means "immediately followed by",
    /// and repetition operators (asterisk * and plus sign +)
    /// have no implicit separation. In addition, all other rules
    /// called from an atomic rule are also treated as atomic.
    /// In an atomic rule, interior matching rules are silent.
    /// (their syntax is `@{ ... }`)
    Atomic,
    /// Compound atomic rules are similar to atomic rules,
    /// but they produce inner tokens as normal.
    /// (their syntax is `${ ... }`)
    CompoundAtomic,
    /// Non-atomic rules cancel the effect of atomic rules.
    /// (their syntax is `!{ ... }`)
    NonAtomic,
}

/// All possible rule expressions
///
/// # Warning: Semantic Versioning
/// There may be non-breaking changes to the meta-grammar
/// between minor versions. Those non-breaking changes, however,
/// may translate into semver-breaking changes due to the additional variants
/// propaged from the `Rule` enum. This is a known issue and will be fixed in the
/// future (e.g. by increasing MSRV and non_exhaustive annotations).
#[derive(Clone, Debug, Eq, PartialEq)]
pub enum Expr {
    /// Matches an exact string, e.g. `"a"`
    Str(String),
    /// Matches an exact string, case insensitively (ASCII only), e.g. `^"a"`
    Insens(String),
    /// Matches one character in the range, e.g. `'a'..'z'`
    Range(String, String),
    /// Matches the rule with the given name, e.g. `a`
    Ident(String),
    /// Matches a custom part of the stack, e.g. `PEEK[..]`
    PeekSlice(i32, Option<i32>),
    /// Positive lookahead; matches expression without making progress, e.g. `&e`
    PosPred(Box<Expr>),
    /// Negative lookahead; matches if expression doesn't match, without making progress, e.g. `!e`
    NegPred(Box<Expr>),
    /// Matches a sequence of two expressions, e.g. `e1 ~ e2`
    Seq(Box<Expr>, Box<Expr>),
    /// Matches either of two expressions, e.g. `e1 | e2`
    Choice(Box<Expr>, Box<Expr>),
    /// Optionally matches an expression, e.g. `e?`
    Opt(Box<Expr>),
    /// Matches an expression zero or more times, e.g. `e*`
    Rep(Box<Expr>),
    /// Matches an expression one or more times, e.g. `e+`
    RepOnce(Box<Expr>),
    /// Matches an expression an exact number of times, e.g. `e{n}`
    RepExact(Box<Expr>, u32),
    /// Matches an expression at least a number of times, e.g. `e{n,}`
    RepMin(Box<Expr>, u32),
    /// Matches an expression at most a number of times, e.g. `e{,n}`
    RepMax(Box<Expr>, u32),
    /// Matches an expression a number of times within a range, e.g. `e{m, n}`
    RepMinMax(Box<Expr>, u32, u32),
    /// Continues to match expressions until one of the strings in the `Vec` is found
    Skip(Vec<String>),
    /// Matches an expression and pushes it to the stack, e.g. `push(e)`
    Push(Box<Expr>),
}

impl Expr {
    /// Returns the iterator that steps the expression from top to bottom.
    pub fn iter_top_down(&self) -> ExprTopDownIterator {
        ExprTopDownIterator::new(self)
    }

    /// Applies `f` to the expression and all its children (top to bottom).
    pub fn map_top_down<F>(self, mut f: F) -> Expr
    where
        F: FnMut(Expr) -> Expr,
    {
        fn map_internal<F>(expr: Expr, f: &mut F) -> Expr
        where
            F: FnMut(Expr) -> Expr,
        {
            let expr = f(expr);

            match expr {
                // TODO: Use box syntax when it gets stabilized.
                Expr::PosPred(expr) => {
                    let mapped = Box::new(map_internal(*expr, f));
                    Expr::PosPred(mapped)
                }
                Expr::NegPred(expr) => {
                    let mapped = Box::new(map_internal(*expr, f));
                    Expr::NegPred(mapped)
                }
                Expr::Seq(lhs, rhs) => {
                    let mapped_lhs = Box::new(map_internal(*lhs, f));
                    let mapped_rhs = Box::new(map_internal(*rhs, f));
                    Expr::Seq(mapped_lhs, mapped_rhs)
                }
                Expr::Choice(lhs, rhs) => {
                    let mapped_lhs = Box::new(map_internal(*lhs, f));
                    let mapped_rhs = Box::new(map_internal(*rhs, f));
                    Expr::Choice(mapped_lhs, mapped_rhs)
                }
                Expr::Rep(expr) => {
                    let mapped = Box::new(map_internal(*expr, f));
                    Expr::Rep(mapped)
                }
                Expr::RepOnce(expr) => {
                    let mapped = Box::new(map_internal(*expr, f));
                    Expr::RepOnce(mapped)
                }
                Expr::RepExact(expr, max) => {
                    let mapped = Box::new(map_internal(*expr, f));
                    Expr::RepExact(mapped, max)
                }
                Expr::RepMin(expr, num) => {
                    let mapped = Box::new(map_internal(*expr, f));
                    Expr::RepMin(mapped, num)
                }
                Expr::RepMax(expr, num) => {
                    let mapped = Box::new(map_internal(*expr, f));
                    Expr::RepMax(mapped, num)
                }
                Expr::RepMinMax(expr, min, max) => {
                    let mapped = Box::new(map_internal(*expr, f));
                    Expr::RepMinMax(mapped, min, max)
                }
                Expr::Opt(expr) => {
                    let mapped = Box::new(map_internal(*expr, f));
                    Expr::Opt(mapped)
                }
                Expr::Push(expr) => {
                    let mapped = Box::new(map_internal(*expr, f));
                    Expr::Push(mapped)
                }
                expr => expr,
            }
        }

        map_internal(self, &mut f)
    }

    /// Applies `f` to the expression and all its children (bottom up).
    pub fn map_bottom_up<F>(self, mut f: F) -> Expr
    where
        F: FnMut(Expr) -> Expr,
    {
        fn map_internal<F>(expr: Expr, f: &mut F) -> Expr
        where
            F: FnMut(Expr) -> Expr,
        {
            let mapped = match expr {
                Expr::PosPred(expr) => {
                    // TODO: Use box syntax when it gets stabilized.
                    let mapped = Box::new(map_internal(*expr, f));
                    Expr::PosPred(mapped)
                }
                Expr::NegPred(expr) => {
                    let mapped = Box::new(map_internal(*expr, f));
                    Expr::NegPred(mapped)
                }
                Expr::Seq(lhs, rhs) => {
                    let mapped_lhs = Box::new(map_internal(*lhs, f));
                    let mapped_rhs = Box::new(map_internal(*rhs, f));
                    Expr::Seq(mapped_lhs, mapped_rhs)
                }
                Expr::Choice(lhs, rhs) => {
                    let mapped_lhs = Box::new(map_internal(*lhs, f));
                    let mapped_rhs = Box::new(map_internal(*rhs, f));
                    Expr::Choice(mapped_lhs, mapped_rhs)
                }
                Expr::Rep(expr) => {
                    let mapped = Box::new(map_internal(*expr, f));
                    Expr::Rep(mapped)
                }
                Expr::RepOnce(expr) => {
                    let mapped = Box::new(map_internal(*expr, f));
                    Expr::RepOnce(mapped)
                }
                Expr::RepExact(expr, num) => {
                    let mapped = Box::new(map_internal(*expr, f));
                    Expr::RepExact(mapped, num)
                }
                Expr::RepMin(expr, max) => {
                    let mapped = Box::new(map_internal(*expr, f));
                    Expr::RepMin(mapped, max)
                }
                Expr::RepMax(expr, max) => {
                    let mapped = Box::new(map_internal(*expr, f));
                    Expr::RepMax(mapped, max)
                }
                Expr::RepMinMax(expr, min, max) => {
                    let mapped = Box::new(map_internal(*expr, f));
                    Expr::RepMinMax(mapped, min, max)
                }
                Expr::Opt(expr) => {
                    let mapped = Box::new(map_internal(*expr, f));
                    Expr::Opt(mapped)
                }
                Expr::Push(expr) => {
                    let mapped = Box::new(map_internal(*expr, f));
                    Expr::Push(mapped)
                }
                expr => expr,
            };

            f(mapped)
        }

        map_internal(self, &mut f)
    }
}

/// The top down iterator for an expression.
pub struct ExprTopDownIterator {
    current: Option<Expr>,
    next: Option<Expr>,
    right_branches: Vec<Expr>,
}

impl ExprTopDownIterator {
    /// Constructs a top-down iterator from the expression.
    pub fn new(expr: &Expr) -> Self {
        let mut iter = ExprTopDownIterator {
            current: None,
            next: None,
            right_branches: vec![],
        };
        iter.iterate_expr(expr.clone());
        iter
    }

    fn iterate_expr(&mut self, expr: Expr) {
        self.current = Some(expr.clone());
        match expr {
            Expr::Seq(lhs, rhs) => {
                self.right_branches.push(*rhs);
                self.next = Some(*lhs);
            }
            Expr::Choice(lhs, rhs) => {
                self.right_branches.push(*rhs);
                self.next = Some(*lhs);
            }
            Expr::PosPred(expr)
            | Expr::NegPred(expr)
            | Expr::Rep(expr)
            | Expr::RepOnce(expr)
            | Expr::RepExact(expr, _)
            | Expr::RepMin(expr, _)
            | Expr::RepMax(expr, _)
            | Expr::RepMinMax(expr, ..)
            | Expr::Opt(expr)
            | Expr::Push(expr) => {
                self.next = Some(*expr);
            }
            _ => {
                self.next = None;
            }
        }
    }
}

impl Iterator for ExprTopDownIterator {
    type Item = Expr;

    fn next(&mut self) -> Option<Self::Item> {
        let result = self.current.take();

        if let Some(expr) = self.next.take() {
            self.iterate_expr(expr);
        } else if let Some(expr) = self.right_branches.pop() {
            self.iterate_expr(expr);
        }

        result
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn top_down_iterator() {
        let expr = Expr::Choice(
            Box::new(Expr::Str(String::from("a"))),
            Box::new(Expr::Str(String::from("b"))),
        );
        let mut top_down = expr.iter_top_down();
        assert_eq!(top_down.next(), Some(expr));
        assert_eq!(top_down.next(), Some(Expr::Str(String::from("a"))));
        assert_eq!(top_down.next(), Some(Expr::Str(String::from("b"))));
        assert_eq!(top_down.next(), None);
    }

    #[test]
    fn identity() {
        let expr = Expr::Choice(
            Box::new(Expr::Seq(
                Box::new(Expr::Ident("a".to_owned())),
                Box::new(Expr::Str("b".to_owned())),
            )),
            Box::new(Expr::PosPred(Box::new(Expr::NegPred(Box::new(Expr::Rep(
                Box::new(Expr::RepOnce(Box::new(Expr::Opt(Box::new(Expr::Choice(
                    Box::new(Expr::Insens("c".to_owned())),
                    Box::new(Expr::Push(Box::new(Expr::Range(
                        "'d'".to_owned(),
                        "'e'".to_owned(),
                    )))),
                )))))),
            )))))),
        );

        assert_eq!(
            expr.clone()
                .map_bottom_up(|expr| expr)
                .map_top_down(|expr| expr),
            expr
        );
    }
}