1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
#[cfg(feature = "hfs")]
use crate::params::HandshakeModifier;
use crate::{
    cipherstate::{CipherState, CipherStates},
    constants::{MAXDHLEN, PSKLEN},
    error::{Error, InitStage, Prerequisite},
    handshakestate::HandshakeState,
    params::NoiseParams,
    resolvers::{BoxedCryptoResolver, CryptoResolver},
    utils::Toggle,
};
use subtle::ConstantTimeEq;

/// A keypair object returned by [`Builder::generate_keypair()`]
///
/// [`generate_keypair()`]: #method.generate_keypair
pub struct Keypair {
    /// The private asymmetric key
    pub private: Vec<u8>,
    /// The public asymmetric key
    pub public:  Vec<u8>,
}

impl PartialEq for Keypair {
    fn eq(&self, other: &Keypair) -> bool {
        let priv_eq = self.private.ct_eq(&other.private);
        let pub_eq = self.public.ct_eq(&other.public);

        (priv_eq & pub_eq).into()
    }
}

/// Generates a [`HandshakeState`] and also validates that all the prerequisites for
/// the given parameters are satisfied.
///
/// # Examples
///
/// ```
/// # use snow::Builder;
/// # let my_long_term_key = [0u8; 32];
/// # let their_pub_key = [0u8; 32];
/// # #[cfg(any(feature = "default-resolver", feature = "ring-accelerated"))]
/// let noise = Builder::new("Noise_XX_25519_ChaChaPoly_BLAKE2s".parse().unwrap())
///     .local_private_key(&my_long_term_key)
///     .remote_public_key(&their_pub_key)
///     .prologue("noise is just swell".as_bytes())
///     .build_initiator()
///     .unwrap();
/// ```
pub struct Builder<'builder> {
    params:   NoiseParams,
    resolver: BoxedCryptoResolver,
    s:        Option<&'builder [u8]>,
    e_fixed:  Option<&'builder [u8]>,
    rs:       Option<&'builder [u8]>,
    psks:     [Option<&'builder [u8]>; 10],
    plog:     Option<&'builder [u8]>,
}

impl<'builder> Builder<'builder> {
    /// Create a Builder with the default crypto resolver.
    #[cfg(all(
        feature = "default-resolver",
        not(any(feature = "ring-accelerated", feature = "libsodium-accelerated"))
    ))]
    pub fn new(params: NoiseParams) -> Self {
        use crate::resolvers::DefaultResolver;

        Self::with_resolver(params, Box::new(DefaultResolver::default()))
    }

    /// Create a Builder with the ring resolver and default resolver as a fallback.
    #[cfg(all(not(feature = "libsodium-accelerated"), feature = "ring-accelerated"))]
    pub fn new(params: NoiseParams) -> Self {
        use crate::resolvers::{DefaultResolver, FallbackResolver, RingResolver};

        Self::with_resolver(
            params,
            Box::new(FallbackResolver::new(Box::new(RingResolver), Box::new(DefaultResolver))),
        )
    }

    /// Create a Builder with the ring resolver and default resolver as a fallback.
    #[cfg(all(not(feature = "ring-accelerated"), feature = "libsodium-accelerated"))]
    pub fn new(params: NoiseParams) -> Self {
        use crate::resolvers::{DefaultResolver, FallbackResolver, SodiumResolver};

        Self::with_resolver(
            params,
            Box::new(FallbackResolver::new(Box::new(SodiumResolver), Box::new(DefaultResolver))),
        )
    }

    /// Create a Builder with a custom crypto resolver.
    pub fn with_resolver(params: NoiseParams, resolver: BoxedCryptoResolver) -> Self {
        Builder { params, resolver, s: None, e_fixed: None, rs: None, plog: None, psks: [None; 10] }
    }

    /// Specify a PSK (only used with `NoisePSK` base parameter)
    pub fn psk(mut self, location: u8, key: &'builder [u8]) -> Self {
        self.psks[location as usize] = Some(key);
        self
    }

    /// Your static private key (can be generated with [`generate_keypair()`]).
    ///
    /// [`generate_keypair()`]: #method.generate_keypair
    pub fn local_private_key(mut self, key: &'builder [u8]) -> Self {
        self.s = Some(key);
        self
    }

    #[doc(hidden)]
    pub fn fixed_ephemeral_key_for_testing_only(mut self, key: &'builder [u8]) -> Self {
        self.e_fixed = Some(key);
        self
    }

    /// Arbitrary data to be hashed in to the handshake hash value.
    pub fn prologue(mut self, key: &'builder [u8]) -> Self {
        self.plog = Some(key);
        self
    }

    /// The responder's static public key.
    pub fn remote_public_key(mut self, pub_key: &'builder [u8]) -> Self {
        self.rs = Some(pub_key);
        self
    }

    // TODO: performance issue w/ creating a new RNG and DH instance per call.
    /// Generate a new asymmetric keypair (for use as a static key).
    pub fn generate_keypair(&self) -> Result<Keypair, Error> {
        let mut rng = self.resolver.resolve_rng().ok_or(InitStage::GetRngImpl)?;
        let mut dh = self.resolver.resolve_dh(&self.params.dh).ok_or(InitStage::GetDhImpl)?;
        let mut private = vec![0u8; dh.priv_len()];
        let mut public = vec![0u8; dh.pub_len()];
        dh.generate(&mut *rng);

        private.copy_from_slice(dh.privkey());
        public.copy_from_slice(dh.pubkey());

        Ok(Keypair { private, public })
    }

    /// Build a [`HandshakeState`] for the side who will initiate the handshake (send the first message)
    pub fn build_initiator(self) -> Result<HandshakeState, Error> {
        self.build(true)
    }

    /// Build a [`HandshakeState`] for the side who will be responder (receive the first message)
    pub fn build_responder(self) -> Result<HandshakeState, Error> {
        self.build(false)
    }

    fn build(self, initiator: bool) -> Result<HandshakeState, Error> {
        if self.s.is_none() && self.params.handshake.pattern.needs_local_static_key(initiator) {
            return Err(Prerequisite::LocalPrivateKey.into());
        }

        if self.rs.is_none() && self.params.handshake.pattern.need_known_remote_pubkey(initiator) {
            return Err(Prerequisite::RemotePublicKey.into());
        }

        let rng = self.resolver.resolve_rng().ok_or(InitStage::GetRngImpl)?;
        let cipher =
            self.resolver.resolve_cipher(&self.params.cipher).ok_or(InitStage::GetCipherImpl)?;
        let hash = self.resolver.resolve_hash(&self.params.hash).ok_or(InitStage::GetHashImpl)?;
        let mut s_dh = self.resolver.resolve_dh(&self.params.dh).ok_or(InitStage::GetDhImpl)?;
        let mut e_dh = self.resolver.resolve_dh(&self.params.dh).ok_or(InitStage::GetDhImpl)?;
        let cipher1 =
            self.resolver.resolve_cipher(&self.params.cipher).ok_or(InitStage::GetCipherImpl)?;
        let cipher2 =
            self.resolver.resolve_cipher(&self.params.cipher).ok_or(InitStage::GetCipherImpl)?;
        let handshake_cipherstate = CipherState::new(cipher);
        let cipherstates = CipherStates::new(CipherState::new(cipher1), CipherState::new(cipher2))?;

        let s = match self.s {
            Some(k) => {
                (*s_dh).set(k);
                Toggle::on(s_dh)
            },
            None => Toggle::off(s_dh),
        };

        if let Some(fixed_k) = self.e_fixed {
            (*e_dh).set(fixed_k);
        }
        let e = Toggle::off(e_dh);

        let mut rs_buf = [0u8; MAXDHLEN];
        let rs = match self.rs {
            Some(v) => {
                rs_buf[..v.len()].copy_from_slice(v);
                Toggle::on(rs_buf)
            },
            None => Toggle::off(rs_buf),
        };

        let re = Toggle::off([0u8; MAXDHLEN]);

        let mut psks = [None::<[u8; PSKLEN]>; 10];
        for (i, psk) in self.psks.iter().enumerate() {
            if let Some(key) = *psk {
                if key.len() != PSKLEN {
                    return Err(InitStage::ValidatePskLengths.into());
                }
                let mut k = [0u8; PSKLEN];
                k.copy_from_slice(key);
                psks[i] = Some(k);
            }
        }

        let mut hs = HandshakeState::new(
            rng,
            handshake_cipherstate,
            hash,
            s,
            e,
            self.e_fixed.is_some(),
            rs,
            re,
            initiator,
            self.params,
            psks,
            self.plog.unwrap_or(&[]),
            cipherstates,
        )?;
        Self::resolve_kem(self.resolver, &mut hs)?;
        Ok(hs)
    }

    #[cfg(not(feature = "hfs"))]
    fn resolve_kem(_: Box<dyn CryptoResolver>, _: &mut HandshakeState) -> Result<(), Error> {
        // HFS is disabled, return nothing
        Ok(())
    }

    #[cfg(feature = "hfs")]
    fn resolve_kem(
        resolver: Box<dyn CryptoResolver>,
        hs: &mut HandshakeState,
    ) -> Result<(), Error> {
        if hs.params.handshake.modifiers.list.contains(&HandshakeModifier::Hfs) {
            if let Some(kem_choice) = hs.params.kem {
                let kem = resolver.resolve_kem(&kem_choice).ok_or(InitStage::GetKemImpl)?;
                hs.set_kem(kem);
            } else {
                return Err(InitStage::GetKemImpl.into());
            }
        }
        Ok(())
    }
}

#[cfg(test)]
#[cfg(any(feature = "default-resolver", feature = "ring-accelerated"))]
mod tests {
    use super::*;

    #[test]
    fn test_builder() {
        let _noise = Builder::new("Noise_NN_25519_ChaChaPoly_SHA256".parse().unwrap())
            .prologue(&[2, 2, 2, 2, 2, 2, 2, 2])
            .local_private_key(&[0u8; 32])
            .build_initiator()
            .unwrap();
    }

    #[test]
    fn test_builder_keygen() {
        let builder = Builder::new("Noise_NN_25519_ChaChaPoly_SHA256".parse().unwrap());
        let key1 = builder.generate_keypair();
        let key2 = builder.generate_keypair();
        assert!(key1.unwrap() != key2.unwrap());
    }

    #[test]
    fn test_builder_bad_spec() {
        let params: ::std::result::Result<NoiseParams, _> =
            "Noise_NK_25519_ChaChaPoly_BLAH256".parse();

        if params.is_ok() {
            panic!("NoiseParams should have failed");
        }
    }

    #[test]
    fn test_builder_missing_prereqs() {
        let noise = Builder::new("Noise_NK_25519_ChaChaPoly_SHA256".parse().unwrap())
            .prologue(&[2, 2, 2, 2, 2, 2, 2, 2])
            .local_private_key(&[0u8; 32])
            .build_initiator(); // missing remote key, should result in Err

        if noise.is_ok() {
            panic!("builder should have failed on build");
        }
    }

    #[test]
    fn test_partialeq_impl() {
        let keypair_1 = Keypair { private: vec![0x01; 32], public: vec![0x01; 32] };

        let mut keypair_2 = Keypair { private: vec![0x01; 32], public: vec![0x01; 32] };

        // If both private and public are the same, return true
        assert_eq!(keypair_1 == keypair_2, true);

        // If either public or private are different, return false

        // Wrong private
        keypair_2.private = vec![0x50; 32];
        assert_eq!(keypair_1 == keypair_2, false);
        // Reset to original
        keypair_2.private = vec![0x01; 32];
        // Wrong public
        keypair_2.public = vec![0x50; 32];
        assert_eq!(keypair_1 == keypair_2, false);
    }
}