1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696
//! Copy-on-write initialization support: creation of backing images for
//! modules, and logic to support mapping these backing images into memory.
use crate::InstantiationError;
use crate::MmapVec;
use anyhow::Result;
use libc::c_void;
use rustix::fd::AsRawFd;
use std::fs::File;
use std::sync::Arc;
use std::{convert::TryFrom, ops::Range};
use wasmtime_environ::{DefinedMemoryIndex, MemoryInitialization, Module, PrimaryMap};
/// Backing images for memories in a module.
///
/// This is meant to be built once, when a module is first loaded/constructed,
/// and then used many times for instantiation.
pub struct ModuleMemoryImages {
memories: PrimaryMap<DefinedMemoryIndex, Option<Arc<MemoryImage>>>,
}
impl ModuleMemoryImages {
/// Get the MemoryImage for a given memory.
pub fn get_memory_image(&self, defined_index: DefinedMemoryIndex) -> Option<&Arc<MemoryImage>> {
self.memories[defined_index].as_ref()
}
}
/// One backing image for one memory.
#[derive(Debug, PartialEq)]
pub struct MemoryImage {
/// The file descriptor source of this image.
///
/// This might be an mmaped `*.cwasm` file or on Linux it could also be a
/// `Memfd` as an anonymous file in memory. In either case this is used as
/// the backing-source for the CoW image.
fd: FdSource,
/// Length of image, in bytes.
///
/// Note that initial memory size may be larger; leading and trailing zeroes
/// are truncated (handled by backing fd).
///
/// Must be a multiple of the system page size.
len: usize,
/// Image starts this many bytes into `fd` source.
///
/// This is 0 for anonymous-backed memfd files and is the offset of the data
/// section in a `*.cwasm` file for `*.cwasm`-backed images.
///
/// Must be a multiple of the system page size.
fd_offset: u64,
/// Image starts this many bytes into heap space.
///
/// Must be a multiple of the system page size.
linear_memory_offset: usize,
}
#[derive(Debug)]
enum FdSource {
Mmap(Arc<File>),
#[cfg(target_os = "linux")]
Memfd(memfd::Memfd),
}
impl FdSource {
fn as_file(&self) -> &File {
match self {
FdSource::Mmap(file) => file,
#[cfg(target_os = "linux")]
FdSource::Memfd(memfd) => memfd.as_file(),
}
}
}
impl PartialEq for FdSource {
fn eq(&self, other: &FdSource) -> bool {
self.as_file().as_raw_fd() == other.as_file().as_raw_fd()
}
}
impl MemoryImage {
fn new(
page_size: u32,
offset: u64,
data: &[u8],
mmap: Option<&MmapVec>,
) -> Result<Option<MemoryImage>> {
// Sanity-check that various parameters are page-aligned.
let len = data.len();
assert_eq!(offset % u64::from(page_size), 0);
assert_eq!((len as u32) % page_size, 0);
let linear_memory_offset = match usize::try_from(offset) {
Ok(offset) => offset,
Err(_) => return Ok(None),
};
// If a backing `mmap` is present then `data` should be a sub-slice of
// the `mmap`. The sanity-checks here double-check that. Additionally
// compilation should have ensured that the `data` section is
// page-aligned within `mmap`, so that's also all double-checked here.
//
// Finally if the `mmap` itself comes from a backing file on disk, such
// as a `*.cwasm` file, then that's a valid source of data for the
// memory image so we simply return referencing that.
//
// Note that this path is platform-agnostic in the sense of all
// platforms we support support memory mapping copy-on-write data from
// files, but for now this is still a Linux-specific region of Wasmtime.
// Some work will be needed to get this file compiling for macOS and
// Windows.
if let Some(mmap) = mmap {
let start = mmap.as_ptr() as usize;
let end = start + mmap.len();
let data_start = data.as_ptr() as usize;
let data_end = data_start + data.len();
assert!(start <= data_start && data_end <= end);
assert_eq!((start as u32) % page_size, 0);
assert_eq!((data_start as u32) % page_size, 0);
assert_eq!((data_end as u32) % page_size, 0);
assert_eq!((mmap.original_offset() as u32) % page_size, 0);
if let Some(file) = mmap.original_file() {
return Ok(Some(MemoryImage {
fd: FdSource::Mmap(file.clone()),
fd_offset: u64::try_from(mmap.original_offset() + (data_start - start))
.unwrap(),
linear_memory_offset,
len,
}));
}
}
// If `mmap` doesn't come from a file then platform-specific mechanisms
// may be used to place the data in a form that's amenable to an mmap.
cfg_if::cfg_if! {
if #[cfg(target_os = "linux")] {
// On Linux `memfd_create` is used to create an anonymous
// in-memory file to represent the heap image. This anonymous
// file is then used as the basis for further mmaps.
use std::io::Write;
let memfd = create_memfd()?;
memfd.as_file().write_all(data)?;
// Seal the memfd's data and length.
//
// This is a defense-in-depth security mitigation. The
// memfd will serve as the starting point for the heap of
// every instance of this module. If anything were to
// write to this, it could affect every execution. The
// memfd object itself is owned by the machinery here and
// not exposed elsewhere, but it is still an ambient open
// file descriptor at the syscall level, so some other
// vulnerability that allowed writes to arbitrary fds
// could modify it. Or we could have some issue with the
// way that we map it into each instance. To be
// extra-super-sure that it never changes, and because
// this costs very little, we use the kernel's "seal" API
// to make the memfd image permanently read-only.
memfd.add_seals(&[
memfd::FileSeal::SealGrow,
memfd::FileSeal::SealShrink,
memfd::FileSeal::SealWrite,
memfd::FileSeal::SealSeal,
])?;
Ok(Some(MemoryImage {
fd: FdSource::Memfd(memfd),
fd_offset: 0,
linear_memory_offset,
len,
}))
} else {
// Other platforms don't have an easily available way of
// representing the heap image as an mmap-source right now. We
// could theoretically create a file and immediately unlink it
// but that means that data may likely be preserved to disk
// which isn't what we want here.
Ok(None)
}
}
}
}
#[cfg(target_os = "linux")]
fn create_memfd() -> Result<memfd::Memfd> {
// Create the memfd. It needs a name, but the
// documentation for `memfd_create()` says that names can
// be duplicated with no issues.
memfd::MemfdOptions::new()
.allow_sealing(true)
.create("wasm-memory-image")
.map_err(|e| e.into())
}
impl ModuleMemoryImages {
/// Create a new `ModuleMemoryImages` for the given module. This can be
/// passed in as part of a `InstanceAllocationRequest` to speed up
/// instantiation and execution by using copy-on-write-backed memories.
pub fn new(
module: &Module,
wasm_data: &[u8],
mmap: Option<&MmapVec>,
) -> Result<Option<ModuleMemoryImages>> {
let map = match &module.memory_initialization {
MemoryInitialization::Static { map } => map,
_ => return Ok(None),
};
let mut memories = PrimaryMap::with_capacity(map.len());
let page_size = crate::page_size() as u32;
for (memory_index, init) in map {
// mmap-based-initialization only works for defined memories with a
// known starting point of all zeros, so bail out if the mmeory is
// imported.
let defined_memory = match module.defined_memory_index(memory_index) {
Some(idx) => idx,
None => return Ok(None),
};
// If there's no initialization for this memory known then we don't
// need an image for the memory so push `None` and move on.
let init = match init {
Some(init) => init,
None => {
memories.push(None);
continue;
}
};
// Get the image for this wasm module as a subslice of `wasm_data`,
// and then use that to try to create the `MemoryImage`. If this
// creation files then we fail creating `ModuleMemoryImages` since this
// memory couldn't be represented.
let data = &wasm_data[init.data.start as usize..init.data.end as usize];
let image = match MemoryImage::new(page_size, init.offset, data, mmap)? {
Some(image) => image,
None => return Ok(None),
};
let idx = memories.push(Some(Arc::new(image)));
assert_eq!(idx, defined_memory);
}
Ok(Some(ModuleMemoryImages { memories }))
}
}
/// A single slot handled by the copy-on-write memory initialization mechanism.
///
/// The mmap scheme is:
///
/// base ==> (points here)
/// - (image.offset bytes) anonymous zero memory, pre-image
/// - (image.len bytes) CoW mapping of memory image
/// - (up to static_size) anonymous zero memory, post-image
///
/// The ordering of mmaps to set this up is:
///
/// - once, when pooling allocator is created:
/// - one large mmap to create 8GiB * instances * memories slots
///
/// - per instantiation of new image in a slot:
/// - mmap of anonymous zero memory, from 0 to max heap size
/// (static_size)
/// - mmap of CoW'd image, from `image.offset` to
/// `image.offset + image.len`. This overwrites part of the
/// anonymous zero memory, potentially splitting it into a pre-
/// and post-region.
/// - mprotect(PROT_NONE) on the part of the heap beyond the initial
/// heap size; we re-mprotect it with R+W bits when the heap is
/// grown.
#[derive(Debug)]
pub struct MemoryImageSlot {
/// The base of the actual heap memory. Bytes at this address are
/// what is seen by the Wasm guest code.
base: usize,
/// The maximum static memory size, plus post-guard.
static_size: usize,
/// The image that backs this memory. May be `None`, in
/// which case the memory is all zeroes.
pub(crate) image: Option<Arc<MemoryImage>>,
/// The initial heap size.
initial_size: usize,
/// The current heap size. All memory above `base + cur_size`
/// should be PROT_NONE (mapped inaccessible).
cur_size: usize,
/// Whether this slot may have "dirty" pages (pages written by an
/// instantiation). Set by `instantiate()` and cleared by
/// `clear_and_remain_ready()`, and used in assertions to ensure
/// those methods are called properly.
///
/// Invariant: if !dirty, then this memory slot contains a clean
/// CoW mapping of `image`, if `Some(..)`, and anonymous-zero
/// memory beyond the image up to `static_size`. The addresses
/// from offset 0 to `initial_size` are accessible R+W and the
/// rest of the slot is inaccessible.
dirty: bool,
/// Whether this MemoryImageSlot is responsible for mapping anonymous
/// memory (to hold the reservation while overwriting mappings
/// specific to this slot) in place when it is dropped. Default
/// on, unless the caller knows what they are doing.
clear_on_drop: bool,
}
impl MemoryImageSlot {
/// Create a new MemoryImageSlot. Assumes that there is an anonymous
/// mmap backing in the given range to start.
pub(crate) fn create(base_addr: *mut c_void, initial_size: usize, static_size: usize) -> Self {
let base = base_addr as usize;
MemoryImageSlot {
base,
static_size,
initial_size,
cur_size: initial_size,
image: None,
dirty: false,
clear_on_drop: true,
}
}
/// Inform the MemoryImageSlot that it should *not* clear the underlying
/// address space when dropped. This should be used only when the
/// caller will clear or reuse the address space in some other
/// way.
pub(crate) fn no_clear_on_drop(&mut self) {
self.clear_on_drop = false;
}
pub(crate) fn set_heap_limit(&mut self, size_bytes: usize) -> Result<()> {
// mprotect the relevant region.
self.set_protection(
self.cur_size..size_bytes,
rustix::mm::MprotectFlags::READ | rustix::mm::MprotectFlags::WRITE,
)?;
self.cur_size = size_bytes;
Ok(())
}
pub(crate) fn instantiate(
&mut self,
initial_size_bytes: usize,
maybe_image: Option<&Arc<MemoryImage>>,
) -> Result<(), InstantiationError> {
assert!(!self.dirty);
assert_eq!(self.cur_size, self.initial_size);
// Fast-path: previously instantiated with the same image, or
// no image but the same initial size, so the mappings are
// already correct; there is no need to mmap anything. Given
// that we asserted not-dirty above, any dirty pages will have
// already been thrown away by madvise() during the previous
// termination. The `clear_and_remain_ready()` path also
// mprotects memory above the initial heap size back to
// PROT_NONE, so we don't need to do that here.
if self.image.as_ref() == maybe_image && self.initial_size == initial_size_bytes {
self.dirty = true;
return Ok(());
}
// Otherwise, we need to transition from the previous state to the
// state now requested. An attempt is made here to minimize syscalls to
// the kernel to ideally reduce the overhead of this as it's fairly
// performance sensitive with memories. Note that the "previous state"
// is assumed to be post-initialization (e.g. after an mmap on-demand
// memory was created) or after `clear_and_remain_ready` was called
// which notably means that `madvise` has reset all the memory back to
// its original state.
//
// Security/audit note: we map all of these MAP_PRIVATE, so
// all instance data is local to the mapping, not propagated
// to the backing fd. We throw away this CoW overlay with
// madvise() below, from base up to static_size (which is the
// whole slot) when terminating the instance.
if self.image.is_some() {
// In this case the state of memory at this time is that the memory
// from `0..self.initial_size` is reset back to its original state,
// but this memory contians a CoW image that is different from the
// one specified here. To reset state we first reset the mapping
// of memory to anonymous PROT_NONE memory, and then afterwards the
// heap is made visible with an mprotect.
self.reset_with_anon_memory()
.map_err(|e| InstantiationError::Resource(e.into()))?;
self.set_protection(
0..initial_size_bytes,
rustix::mm::MprotectFlags::READ | rustix::mm::MprotectFlags::WRITE,
)
.map_err(|e| InstantiationError::Resource(e.into()))?;
} else if initial_size_bytes < self.initial_size {
// In this case the previous module had now CoW image which means
// that the memory at `0..self.initial_size` is all zeros and
// read-write, everything afterwards being PROT_NONE.
//
// Our requested heap size is smaller than the previous heap size
// so all that's needed now is to shrink the heap further to
// `initial_size_bytes`.
//
// So we come in with:
// - anon-zero memory, R+W, [0, self.initial_size)
// - anon-zero memory, none, [self.initial_size, self.static_size)
// and we want:
// - anon-zero memory, R+W, [0, initial_size_bytes)
// - anon-zero memory, none, [initial_size_bytes, self.static_size)
//
// so given initial_size_bytes < self.initial_size we
// mprotect(NONE) the zone from the first to the second.
self.set_protection(
initial_size_bytes..self.initial_size,
rustix::mm::MprotectFlags::empty(),
)
.map_err(|e| InstantiationError::Resource(e.into()))?;
} else if initial_size_bytes > self.initial_size {
// In this case, like the previous one, the previous module had no
// CoW image but had a smaller heap than desired for this module.
// That means that here `mprotect` is used to make the new pages
// read/write, and since they're all reset from before they'll be
// made visible as zeros.
self.set_protection(
self.initial_size..initial_size_bytes,
rustix::mm::MprotectFlags::READ | rustix::mm::MprotectFlags::WRITE,
)
.map_err(|e| InstantiationError::Resource(e.into()))?;
} else {
// The final case here is that the previous module has no CoW image
// so the previous heap is all zeros. The previous heap is the exact
// same size as the requested heap, so no syscalls are needed to do
// anything else.
}
// The memory image, at this point, should have `initial_size_bytes` of
// zeros starting at `self.base` followed by inaccessible memory to
// `self.static_size`. Update sizing fields to reflect this.
self.initial_size = initial_size_bytes;
self.cur_size = initial_size_bytes;
// The initial memory image, if given. If not, we just get a
// memory filled with zeroes.
if let Some(image) = maybe_image.as_ref() {
assert!(
image.linear_memory_offset.checked_add(image.len).unwrap() <= initial_size_bytes
);
if image.len > 0 {
unsafe {
let ptr = rustix::mm::mmap(
(self.base + image.linear_memory_offset) as *mut c_void,
image.len,
rustix::mm::ProtFlags::READ | rustix::mm::ProtFlags::WRITE,
rustix::mm::MapFlags::PRIVATE | rustix::mm::MapFlags::FIXED,
image.fd.as_file(),
image.fd_offset,
)
.map_err(|e| InstantiationError::Resource(e.into()))?;
assert_eq!(ptr as usize, self.base + image.linear_memory_offset);
}
}
}
self.image = maybe_image.cloned();
self.dirty = true;
Ok(())
}
#[allow(dead_code)] // ignore warnings as this is only used in some cfgs
pub(crate) fn clear_and_remain_ready(&mut self) -> Result<()> {
assert!(self.dirty);
cfg_if::cfg_if! {
if #[cfg(target_os = "linux")] {
// On Linux we can use `madvise` to reset the virtual memory
// back to its original state. This means back to all zeros for
// anonymous-backed pages and back to the original contents for
// CoW memory (the initial heap image). This has the precise
// semantics we want for reuse between instances, so it's all we
// need to do.
unsafe {
rustix::mm::madvise(
self.base as *mut c_void,
self.cur_size,
rustix::mm::Advice::LinuxDontNeed,
)?;
}
} else {
// If we're not on Linux, however, then there's no generic
// platform way to reset memory back to its original state, so
// instead this is "feigned" by resetting memory back to
// entirely zeros with an anonymous backing.
//
// Additionally the previous image, if any, is dropped here
// since it's no longer applicable to this mapping.
self.reset_with_anon_memory()?;
self.image = None;
}
}
// mprotect the initial heap region beyond the initial heap size back to PROT_NONE.
self.set_protection(
self.initial_size..self.cur_size,
rustix::mm::MprotectFlags::empty(),
)?;
self.cur_size = self.initial_size;
self.dirty = false;
Ok(())
}
fn set_protection(&self, range: Range<usize>, flags: rustix::mm::MprotectFlags) -> Result<()> {
assert!(range.start <= range.end);
assert!(range.end <= self.static_size);
let mprotect_start = self.base.checked_add(range.start).unwrap();
if range.len() > 0 {
unsafe {
rustix::mm::mprotect(mprotect_start as *mut _, range.len(), flags)?;
}
}
Ok(())
}
pub(crate) fn has_image(&self) -> bool {
self.image.is_some()
}
#[allow(dead_code)] // ignore warnings as this is only used in some cfgs
pub(crate) fn is_dirty(&self) -> bool {
self.dirty
}
/// Map anonymous zeroed memory across the whole slot,
/// inaccessible. Used both during instantiate and during drop.
fn reset_with_anon_memory(&self) -> Result<()> {
if self.static_size == 0 {
return Ok(());
}
unsafe {
let ptr = rustix::mm::mmap_anonymous(
self.base as *mut c_void,
self.static_size,
rustix::mm::ProtFlags::empty(),
rustix::mm::MapFlags::PRIVATE | rustix::mm::MapFlags::FIXED,
)?;
assert_eq!(ptr as usize, self.base);
}
Ok(())
}
}
impl Drop for MemoryImageSlot {
fn drop(&mut self) {
// The MemoryImageSlot may be dropped if there is an error during
// instantiation: for example, if a memory-growth limiter
// disallows a guest from having a memory of a certain size,
// after we've already initialized the MemoryImageSlot.
//
// We need to return this region of the large pool mmap to a
// safe state (with no module-specific mappings). The
// MemoryImageSlot will not be returned to the MemoryPool, so a new
// MemoryImageSlot will be created and overwrite the mappings anyway
// on the slot's next use; but for safety and to avoid
// resource leaks it's better not to have stale mappings to a
// possibly-otherwise-dead module's image.
//
// To "wipe the slate clean", let's do a mmap of anonymous
// memory over the whole region, with PROT_NONE. Note that we
// *can't* simply munmap, because that leaves a hole in the
// middle of the pooling allocator's big memory area that some
// other random mmap may swoop in and take, to be trampled
// over by the next MemoryImageSlot later.
//
// Since we're in drop(), we can't sanely return an error if
// this mmap fails. Instead though the result is unwrapped here to
// trigger a panic if something goes wrong. Otherwise if this
// reset-the-mapping fails then on reuse it might be possible, depending
// on precisely where errors happened, that stale memory could get
// leaked through.
//
// The exception to all of this is if the `clear_on_drop` flag
// (which is set by default) is false. If so, the owner of
// this MemoryImageSlot has indicated that it will clean up in some
// other way.
if self.clear_on_drop {
self.reset_with_anon_memory().unwrap();
}
}
}
#[cfg(all(test, target_os = "linux"))]
mod test {
use std::sync::Arc;
use super::{create_memfd, FdSource, MemoryImage, MemoryImageSlot};
use crate::mmap::Mmap;
use anyhow::Result;
use std::io::Write;
fn create_memfd_with_data(offset: usize, data: &[u8]) -> Result<MemoryImage> {
// Offset must be page-aligned.
let page_size = crate::page_size();
assert_eq!(offset & (page_size - 1), 0);
let memfd = create_memfd()?;
memfd.as_file().write_all(data)?;
// The image length is rounded up to the nearest page size
let image_len = (data.len() + page_size - 1) & !(page_size - 1);
memfd.as_file().set_len(image_len as u64)?;
Ok(MemoryImage {
fd: FdSource::Memfd(memfd),
len: image_len,
fd_offset: 0,
linear_memory_offset: offset,
})
}
#[test]
fn instantiate_no_image() {
// 4 MiB mmap'd area, not accessible
let mut mmap = Mmap::accessible_reserved(0, 4 << 20).unwrap();
// Create a MemoryImageSlot on top of it
let mut memfd = MemoryImageSlot::create(mmap.as_mut_ptr() as *mut _, 0, 4 << 20);
memfd.no_clear_on_drop();
assert!(!memfd.is_dirty());
// instantiate with 64 KiB initial size
memfd.instantiate(64 << 10, None).unwrap();
assert!(memfd.is_dirty());
// We should be able to access this 64 KiB (try both ends) and
// it should consist of zeroes.
let slice = mmap.as_mut_slice();
assert_eq!(0, slice[0]);
assert_eq!(0, slice[65535]);
slice[1024] = 42;
assert_eq!(42, slice[1024]);
// grow the heap
memfd.set_heap_limit(128 << 10).unwrap();
let slice = mmap.as_slice();
assert_eq!(42, slice[1024]);
assert_eq!(0, slice[131071]);
// instantiate again; we should see zeroes, even as the
// reuse-anon-mmap-opt kicks in
memfd.clear_and_remain_ready().unwrap();
assert!(!memfd.is_dirty());
memfd.instantiate(64 << 10, None).unwrap();
let slice = mmap.as_slice();
assert_eq!(0, slice[1024]);
}
#[test]
fn instantiate_image() {
// 4 MiB mmap'd area, not accessible
let mut mmap = Mmap::accessible_reserved(0, 4 << 20).unwrap();
// Create a MemoryImageSlot on top of it
let mut memfd = MemoryImageSlot::create(mmap.as_mut_ptr() as *mut _, 0, 4 << 20);
memfd.no_clear_on_drop();
// Create an image with some data.
let image = Arc::new(create_memfd_with_data(4096, &[1, 2, 3, 4]).unwrap());
// Instantiate with this image
memfd.instantiate(64 << 10, Some(&image)).unwrap();
assert!(memfd.has_image());
let slice = mmap.as_mut_slice();
assert_eq!(&[1, 2, 3, 4], &slice[4096..4100]);
slice[4096] = 5;
// Clear and re-instantiate same image
memfd.clear_and_remain_ready().unwrap();
memfd.instantiate(64 << 10, Some(&image)).unwrap();
let slice = mmap.as_slice();
// Should not see mutation from above
assert_eq!(&[1, 2, 3, 4], &slice[4096..4100]);
// Clear and re-instantiate no image
memfd.clear_and_remain_ready().unwrap();
memfd.instantiate(64 << 10, None).unwrap();
assert!(!memfd.has_image());
let slice = mmap.as_slice();
assert_eq!(&[0, 0, 0, 0], &slice[4096..4100]);
// Clear and re-instantiate image again
memfd.clear_and_remain_ready().unwrap();
memfd.instantiate(64 << 10, Some(&image)).unwrap();
let slice = mmap.as_slice();
assert_eq!(&[1, 2, 3, 4], &slice[4096..4100]);
// Create another image with different data.
let image2 = Arc::new(create_memfd_with_data(4096, &[10, 11, 12, 13]).unwrap());
memfd.clear_and_remain_ready().unwrap();
memfd.instantiate(128 << 10, Some(&image2)).unwrap();
let slice = mmap.as_slice();
assert_eq!(&[10, 11, 12, 13], &slice[4096..4100]);
// Instantiate the original image again; we should notice it's
// a different image and not reuse the mappings.
memfd.clear_and_remain_ready().unwrap();
memfd.instantiate(64 << 10, Some(&image)).unwrap();
let slice = mmap.as_slice();
assert_eq!(&[1, 2, 3, 4], &slice[4096..4100]);
}
}