1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
//! Copy-on-write initialization support: creation of backing images for
//! modules, and logic to support mapping these backing images into memory.

use crate::InstantiationError;
use crate::MmapVec;
use anyhow::Result;
use libc::c_void;
use rustix::fd::AsRawFd;
use std::fs::File;
use std::sync::Arc;
use std::{convert::TryFrom, ops::Range};
use wasmtime_environ::{DefinedMemoryIndex, MemoryInitialization, Module, PrimaryMap};

/// Backing images for memories in a module.
///
/// This is meant to be built once, when a module is first loaded/constructed,
/// and then used many times for instantiation.
pub struct ModuleMemoryImages {
    memories: PrimaryMap<DefinedMemoryIndex, Option<Arc<MemoryImage>>>,
}

impl ModuleMemoryImages {
    /// Get the MemoryImage for a given memory.
    pub fn get_memory_image(&self, defined_index: DefinedMemoryIndex) -> Option<&Arc<MemoryImage>> {
        self.memories[defined_index].as_ref()
    }
}

/// One backing image for one memory.
#[derive(Debug, PartialEq)]
pub struct MemoryImage {
    /// The file descriptor source of this image.
    ///
    /// This might be an mmaped `*.cwasm` file or on Linux it could also be a
    /// `Memfd` as an anonymous file in memory. In either case this is used as
    /// the backing-source for the CoW image.
    fd: FdSource,

    /// Length of image, in bytes.
    ///
    /// Note that initial memory size may be larger; leading and trailing zeroes
    /// are truncated (handled by backing fd).
    ///
    /// Must be a multiple of the system page size.
    len: usize,

    /// Image starts this many bytes into `fd` source.
    ///
    /// This is 0 for anonymous-backed memfd files and is the offset of the data
    /// section in a `*.cwasm` file for `*.cwasm`-backed images.
    ///
    /// Must be a multiple of the system page size.
    fd_offset: u64,

    /// Image starts this many bytes into heap space.
    ///
    /// Must be a multiple of the system page size.
    linear_memory_offset: usize,
}

#[derive(Debug)]
enum FdSource {
    Mmap(Arc<File>),
    #[cfg(target_os = "linux")]
    Memfd(memfd::Memfd),
}

impl FdSource {
    fn as_file(&self) -> &File {
        match self {
            FdSource::Mmap(file) => file,
            #[cfg(target_os = "linux")]
            FdSource::Memfd(memfd) => memfd.as_file(),
        }
    }
}

impl PartialEq for FdSource {
    fn eq(&self, other: &FdSource) -> bool {
        self.as_file().as_raw_fd() == other.as_file().as_raw_fd()
    }
}

impl MemoryImage {
    fn new(
        page_size: u32,
        offset: u64,
        data: &[u8],
        mmap: Option<&MmapVec>,
    ) -> Result<Option<MemoryImage>> {
        // Sanity-check that various parameters are page-aligned.
        let len = data.len();
        assert_eq!(offset % u64::from(page_size), 0);
        assert_eq!((len as u32) % page_size, 0);
        let linear_memory_offset = match usize::try_from(offset) {
            Ok(offset) => offset,
            Err(_) => return Ok(None),
        };

        // If a backing `mmap` is present then `data` should be a sub-slice of
        // the `mmap`. The sanity-checks here double-check that. Additionally
        // compilation should have ensured that the `data` section is
        // page-aligned within `mmap`, so that's also all double-checked here.
        //
        // Finally if the `mmap` itself comes from a backing file on disk, such
        // as a `*.cwasm` file, then that's a valid source of data for the
        // memory image so we simply return referencing that.
        //
        // Note that this path is platform-agnostic in the sense of all
        // platforms we support support memory mapping copy-on-write data from
        // files, but for now this is still a Linux-specific region of Wasmtime.
        // Some work will be needed to get this file compiling for macOS and
        // Windows.
        if let Some(mmap) = mmap {
            let start = mmap.as_ptr() as usize;
            let end = start + mmap.len();
            let data_start = data.as_ptr() as usize;
            let data_end = data_start + data.len();
            assert!(start <= data_start && data_end <= end);
            assert_eq!((start as u32) % page_size, 0);
            assert_eq!((data_start as u32) % page_size, 0);
            assert_eq!((data_end as u32) % page_size, 0);
            assert_eq!((mmap.original_offset() as u32) % page_size, 0);

            if let Some(file) = mmap.original_file() {
                return Ok(Some(MemoryImage {
                    fd: FdSource::Mmap(file.clone()),
                    fd_offset: u64::try_from(mmap.original_offset() + (data_start - start))
                        .unwrap(),
                    linear_memory_offset,
                    len,
                }));
            }
        }

        // If `mmap` doesn't come from a file then platform-specific mechanisms
        // may be used to place the data in a form that's amenable to an mmap.

        cfg_if::cfg_if! {
            if #[cfg(target_os = "linux")] {
                // On Linux `memfd_create` is used to create an anonymous
                // in-memory file to represent the heap image. This anonymous
                // file is then used as the basis for further mmaps.

                use std::io::Write;

                let memfd = create_memfd()?;
                memfd.as_file().write_all(data)?;

                // Seal the memfd's data and length.
                //
                // This is a defense-in-depth security mitigation. The
                // memfd will serve as the starting point for the heap of
                // every instance of this module. If anything were to
                // write to this, it could affect every execution. The
                // memfd object itself is owned by the machinery here and
                // not exposed elsewhere, but it is still an ambient open
                // file descriptor at the syscall level, so some other
                // vulnerability that allowed writes to arbitrary fds
                // could modify it. Or we could have some issue with the
                // way that we map it into each instance. To be
                // extra-super-sure that it never changes, and because
                // this costs very little, we use the kernel's "seal" API
                // to make the memfd image permanently read-only.
                memfd.add_seals(&[
                    memfd::FileSeal::SealGrow,
                    memfd::FileSeal::SealShrink,
                    memfd::FileSeal::SealWrite,
                    memfd::FileSeal::SealSeal,
                ])?;

                Ok(Some(MemoryImage {
                    fd: FdSource::Memfd(memfd),
                    fd_offset: 0,
                    linear_memory_offset,
                    len,
                }))
            } else {
                // Other platforms don't have an easily available way of
                // representing the heap image as an mmap-source right now. We
                // could theoretically create a file and immediately unlink it
                // but that means that data may likely be preserved to disk
                // which isn't what we want here.
                Ok(None)
            }
        }
    }
}

#[cfg(target_os = "linux")]
fn create_memfd() -> Result<memfd::Memfd> {
    // Create the memfd. It needs a name, but the
    // documentation for `memfd_create()` says that names can
    // be duplicated with no issues.
    memfd::MemfdOptions::new()
        .allow_sealing(true)
        .create("wasm-memory-image")
        .map_err(|e| e.into())
}

impl ModuleMemoryImages {
    /// Create a new `ModuleMemoryImages` for the given module. This can be
    /// passed in as part of a `InstanceAllocationRequest` to speed up
    /// instantiation and execution by using copy-on-write-backed memories.
    pub fn new(
        module: &Module,
        wasm_data: &[u8],
        mmap: Option<&MmapVec>,
    ) -> Result<Option<ModuleMemoryImages>> {
        let map = match &module.memory_initialization {
            MemoryInitialization::Static { map } => map,
            _ => return Ok(None),
        };
        let mut memories = PrimaryMap::with_capacity(map.len());
        let page_size = crate::page_size() as u32;
        for (memory_index, init) in map {
            // mmap-based-initialization only works for defined memories with a
            // known starting point of all zeros, so bail out if the mmeory is
            // imported.
            let defined_memory = match module.defined_memory_index(memory_index) {
                Some(idx) => idx,
                None => return Ok(None),
            };

            // If there's no initialization for this memory known then we don't
            // need an image for the memory so push `None` and move on.
            let init = match init {
                Some(init) => init,
                None => {
                    memories.push(None);
                    continue;
                }
            };

            // Get the image for this wasm module  as a subslice of `wasm_data`,
            // and then use that to try to create the `MemoryImage`. If this
            // creation files then we fail creating `ModuleMemoryImages` since this
            // memory couldn't be represented.
            let data = &wasm_data[init.data.start as usize..init.data.end as usize];
            let image = match MemoryImage::new(page_size, init.offset, data, mmap)? {
                Some(image) => image,
                None => return Ok(None),
            };

            let idx = memories.push(Some(Arc::new(image)));
            assert_eq!(idx, defined_memory);
        }

        Ok(Some(ModuleMemoryImages { memories }))
    }
}

/// A single slot handled by the copy-on-write memory initialization mechanism.
///
/// The mmap scheme is:
///
/// base ==> (points here)
/// - (image.offset bytes)   anonymous zero memory, pre-image
/// - (image.len bytes)      CoW mapping of memory image
/// - (up to static_size)    anonymous zero memory, post-image
///
/// The ordering of mmaps to set this up is:
///
/// - once, when pooling allocator is created:
///   - one large mmap to create 8GiB * instances * memories slots
///
/// - per instantiation of new image in a slot:
///   - mmap of anonymous zero memory, from 0 to max heap size
///     (static_size)
///   - mmap of CoW'd image, from `image.offset` to
///     `image.offset + image.len`. This overwrites part of the
///     anonymous zero memory, potentially splitting it into a pre-
///     and post-region.
///   - mprotect(PROT_NONE) on the part of the heap beyond the initial
///     heap size; we re-mprotect it with R+W bits when the heap is
///     grown.
#[derive(Debug)]
pub struct MemoryImageSlot {
    /// The base of the actual heap memory. Bytes at this address are
    /// what is seen by the Wasm guest code.
    base: usize,
    /// The maximum static memory size, plus post-guard.
    static_size: usize,
    /// The image that backs this memory. May be `None`, in
    /// which case the memory is all zeroes.
    pub(crate) image: Option<Arc<MemoryImage>>,
    /// The initial heap size.
    initial_size: usize,
    /// The current heap size. All memory above `base + cur_size`
    /// should be PROT_NONE (mapped inaccessible).
    cur_size: usize,
    /// Whether this slot may have "dirty" pages (pages written by an
    /// instantiation). Set by `instantiate()` and cleared by
    /// `clear_and_remain_ready()`, and used in assertions to ensure
    /// those methods are called properly.
    ///
    /// Invariant: if !dirty, then this memory slot contains a clean
    /// CoW mapping of `image`, if `Some(..)`, and anonymous-zero
    /// memory beyond the image up to `static_size`. The addresses
    /// from offset 0 to `initial_size` are accessible R+W and the
    /// rest of the slot is inaccessible.
    dirty: bool,
    /// Whether this MemoryImageSlot is responsible for mapping anonymous
    /// memory (to hold the reservation while overwriting mappings
    /// specific to this slot) in place when it is dropped. Default
    /// on, unless the caller knows what they are doing.
    clear_on_drop: bool,
}

impl MemoryImageSlot {
    /// Create a new MemoryImageSlot. Assumes that there is an anonymous
    /// mmap backing in the given range to start.
    pub(crate) fn create(base_addr: *mut c_void, initial_size: usize, static_size: usize) -> Self {
        let base = base_addr as usize;
        MemoryImageSlot {
            base,
            static_size,
            initial_size,
            cur_size: initial_size,
            image: None,
            dirty: false,
            clear_on_drop: true,
        }
    }

    /// Inform the MemoryImageSlot that it should *not* clear the underlying
    /// address space when dropped. This should be used only when the
    /// caller will clear or reuse the address space in some other
    /// way.
    pub(crate) fn no_clear_on_drop(&mut self) {
        self.clear_on_drop = false;
    }

    pub(crate) fn set_heap_limit(&mut self, size_bytes: usize) -> Result<()> {
        // mprotect the relevant region.
        self.set_protection(
            self.cur_size..size_bytes,
            rustix::mm::MprotectFlags::READ | rustix::mm::MprotectFlags::WRITE,
        )?;
        self.cur_size = size_bytes;

        Ok(())
    }

    pub(crate) fn instantiate(
        &mut self,
        initial_size_bytes: usize,
        maybe_image: Option<&Arc<MemoryImage>>,
    ) -> Result<(), InstantiationError> {
        assert!(!self.dirty);
        assert_eq!(self.cur_size, self.initial_size);

        // Fast-path: previously instantiated with the same image, or
        // no image but the same initial size, so the mappings are
        // already correct; there is no need to mmap anything. Given
        // that we asserted not-dirty above, any dirty pages will have
        // already been thrown away by madvise() during the previous
        // termination. The `clear_and_remain_ready()` path also
        // mprotects memory above the initial heap size back to
        // PROT_NONE, so we don't need to do that here.
        if self.image.as_ref() == maybe_image && self.initial_size == initial_size_bytes {
            self.dirty = true;
            return Ok(());
        }
        // Otherwise, we need to transition from the previous state to the
        // state now requested. An attempt is made here to minimize syscalls to
        // the kernel to ideally reduce the overhead of this as it's fairly
        // performance sensitive with memories. Note that the "previous state"
        // is assumed to be post-initialization (e.g. after an mmap on-demand
        // memory was created) or after `clear_and_remain_ready` was called
        // which notably means that `madvise` has reset all the memory back to
        // its original state.
        //
        // Security/audit note: we map all of these MAP_PRIVATE, so
        // all instance data is local to the mapping, not propagated
        // to the backing fd. We throw away this CoW overlay with
        // madvise() below, from base up to static_size (which is the
        // whole slot) when terminating the instance.

        if self.image.is_some() {
            // In this case the state of memory at this time is that the memory
            // from `0..self.initial_size` is reset back to its original state,
            // but this memory contians a CoW image that is different from the
            // one specified here. To reset state we first reset the mapping
            // of memory to anonymous PROT_NONE memory, and then afterwards the
            // heap is made visible with an mprotect.
            self.reset_with_anon_memory()
                .map_err(|e| InstantiationError::Resource(e.into()))?;
            self.set_protection(
                0..initial_size_bytes,
                rustix::mm::MprotectFlags::READ | rustix::mm::MprotectFlags::WRITE,
            )
            .map_err(|e| InstantiationError::Resource(e.into()))?;
        } else if initial_size_bytes < self.initial_size {
            // In this case the previous module had now CoW image which means
            // that the memory at `0..self.initial_size` is all zeros and
            // read-write, everything afterwards being PROT_NONE.
            //
            // Our requested heap size is smaller than the previous heap size
            // so all that's needed now is to shrink the heap further to
            // `initial_size_bytes`.
            //
            // So we come in with:
            // - anon-zero memory, R+W,  [0, self.initial_size)
            // - anon-zero memory, none, [self.initial_size, self.static_size)
            // and we want:
            // - anon-zero memory, R+W,  [0, initial_size_bytes)
            // - anon-zero memory, none, [initial_size_bytes, self.static_size)
            //
            // so given initial_size_bytes < self.initial_size we
            // mprotect(NONE) the zone from the first to the second.
            self.set_protection(
                initial_size_bytes..self.initial_size,
                rustix::mm::MprotectFlags::empty(),
            )
            .map_err(|e| InstantiationError::Resource(e.into()))?;
        } else if initial_size_bytes > self.initial_size {
            // In this case, like the previous one, the previous module had no
            // CoW image but had a smaller heap than desired for this module.
            // That means that here `mprotect` is used to make the new pages
            // read/write, and since they're all reset from before they'll be
            // made visible as zeros.
            self.set_protection(
                self.initial_size..initial_size_bytes,
                rustix::mm::MprotectFlags::READ | rustix::mm::MprotectFlags::WRITE,
            )
            .map_err(|e| InstantiationError::Resource(e.into()))?;
        } else {
            // The final case here is that the previous module has no CoW image
            // so the previous heap is all zeros. The previous heap is the exact
            // same size as the requested heap, so no syscalls are needed to do
            // anything else.
        }

        // The memory image, at this point, should have `initial_size_bytes` of
        // zeros starting at `self.base` followed by inaccessible memory to
        // `self.static_size`. Update sizing fields to reflect this.
        self.initial_size = initial_size_bytes;
        self.cur_size = initial_size_bytes;

        // The initial memory image, if given. If not, we just get a
        // memory filled with zeroes.
        if let Some(image) = maybe_image.as_ref() {
            assert!(
                image.linear_memory_offset.checked_add(image.len).unwrap() <= initial_size_bytes
            );
            if image.len > 0 {
                unsafe {
                    let ptr = rustix::mm::mmap(
                        (self.base + image.linear_memory_offset) as *mut c_void,
                        image.len,
                        rustix::mm::ProtFlags::READ | rustix::mm::ProtFlags::WRITE,
                        rustix::mm::MapFlags::PRIVATE | rustix::mm::MapFlags::FIXED,
                        image.fd.as_file(),
                        image.fd_offset,
                    )
                    .map_err(|e| InstantiationError::Resource(e.into()))?;
                    assert_eq!(ptr as usize, self.base + image.linear_memory_offset);
                }
            }
        }

        self.image = maybe_image.cloned();
        self.dirty = true;

        Ok(())
    }

    #[allow(dead_code)] // ignore warnings as this is only used in some cfgs
    pub(crate) fn clear_and_remain_ready(&mut self) -> Result<()> {
        assert!(self.dirty);

        cfg_if::cfg_if! {
            if #[cfg(target_os = "linux")] {
                // On Linux we can use `madvise` to reset the virtual memory
                // back to its original state. This means back to all zeros for
                // anonymous-backed pages and back to the original contents for
                // CoW memory (the initial heap image). This has the precise
                // semantics we want for reuse between instances, so it's all we
                // need to do.
                unsafe {
                    rustix::mm::madvise(
                        self.base as *mut c_void,
                        self.cur_size,
                        rustix::mm::Advice::LinuxDontNeed,
                    )?;
                }
            } else {
                // If we're not on Linux, however, then there's no generic
                // platform way to reset memory back to its original state, so
                // instead this is "feigned" by resetting memory back to
                // entirely zeros with an anonymous backing.
                //
                // Additionally the previous image, if any, is dropped here
                // since it's no longer applicable to this mapping.
                self.reset_with_anon_memory()?;
                self.image = None;
            }
        }

        // mprotect the initial heap region beyond the initial heap size back to PROT_NONE.
        self.set_protection(
            self.initial_size..self.cur_size,
            rustix::mm::MprotectFlags::empty(),
        )?;
        self.cur_size = self.initial_size;
        self.dirty = false;
        Ok(())
    }

    fn set_protection(&self, range: Range<usize>, flags: rustix::mm::MprotectFlags) -> Result<()> {
        assert!(range.start <= range.end);
        assert!(range.end <= self.static_size);
        let mprotect_start = self.base.checked_add(range.start).unwrap();
        if range.len() > 0 {
            unsafe {
                rustix::mm::mprotect(mprotect_start as *mut _, range.len(), flags)?;
            }
        }

        Ok(())
    }

    pub(crate) fn has_image(&self) -> bool {
        self.image.is_some()
    }

    #[allow(dead_code)] // ignore warnings as this is only used in some cfgs
    pub(crate) fn is_dirty(&self) -> bool {
        self.dirty
    }

    /// Map anonymous zeroed memory across the whole slot,
    /// inaccessible. Used both during instantiate and during drop.
    fn reset_with_anon_memory(&self) -> Result<()> {
        if self.static_size == 0 {
            return Ok(());
        }
        unsafe {
            let ptr = rustix::mm::mmap_anonymous(
                self.base as *mut c_void,
                self.static_size,
                rustix::mm::ProtFlags::empty(),
                rustix::mm::MapFlags::PRIVATE | rustix::mm::MapFlags::FIXED,
            )?;
            assert_eq!(ptr as usize, self.base);
        }
        Ok(())
    }
}

impl Drop for MemoryImageSlot {
    fn drop(&mut self) {
        // The MemoryImageSlot may be dropped if there is an error during
        // instantiation: for example, if a memory-growth limiter
        // disallows a guest from having a memory of a certain size,
        // after we've already initialized the MemoryImageSlot.
        //
        // We need to return this region of the large pool mmap to a
        // safe state (with no module-specific mappings). The
        // MemoryImageSlot will not be returned to the MemoryPool, so a new
        // MemoryImageSlot will be created and overwrite the mappings anyway
        // on the slot's next use; but for safety and to avoid
        // resource leaks it's better not to have stale mappings to a
        // possibly-otherwise-dead module's image.
        //
        // To "wipe the slate clean", let's do a mmap of anonymous
        // memory over the whole region, with PROT_NONE. Note that we
        // *can't* simply munmap, because that leaves a hole in the
        // middle of the pooling allocator's big memory area that some
        // other random mmap may swoop in and take, to be trampled
        // over by the next MemoryImageSlot later.
        //
        // Since we're in drop(), we can't sanely return an error if
        // this mmap fails. Instead though the result is unwrapped here to
        // trigger a panic if something goes wrong. Otherwise if this
        // reset-the-mapping fails then on reuse it might be possible, depending
        // on precisely where errors happened, that stale memory could get
        // leaked through.
        //
        // The exception to all of this is if the `clear_on_drop` flag
        // (which is set by default) is false. If so, the owner of
        // this MemoryImageSlot has indicated that it will clean up in some
        // other way.
        if self.clear_on_drop {
            self.reset_with_anon_memory().unwrap();
        }
    }
}

#[cfg(all(test, target_os = "linux"))]
mod test {
    use std::sync::Arc;

    use super::{create_memfd, FdSource, MemoryImage, MemoryImageSlot};
    use crate::mmap::Mmap;
    use anyhow::Result;
    use std::io::Write;

    fn create_memfd_with_data(offset: usize, data: &[u8]) -> Result<MemoryImage> {
        // Offset must be page-aligned.
        let page_size = crate::page_size();
        assert_eq!(offset & (page_size - 1), 0);
        let memfd = create_memfd()?;
        memfd.as_file().write_all(data)?;

        // The image length is rounded up to the nearest page size
        let image_len = (data.len() + page_size - 1) & !(page_size - 1);
        memfd.as_file().set_len(image_len as u64)?;

        Ok(MemoryImage {
            fd: FdSource::Memfd(memfd),
            len: image_len,
            fd_offset: 0,
            linear_memory_offset: offset,
        })
    }

    #[test]
    fn instantiate_no_image() {
        // 4 MiB mmap'd area, not accessible
        let mut mmap = Mmap::accessible_reserved(0, 4 << 20).unwrap();
        // Create a MemoryImageSlot on top of it
        let mut memfd = MemoryImageSlot::create(mmap.as_mut_ptr() as *mut _, 0, 4 << 20);
        memfd.no_clear_on_drop();
        assert!(!memfd.is_dirty());
        // instantiate with 64 KiB initial size
        memfd.instantiate(64 << 10, None).unwrap();
        assert!(memfd.is_dirty());
        // We should be able to access this 64 KiB (try both ends) and
        // it should consist of zeroes.
        let slice = mmap.as_mut_slice();
        assert_eq!(0, slice[0]);
        assert_eq!(0, slice[65535]);
        slice[1024] = 42;
        assert_eq!(42, slice[1024]);
        // grow the heap
        memfd.set_heap_limit(128 << 10).unwrap();
        let slice = mmap.as_slice();
        assert_eq!(42, slice[1024]);
        assert_eq!(0, slice[131071]);
        // instantiate again; we should see zeroes, even as the
        // reuse-anon-mmap-opt kicks in
        memfd.clear_and_remain_ready().unwrap();
        assert!(!memfd.is_dirty());
        memfd.instantiate(64 << 10, None).unwrap();
        let slice = mmap.as_slice();
        assert_eq!(0, slice[1024]);
    }

    #[test]
    fn instantiate_image() {
        // 4 MiB mmap'd area, not accessible
        let mut mmap = Mmap::accessible_reserved(0, 4 << 20).unwrap();
        // Create a MemoryImageSlot on top of it
        let mut memfd = MemoryImageSlot::create(mmap.as_mut_ptr() as *mut _, 0, 4 << 20);
        memfd.no_clear_on_drop();
        // Create an image with some data.
        let image = Arc::new(create_memfd_with_data(4096, &[1, 2, 3, 4]).unwrap());
        // Instantiate with this image
        memfd.instantiate(64 << 10, Some(&image)).unwrap();
        assert!(memfd.has_image());
        let slice = mmap.as_mut_slice();
        assert_eq!(&[1, 2, 3, 4], &slice[4096..4100]);
        slice[4096] = 5;
        // Clear and re-instantiate same image
        memfd.clear_and_remain_ready().unwrap();
        memfd.instantiate(64 << 10, Some(&image)).unwrap();
        let slice = mmap.as_slice();
        // Should not see mutation from above
        assert_eq!(&[1, 2, 3, 4], &slice[4096..4100]);
        // Clear and re-instantiate no image
        memfd.clear_and_remain_ready().unwrap();
        memfd.instantiate(64 << 10, None).unwrap();
        assert!(!memfd.has_image());
        let slice = mmap.as_slice();
        assert_eq!(&[0, 0, 0, 0], &slice[4096..4100]);
        // Clear and re-instantiate image again
        memfd.clear_and_remain_ready().unwrap();
        memfd.instantiate(64 << 10, Some(&image)).unwrap();
        let slice = mmap.as_slice();
        assert_eq!(&[1, 2, 3, 4], &slice[4096..4100]);
        // Create another image with different data.
        let image2 = Arc::new(create_memfd_with_data(4096, &[10, 11, 12, 13]).unwrap());
        memfd.clear_and_remain_ready().unwrap();
        memfd.instantiate(128 << 10, Some(&image2)).unwrap();
        let slice = mmap.as_slice();
        assert_eq!(&[10, 11, 12, 13], &slice[4096..4100]);
        // Instantiate the original image again; we should notice it's
        // a different image and not reuse the mappings.
        memfd.clear_and_remain_ready().unwrap();
        memfd.instantiate(64 << 10, Some(&image)).unwrap();
        let slice = mmap.as_slice();
        assert_eq!(&[1, 2, 3, 4], &slice[4096..4100]);
    }
}