1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380
//! This module implements lowering (instruction selection) from Cranelift IR
//! to machine instructions with virtual registers. This is *almost* the final
//! machine code, except for register allocation.
// TODO: separate the IR-query core of `Lower` from the lowering logic built on
// top of it, e.g. the side-effect/coloring analysis and the scan support.
use crate::entity::SecondaryMap;
use crate::fx::{FxHashMap, FxHashSet};
use crate::inst_predicates::{has_lowering_side_effect, is_constant_64bit};
use crate::ir::{
types::{FFLAGS, IFLAGS},
ArgumentPurpose, Block, Constant, ConstantData, DataFlowGraph, ExternalName, Function,
GlobalValue, GlobalValueData, Immediate, Inst, InstructionData, MemFlags, Opcode, RelSourceLoc,
Type, Value, ValueDef, ValueLabelAssignments, ValueLabelStart,
};
use crate::machinst::{
non_writable_value_regs, writable_value_regs, BlockIndex, BlockLoweringOrder, Callee,
LoweredBlock, MachLabel, Reg, SigSet, VCode, VCodeBuilder, VCodeConstant, VCodeConstantData,
VCodeConstants, VCodeInst, ValueRegs, Writable,
};
use crate::{trace, CodegenError, CodegenResult};
use alloc::vec::Vec;
use regalloc2::VReg;
use smallvec::{smallvec, SmallVec};
use std::fmt::Debug;
use super::{first_user_vreg_index, VCodeBuildDirection};
/// An "instruction color" partitions CLIF instructions by side-effecting ops.
/// All instructions with the same "color" are guaranteed not to be separated by
/// any side-effecting op (for this purpose, loads are also considered
/// side-effecting, to avoid subtle questions w.r.t. the memory model), and
/// furthermore, it is guaranteed that for any two instructions A and B such
/// that color(A) == color(B), either A dominates B and B postdominates A, or
/// vice-versa. (For now, in practice, only ops in the same basic block can ever
/// have the same color, trivially providing the second condition.) Intuitively,
/// this means that the ops of the same color must always execute "together", as
/// part of one atomic contiguous section of the dynamic execution trace, and
/// they can be freely permuted (modulo true dataflow dependencies) without
/// affecting program behavior.
#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
struct InstColor(u32);
impl InstColor {
fn new(n: u32) -> InstColor {
InstColor(n)
}
/// Get an arbitrary index representing this color. The index is unique
/// *within a single function compilation*, but indices may be reused across
/// functions.
pub fn get(self) -> u32 {
self.0
}
}
/// A representation of all of the ways in which a value is available, aside
/// from as a direct register.
///
/// - An instruction, if it would be allowed to occur at the current location
/// instead (see [Lower::get_input_as_source_or_const()] for more details).
///
/// - A constant, if the value is known to be a constant.
#[derive(Clone, Copy, Debug)]
pub struct NonRegInput {
/// An instruction produces this value (as the given output), and its
/// computation (and side-effect if applicable) could occur at the
/// current instruction's location instead.
///
/// If this instruction's operation is merged into the current instruction,
/// the backend must call [Lower::sink_inst()].
///
/// This enum indicates whether this use of the source instruction
/// is unique or not.
pub inst: InputSourceInst,
/// The value is a known constant.
pub constant: Option<u64>,
}
/// When examining an input to an instruction, this enum provides one
/// of several options: there is or isn't a single instruction (that
/// we can see and merge with) that produces that input's value, and
/// we are or aren't the single user of that instruction.
#[derive(Clone, Copy, Debug)]
pub enum InputSourceInst {
/// The input in question is the single, unique use of the given
/// instruction and output index, and it can be sunk to the
/// location of this input.
UniqueUse(Inst, usize),
/// The input in question is one of multiple uses of the given
/// instruction. It can still be sunk to the location of this
/// input.
Use(Inst, usize),
/// We cannot determine which instruction produced the input, or
/// it is one of several instructions (e.g., due to a control-flow
/// merge and blockparam), or the source instruction cannot be
/// allowed to sink to the current location due to side-effects.
None,
}
impl InputSourceInst {
/// Get the instruction and output index for this source, whether
/// we are its single or one of many users.
pub fn as_inst(&self) -> Option<(Inst, usize)> {
match self {
&InputSourceInst::UniqueUse(inst, output_idx)
| &InputSourceInst::Use(inst, output_idx) => Some((inst, output_idx)),
&InputSourceInst::None => None,
}
}
}
/// A machine backend.
pub trait LowerBackend {
/// The machine instruction type.
type MInst: VCodeInst;
/// Lower a single instruction.
///
/// For a branch, this function should not generate the actual branch
/// instruction. However, it must force any values it needs for the branch
/// edge (block-param actuals) into registers, because the actual branch
/// generation (`lower_branch_group()`) happens *after* any possible merged
/// out-edge.
fn lower(&self, ctx: &mut Lower<Self::MInst>, inst: Inst) -> CodegenResult<()>;
/// Lower a block-terminating group of branches (which together can be seen
/// as one N-way branch), given a vcode MachLabel for each target.
fn lower_branch_group(
&self,
ctx: &mut Lower<Self::MInst>,
insts: &[Inst],
targets: &[MachLabel],
) -> CodegenResult<()>;
/// A bit of a hack: give a fixed register that always holds the result of a
/// `get_pinned_reg` instruction, if known. This allows elision of moves
/// into the associated vreg, instead using the real reg directly.
fn maybe_pinned_reg(&self) -> Option<Reg> {
None
}
}
/// Machine-independent lowering driver / machine-instruction container. Maintains a correspondence
/// from original Inst to MachInsts.
pub struct Lower<'func, I: VCodeInst> {
/// The function to lower.
f: &'func Function,
/// Lowered machine instructions.
vcode: VCodeBuilder<I>,
/// Mapping from `Value` (SSA value in IR) to virtual register.
value_regs: SecondaryMap<Value, ValueRegs<Reg>>,
/// Return-value vregs.
retval_regs: Vec<ValueRegs<Reg>>,
/// Instruction colors at block exits. From this map, we can recover all
/// instruction colors by scanning backward from the block end and
/// decrementing on any color-changing (side-effecting) instruction.
block_end_colors: SecondaryMap<Block, InstColor>,
/// Instruction colors at side-effecting ops. This is the *entry* color,
/// i.e., the version of global state that exists before an instruction
/// executes. For each side-effecting instruction, the *exit* color is its
/// entry color plus one.
side_effect_inst_entry_colors: FxHashMap<Inst, InstColor>,
/// Current color as we scan during lowering. While we are lowering an
/// instruction, this is equal to the color *at entry to* the instruction.
cur_scan_entry_color: Option<InstColor>,
/// Current instruction as we scan during lowering.
cur_inst: Option<Inst>,
/// Instruction constant values, if known.
inst_constants: FxHashMap<Inst, u64>,
/// Use-counts per SSA value, as counted in the input IR. These
/// are "coarsened", in the abstract-interpretation sense: we only
/// care about "0, 1, many" states, as this is all we need and
/// this lets us do an efficient fixpoint analysis.
///
/// See doc comment on `ValueUseState` for more details.
value_ir_uses: SecondaryMap<Value, ValueUseState>,
/// Actual uses of each SSA value so far, incremented while lowering.
value_lowered_uses: SecondaryMap<Value, u32>,
/// Effectful instructions that have been sunk; they are not codegen'd at
/// their original locations.
inst_sunk: FxHashSet<Inst>,
/// Next virtual register number to allocate.
next_vreg: usize,
/// Instructions collected for the CLIF inst in progress, in forward order.
ir_insts: Vec<I>,
/// The register to use for GetPinnedReg, if any, on this architecture.
pinned_reg: Option<Reg>,
}
/// How is a value used in the IR?
///
/// This can be seen as a coarsening of an integer count. We only need
/// distinct states for zero, one, or many.
///
/// This analysis deserves further explanation. The basic idea is that
/// we want to allow instruction lowering to know whether a value that
/// an instruction references is *only* referenced by that one use, or
/// by others as well. This is necessary to know when we might want to
/// move a side-effect: we cannot, for example, duplicate a load, so
/// we cannot let instruction lowering match a load as part of a
/// subpattern and potentially incorporate it.
///
/// Note that a lot of subtlety comes into play once we have
/// *indirect* uses. The classical example of this in our development
/// history was the x86 compare instruction, which is incorporated
/// into flags users (e.g. `selectif`, `trueif`, branches) and can
/// subsequently incorporate loads, or at least we would like it
/// to. However, danger awaits: the compare might be the only user of
/// a load, so we might think we can just move the load (and nothing
/// is duplicated -- success!), except that the compare itself is
/// codegen'd in multiple places, where it is incorporated as a
/// subpattern itself.
///
/// So we really want a notion of "unique all the way along the
/// matching path". Rust's `&T` and `&mut T` offer a partial analogy
/// to the semantics that we want here: we want to know when we've
/// matched a unique use of an instruction, and that instruction's
/// unique use of another instruction, etc, just as `&mut T` can only
/// be obtained by going through a chain of `&mut T`. If one has a
/// `&T` to a struct containing `&mut T` (one of several uses of an
/// instruction that itself has a unique use of an instruction), one
/// can only get a `&T` (one can only get a "I am one of several users
/// of this instruction" result).
///
/// We could track these paths, either dynamically as one "looks up the operand
/// tree" or precomputed. But the former requires state and means that the
/// `Lower` API carries that state implicitly, which we'd like to avoid if we
/// can. And the latter implies O(n^2) storage: it is an all-pairs property (is
/// inst `i` unique from the point of view of `j`).
///
/// To make matters even a little more complex still, a value that is
/// not uniquely used when initially viewing the IR can *become*
/// uniquely used, at least as a root allowing further unique uses of
/// e.g. loads to merge, if no other instruction actually merges
/// it. To be more concrete, if we have `v1 := load; v2 := op v1; v3
/// := op v2; v4 := op v2` then `v2` is non-uniquely used, so from the
/// point of view of lowering `v4` or `v3`, we cannot merge the load
/// at `v1`. But if we decide just to use the assigned register for
/// `v2` at both `v3` and `v4`, then we only actually codegen `v2`
/// once, so it *is* a unique root at that point and we *can* merge
/// the load.
///
/// Note also that the color scheme is not sufficient to give us this
/// information, for various reasons: reasoning about side-effects
/// does not tell us about potential duplication of uses through pure
/// ops.
///
/// To keep things simple and avoid error-prone lowering APIs that
/// would extract more information about whether instruction merging
/// happens or not (we don't have that info now, and it would be
/// difficult to refactor to get it and make that refactor 100%
/// correct), we give up on the above "can become unique if not
/// actually merged" point. Instead, we compute a
/// transitive-uniqueness. That is what this enum represents.
///
/// To define it plainly: a value is `Unused` if no references exist
/// to it; `Once` if only one other op refers to it, *and* that other
/// op is `Unused` or `Once`; and `Multiple` otherwise. In other
/// words, `Multiple` is contagious: even if an op's result value is
/// directly used only once in the CLIF, that value is `Multiple` if
/// the op that uses it is itself used multiple times (hence could be
/// codegen'd multiple times). In brief, this analysis tells us
/// whether, if every op merged all of its operand tree, a given op
/// could be codegen'd in more than one place.
///
/// To compute this, we first consider direct uses. At this point
/// `Unused` answers are correct, `Multiple` answers are correct, but
/// some `Once`s may change to `Multiple`s. Then we propagate
/// `Multiple` transitively using a workqueue/fixpoint algorithm.
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
enum ValueUseState {
/// Not used at all.
Unused,
/// Used exactly once.
Once,
/// Used multiple times.
Multiple,
}
impl ValueUseState {
/// Add one use.
fn inc(&mut self) {
let new = match self {
Self::Unused => Self::Once,
Self::Once | Self::Multiple => Self::Multiple,
};
*self = new;
}
}
/// Notion of "relocation distance". This gives an estimate of how far away a symbol will be from a
/// reference.
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub enum RelocDistance {
/// Target of relocation is "nearby". The threshold for this is fuzzy but should be interpreted
/// as approximately "within the compiled output of one module"; e.g., within AArch64's +/-
/// 128MB offset. If unsure, use `Far` instead.
Near,
/// Target of relocation could be anywhere in the address space.
Far,
}
fn alloc_vregs<I: VCodeInst>(
ty: Type,
next_vreg: &mut usize,
vcode: &mut VCodeBuilder<I>,
) -> CodegenResult<ValueRegs<Reg>> {
let v = *next_vreg;
let (regclasses, tys) = I::rc_for_type(ty)?;
*next_vreg += regclasses.len();
if *next_vreg >= VReg::MAX {
return Err(CodegenError::CodeTooLarge);
}
let regs: ValueRegs<Reg> = match regclasses {
&[rc0] => ValueRegs::one(VReg::new(v, rc0).into()),
&[rc0, rc1] => ValueRegs::two(VReg::new(v, rc0).into(), VReg::new(v + 1, rc1).into()),
// We can extend this if/when we support 32-bit targets; e.g.,
// an i128 on a 32-bit machine will need up to four machine regs
// for a `Value`.
_ => panic!("Value must reside in 1 or 2 registers"),
};
for (®_ty, ®) in tys.iter().zip(regs.regs().iter()) {
vcode.set_vreg_type(reg.to_virtual_reg().unwrap(), reg_ty);
}
Ok(regs)
}
impl<'func, I: VCodeInst> Lower<'func, I> {
/// Prepare a new lowering context for the given IR function.
pub fn new(
f: &'func Function,
abi: Callee<I::ABIMachineSpec>,
emit_info: I::Info,
block_order: BlockLoweringOrder,
sigs: SigSet,
) -> CodegenResult<Lower<'func, I>> {
let constants = VCodeConstants::with_capacity(f.dfg.constants.len());
let mut vcode = VCodeBuilder::new(
sigs,
abi,
emit_info,
block_order,
constants,
VCodeBuildDirection::Backward,
);
let mut next_vreg: usize = first_user_vreg_index();
let mut value_regs = SecondaryMap::with_default(ValueRegs::invalid());
// Assign a vreg to each block param and each inst result.
for bb in f.layout.blocks() {
for ¶m in f.dfg.block_params(bb) {
let ty = f.dfg.value_type(param);
if value_regs[param].is_invalid() {
let regs = alloc_vregs(ty, &mut next_vreg, &mut vcode)?;
value_regs[param] = regs;
trace!("bb {} param {}: regs {:?}", bb, param, regs);
}
}
for inst in f.layout.block_insts(bb) {
for &result in f.dfg.inst_results(inst) {
let ty = f.dfg.value_type(result);
if value_regs[result].is_invalid() {
let regs = alloc_vregs(ty, &mut next_vreg, &mut vcode)?;
value_regs[result] = regs;
trace!(
"bb {} inst {} ({:?}): result {} regs {:?}",
bb,
inst,
f.dfg[inst],
result,
regs,
);
}
}
}
}
// Assign vreg(s) to each return value.
let mut retval_regs = vec![];
for ret in &vcode.abi().signature().returns.clone() {
let regs = alloc_vregs(ret.value_type, &mut next_vreg, &mut vcode)?;
retval_regs.push(regs);
trace!("retval gets regs {:?}", regs);
}
// Compute instruction colors, find constant instructions, and find instructions with
// side-effects, in one combined pass.
let mut cur_color = 0;
let mut block_end_colors = SecondaryMap::with_default(InstColor::new(0));
let mut side_effect_inst_entry_colors = FxHashMap::default();
let mut inst_constants = FxHashMap::default();
for bb in f.layout.blocks() {
cur_color += 1;
for inst in f.layout.block_insts(bb) {
let side_effect = has_lowering_side_effect(f, inst);
trace!("bb {} inst {} has color {}", bb, inst, cur_color);
if side_effect {
side_effect_inst_entry_colors.insert(inst, InstColor::new(cur_color));
trace!(" -> side-effecting; incrementing color for next inst");
cur_color += 1;
}
// Determine if this is a constant; if so, add to the table.
if let Some(c) = is_constant_64bit(f, inst) {
trace!(" -> constant: {}", c);
inst_constants.insert(inst, c);
}
}
block_end_colors[bb] = InstColor::new(cur_color);
}
let value_ir_uses = Self::compute_use_states(f);
Ok(Lower {
f,
vcode,
value_regs,
retval_regs,
block_end_colors,
side_effect_inst_entry_colors,
inst_constants,
next_vreg,
value_ir_uses,
value_lowered_uses: SecondaryMap::default(),
inst_sunk: FxHashSet::default(),
cur_scan_entry_color: None,
cur_inst: None,
ir_insts: vec![],
pinned_reg: None,
})
}
pub fn sigs(&self) -> &SigSet {
self.vcode.sigs()
}
pub fn sigs_mut(&mut self) -> &mut SigSet {
self.vcode.sigs_mut()
}
/// Pre-analysis: compute `value_ir_uses`. See comment on
/// `ValueUseState` for a description of what this analysis
/// computes.
fn compute_use_states<'a>(f: &'a Function) -> SecondaryMap<Value, ValueUseState> {
// We perform the analysis without recursion, so we don't
// overflow the stack on long chains of ops in the input.
//
// This is sort of a hybrid of a "shallow use-count" pass and
// a DFS. We iterate over all instructions and mark their args
// as used. However when we increment a use-count to
// "Multiple" we push its args onto the stack and do a DFS,
// immediately marking the whole dependency tree as
// Multiple. Doing both (shallow use-counting over all insts,
// and deep Multiple propagation) lets us trim both
// traversals, stopping recursion when a node is already at
// the appropriate state.
//
// In particular, note that the *coarsening* into {Unused,
// Once, Multiple} is part of what makes this pass more
// efficient than a full indirect-use-counting pass.
let mut value_ir_uses: SecondaryMap<Value, ValueUseState> =
SecondaryMap::with_default(ValueUseState::Unused);
// Stack of iterators over Values as we do DFS to mark
// Multiple-state subtrees.
type StackVec<'a> = SmallVec<[std::slice::Iter<'a, Value>; 16]>;
let mut stack: StackVec = smallvec![];
// Push args for a given inst onto the DFS stack.
let push_args_on_stack = |stack: &mut StackVec<'a>, value| {
trace!(" -> pushing args for {} onto stack", value);
if let ValueDef::Result(src_inst, _) = f.dfg.value_def(value) {
stack.push(f.dfg.inst_args(src_inst).iter());
}
};
// Do a DFS through `value_ir_uses` to mark a subtree as
// Multiple.
let mark_all_uses_as_multiple =
|value_ir_uses: &mut SecondaryMap<Value, ValueUseState>, stack: &mut StackVec<'a>| {
while let Some(iter) = stack.last_mut() {
if let Some(&value) = iter.next() {
let value = f.dfg.resolve_aliases(value);
trace!(" -> DFS reaches {}", value);
if value_ir_uses[value] == ValueUseState::Multiple {
// Truncate DFS here: no need to go further,
// as whole subtree must already be Multiple.
#[cfg(debug_assertions)]
{
// With debug asserts, check one level
// of that invariant at least.
if let ValueDef::Result(src_inst, _) = f.dfg.value_def(value) {
debug_assert!(f.dfg.inst_args(src_inst).iter().all(|&arg| {
let arg = f.dfg.resolve_aliases(arg);
value_ir_uses[arg] == ValueUseState::Multiple
}));
}
}
continue;
}
value_ir_uses[value] = ValueUseState::Multiple;
trace!(" -> became Multiple");
push_args_on_stack(stack, value);
} else {
// Empty iterator, discard.
stack.pop();
}
}
};
for inst in f
.layout
.blocks()
.flat_map(|block| f.layout.block_insts(block))
{
// If this inst produces multiple values, we must mark all
// of its args as Multiple, because otherwise two uses
// could come in as Once on our two different results.
let force_multiple = f.dfg.inst_results(inst).len() > 1;
// Iterate over all args of all instructions, noting an
// additional use on each operand. If an operand becomes Multiple,
for &arg in f.dfg.inst_args(inst) {
let arg = f.dfg.resolve_aliases(arg);
let old = value_ir_uses[arg];
if force_multiple {
trace!(
"forcing arg {} to Multiple because of multiple results of user inst",
arg
);
value_ir_uses[arg] = ValueUseState::Multiple;
} else {
value_ir_uses[arg].inc();
}
let new = value_ir_uses[arg];
trace!("arg {} used, old state {:?}, new {:?}", arg, old, new,);
// On transition to Multiple, do DFS.
if old != ValueUseState::Multiple && new == ValueUseState::Multiple {
push_args_on_stack(&mut stack, arg);
mark_all_uses_as_multiple(&mut value_ir_uses, &mut stack);
}
}
}
value_ir_uses
}
fn gen_arg_setup(&mut self) {
if let Some(entry_bb) = self.f.layout.entry_block() {
trace!(
"gen_arg_setup: entry BB {} args are:\n{:?}",
entry_bb,
self.f.dfg.block_params(entry_bb)
);
// Make the vmctx available in debuginfo.
if let Some(vmctx_val) = self.f.special_param(ArgumentPurpose::VMContext) {
self.emit_value_label_marks_for_value(vmctx_val);
}
for (i, param) in self.f.dfg.block_params(entry_bb).iter().enumerate() {
if !self.vcode.abi().arg_is_needed_in_body(i) {
continue;
}
let regs = writable_value_regs(self.value_regs[*param]);
for insn in self
.vcode
.abi()
.gen_copy_arg_to_regs(self.sigs(), i, regs)
.into_iter()
{
self.emit(insn);
}
if self.abi().signature().params[i].purpose == ArgumentPurpose::StructReturn {
assert!(regs.len() == 1);
let ty = self.abi().signature().params[i].value_type;
// The ABI implementation must have ensured that a StructReturn
// arg is present in the return values.
let struct_ret_idx = self
.abi()
.signature()
.returns
.iter()
.position(|ret| ret.purpose == ArgumentPurpose::StructReturn)
.expect("StructReturn return value not present!");
self.emit(I::gen_move(
Writable::from_reg(self.retval_regs[struct_ret_idx].regs()[0]),
regs.regs()[0].to_reg(),
ty,
));
}
}
if let Some(insn) = self.vcode.abi().gen_retval_area_setup(self.sigs()) {
self.emit(insn);
}
}
}
fn gen_retval_setup(&mut self) {
let retval_regs = self.retval_regs.clone();
for (i, regs) in retval_regs.into_iter().enumerate() {
let regs = writable_value_regs(regs);
for insn in self
.vcode
.abi()
.gen_copy_regs_to_retval(self.sigs(), i, regs)
.into_iter()
{
self.emit(insn);
}
}
let inst = self.vcode.abi().gen_ret(self.sigs());
self.emit(inst);
// Hack: generate a virtual instruction that uses vmctx in
// order to keep it alive for the duration of the function,
// for the benefit of debuginfo.
if self.f.dfg.values_labels.is_some() {
if let Some(vmctx_val) = self.f.special_param(ArgumentPurpose::VMContext) {
let vmctx_reg = self.value_regs[vmctx_val].only_reg().unwrap();
self.emit(I::gen_dummy_use(vmctx_reg));
}
}
}
/// Has this instruction been sunk to a use-site (i.e., away from its
/// original location)?
fn is_inst_sunk(&self, inst: Inst) -> bool {
self.inst_sunk.contains(&inst)
}
// Is any result of this instruction needed?
fn is_any_inst_result_needed(&self, inst: Inst) -> bool {
self.f
.dfg
.inst_results(inst)
.iter()
.any(|&result| self.value_lowered_uses[result] > 0)
}
fn lower_clif_block<B: LowerBackend<MInst = I>>(
&mut self,
backend: &B,
block: Block,
) -> CodegenResult<()> {
self.cur_scan_entry_color = Some(self.block_end_colors[block]);
// Lowering loop:
// - For each non-branch instruction, in reverse order:
// - If side-effecting (load, store, branch/call/return,
// possible trap), or if used outside of this block, or if
// demanded by another inst, then lower.
//
// That's it! Lowering of side-effecting ops will force all *needed*
// (live) non-side-effecting ops to be lowered at the right places, via
// the `use_input_reg()` callback on the `Lower` (that's us). That's
// because `use_input_reg()` sets the eager/demand bit for any insts
// whose result registers are used.
//
// We set the VCodeBuilder to "backward" mode, so we emit
// blocks in reverse order wrt the BlockIndex sequence, and
// emit instructions in reverse order within blocks. Because
// the machine backend calls `ctx.emit()` in forward order, we
// collect per-IR-inst lowered instructions in `ir_insts`,
// then reverse these and append to the VCode at the end of
// each IR instruction.
for inst in self.f.layout.block_insts(block).rev() {
let data = &self.f.dfg[inst];
let has_side_effect = has_lowering_side_effect(self.f, inst);
// If inst has been sunk to another location, skip it.
if self.is_inst_sunk(inst) {
continue;
}
// Are any outputs used at least once?
let value_needed = self.is_any_inst_result_needed(inst);
trace!(
"lower_clif_block: block {} inst {} ({:?}) is_branch {} side_effect {} value_needed {}",
block,
inst,
data,
data.opcode().is_branch(),
has_side_effect,
value_needed,
);
// Update scan state to color prior to this inst (as we are scanning
// backward).
self.cur_inst = Some(inst);
if has_side_effect {
let entry_color = *self
.side_effect_inst_entry_colors
.get(&inst)
.expect("every side-effecting inst should have a color-map entry");
self.cur_scan_entry_color = Some(entry_color);
}
// Skip lowering branches; these are handled separately
// (see `lower_clif_branches()` below).
if self.f.dfg[inst].opcode().is_branch() {
continue;
}
// Normal instruction: codegen if the instruction is side-effecting
// or any of its outputs its used.
if has_side_effect || value_needed {
trace!("lowering: inst {}: {:?}", inst, self.f.dfg[inst]);
backend.lower(self, inst)?;
}
if data.opcode().is_return() {
// Return: handle specially, using ABI-appropriate sequence.
self.gen_retval_setup();
}
let loc = self.srcloc(inst);
self.finish_ir_inst(loc);
// Emit value-label markers if needed, to later recover
// debug mappings. This must happen before the instruction
// (so after we emit, in bottom-to-top pass).
self.emit_value_label_markers_for_inst(inst);
}
// Add the block params to this block.
self.add_block_params(block)?;
self.cur_scan_entry_color = None;
Ok(())
}
fn add_block_params(&mut self, block: Block) -> CodegenResult<()> {
for ¶m in self.f.dfg.block_params(block) {
let ty = self.f.dfg.value_type(param);
let (_reg_rcs, reg_tys) = I::rc_for_type(ty)?;
debug_assert_eq!(reg_tys.len(), self.value_regs[param].len());
for (®, &rty) in self.value_regs[param].regs().iter().zip(reg_tys.iter()) {
self.vcode
.add_block_param(reg.to_virtual_reg().unwrap(), rty);
}
}
Ok(())
}
fn get_value_labels<'a>(&'a self, val: Value, depth: usize) -> Option<&'a [ValueLabelStart]> {
if let Some(ref values_labels) = self.f.dfg.values_labels {
trace!(
"get_value_labels: val {} -> {} -> {:?}",
val,
self.f.dfg.resolve_aliases(val),
values_labels.get(&self.f.dfg.resolve_aliases(val))
);
let val = self.f.dfg.resolve_aliases(val);
match values_labels.get(&val) {
Some(&ValueLabelAssignments::Starts(ref list)) => Some(&list[..]),
Some(&ValueLabelAssignments::Alias { value, .. }) if depth < 10 => {
self.get_value_labels(value, depth + 1)
}
_ => None,
}
} else {
None
}
}
fn emit_value_label_marks_for_value(&mut self, val: Value) {
let regs = self.value_regs[val];
if regs.len() > 1 {
return;
}
let reg = regs.only_reg().unwrap();
if let Some(label_starts) = self.get_value_labels(val, 0) {
let labels = label_starts
.iter()
.map(|&ValueLabelStart { label, .. }| label)
.collect::<FxHashSet<_>>();
for label in labels {
trace!(
"value labeling: defines val {:?} -> reg {:?} -> label {:?}",
val,
reg,
label,
);
self.vcode.add_value_label(reg, label);
}
}
}
fn emit_value_label_markers_for_inst(&mut self, inst: Inst) {
if self.f.dfg.values_labels.is_none() {
return;
}
trace!(
"value labeling: srcloc {}: inst {}",
self.srcloc(inst),
inst
);
for &val in self.f.dfg.inst_results(inst) {
self.emit_value_label_marks_for_value(val);
}
}
fn emit_value_label_markers_for_block_args(&mut self, block: Block) {
if self.f.dfg.values_labels.is_none() {
return;
}
trace!("value labeling: block {}", block);
for &arg in self.f.dfg.block_params(block) {
self.emit_value_label_marks_for_value(arg);
}
self.finish_ir_inst(Default::default());
}
fn finish_ir_inst(&mut self, loc: RelSourceLoc) {
self.vcode.set_srcloc(loc);
// The VCodeBuilder builds in reverse order (and reverses at
// the end), but `ir_insts` is in forward order, so reverse
// it.
for inst in self.ir_insts.drain(..).rev() {
self.vcode.push(inst);
}
}
fn finish_bb(&mut self) {
self.vcode.end_bb();
}
fn lower_clif_branches<B: LowerBackend<MInst = I>>(
&mut self,
backend: &B,
// Lowered block index:
bindex: BlockIndex,
// Original CLIF block:
block: Block,
branches: &SmallVec<[Inst; 2]>,
targets: &SmallVec<[MachLabel; 2]>,
) -> CodegenResult<()> {
trace!(
"lower_clif_branches: block {} branches {:?} targets {:?}",
block,
branches,
targets,
);
// When considering code-motion opportunities, consider the current
// program point to be the first branch.
self.cur_inst = Some(branches[0]);
backend.lower_branch_group(self, branches, targets)?;
let loc = self.srcloc(branches[0]);
self.finish_ir_inst(loc);
// Add block param outputs for current block.
self.lower_branch_blockparam_args(bindex);
Ok(())
}
fn lower_branch_blockparam_args(&mut self, block: BlockIndex) {
for succ_idx in 0..self.vcode.block_order().succ_indices(block).len() {
// Avoid immutable borrow by explicitly indexing.
let (inst, succ) = self.vcode.block_order().succ_indices(block)[succ_idx];
// Get branch args and convert to Regs.
let branch_args = self.f.dfg.inst_variable_args(inst);
let mut branch_arg_vregs: SmallVec<[Reg; 16]> = smallvec![];
for &arg in branch_args {
let arg = self.f.dfg.resolve_aliases(arg);
let regs = self.put_value_in_regs(arg);
for &vreg in regs.regs() {
let vreg = self.vcode.resolve_vreg_alias(vreg.into());
branch_arg_vregs.push(vreg.into());
}
}
self.vcode.add_succ(succ, &branch_arg_vregs[..]);
}
self.finish_ir_inst(Default::default());
}
fn collect_branches_and_targets(
&self,
bindex: BlockIndex,
_bb: Block,
branches: &mut SmallVec<[Inst; 2]>,
targets: &mut SmallVec<[MachLabel; 2]>,
) {
branches.clear();
targets.clear();
let mut last_inst = None;
for &(inst, succ) in self.vcode.block_order().succ_indices(bindex) {
// Avoid duplicates: this ensures a br_table is only inserted once.
if last_inst != Some(inst) {
branches.push(inst);
} else {
debug_assert!(self.f.dfg[inst].opcode() == Opcode::BrTable);
debug_assert!(branches.len() == 1);
}
last_inst = Some(inst);
targets.push(MachLabel::from_block(succ));
}
}
/// Lower the function.
pub fn lower<B: LowerBackend<MInst = I>>(mut self, backend: &B) -> CodegenResult<VCode<I>> {
trace!("about to lower function: {:?}", self.f);
// Initialize the ABI object, giving it temps if requested.
let temps = self
.vcode
.abi()
.temps_needed(self.sigs())
.into_iter()
.map(|temp_ty| self.alloc_tmp(temp_ty).only_reg().unwrap())
.collect::<Vec<_>>();
self.vcode.init_abi(temps);
// Get the pinned reg here (we only parameterize this function on `B`,
// not the whole `Lower` impl).
self.pinned_reg = backend.maybe_pinned_reg();
self.vcode.set_entry(BlockIndex::new(0));
// Reused vectors for branch lowering.
let mut branches: SmallVec<[Inst; 2]> = SmallVec::new();
let mut targets: SmallVec<[MachLabel; 2]> = SmallVec::new();
// get a copy of the lowered order; we hold this separately because we
// need a mut ref to the vcode to mutate it below.
let lowered_order: SmallVec<[LoweredBlock; 64]> = self
.vcode
.block_order()
.lowered_order()
.iter()
.cloned()
.collect();
// Main lowering loop over lowered blocks.
for (bindex, lb) in lowered_order.iter().enumerate().rev() {
let bindex = BlockIndex::new(bindex);
// Lower the block body in reverse order (see comment in
// `lower_clif_block()` for rationale).
// End branches.
if let Some(bb) = lb.orig_block() {
self.collect_branches_and_targets(bindex, bb, &mut branches, &mut targets);
if branches.len() > 0 {
self.lower_clif_branches(backend, bindex, bb, &branches, &targets)?;
self.finish_ir_inst(self.srcloc(branches[0]));
}
} else {
// If no orig block, this must be a pure edge block;
// get the successor and emit a jump. Add block params
// according to the one successor, and pass them
// through; note that the successor must have an
// original block.
let (_, succ) = self.vcode.block_order().succ_indices(bindex)[0];
let orig_succ = lowered_order[succ.index()];
let orig_succ = orig_succ
.orig_block()
.expect("Edge block succ must be body block");
let mut branch_arg_vregs: SmallVec<[Reg; 16]> = smallvec![];
for ty in self.f.dfg.block_param_types(orig_succ) {
let regs = alloc_vregs(ty, &mut self.next_vreg, &mut self.vcode)?;
for ® in regs.regs() {
branch_arg_vregs.push(reg);
let vreg = reg.to_virtual_reg().unwrap();
self.vcode
.add_block_param(vreg, self.vcode.get_vreg_type(vreg));
}
}
self.vcode.add_succ(succ, &branch_arg_vregs[..]);
self.emit(I::gen_jump(MachLabel::from_block(succ)));
self.finish_ir_inst(Default::default());
}
// Original block body.
if let Some(bb) = lb.orig_block() {
self.lower_clif_block(backend, bb)?;
self.emit_value_label_markers_for_block_args(bb);
}
if bindex.index() == 0 {
// Set up the function with arg vreg inits.
self.gen_arg_setup();
self.finish_ir_inst(Default::default());
}
self.finish_bb();
}
// Now that we've emitted all instructions into the
// VCodeBuilder, let's build the VCode.
let vcode = self.vcode.build();
trace!("built vcode: {:?}", vcode);
Ok(vcode)
}
}
/// Function-level queries.
impl<'func, I: VCodeInst> Lower<'func, I> {
pub fn dfg(&self) -> &DataFlowGraph {
&self.f.dfg
}
/// Get the `Callee`.
pub fn abi(&self) -> &Callee<I::ABIMachineSpec> {
self.vcode.abi()
}
/// Get the `Callee`.
pub fn abi_mut(&mut self) -> &mut Callee<I::ABIMachineSpec> {
self.vcode.abi_mut()
}
/// Get the (virtual) register that receives the return value. A return
/// instruction should lower into a sequence that fills this register. (Why
/// not allow the backend to specify its own result register for the return?
/// Because there may be multiple return points.)
pub fn retval(&self, idx: usize) -> ValueRegs<Writable<Reg>> {
writable_value_regs(self.retval_regs[idx])
}
}
/// Instruction input/output queries.
impl<'func, I: VCodeInst> Lower<'func, I> {
/// Get the instdata for a given IR instruction.
pub fn data(&self, ir_inst: Inst) -> &InstructionData {
&self.f.dfg[ir_inst]
}
/// Likewise, but starting with a GlobalValue identifier.
pub fn symbol_value_data<'b>(
&'b self,
global_value: GlobalValue,
) -> Option<(&'b ExternalName, RelocDistance, i64)> {
let gvdata = &self.f.global_values[global_value];
match gvdata {
&GlobalValueData::Symbol {
ref name,
ref offset,
..
} => {
let offset = offset.bits();
let dist = gvdata.maybe_reloc_distance().unwrap();
Some((name, dist, offset))
}
_ => None,
}
}
/// Returns the memory flags of a given memory access.
pub fn memflags(&self, ir_inst: Inst) -> Option<MemFlags> {
match &self.f.dfg[ir_inst] {
&InstructionData::AtomicCas { flags, .. } => Some(flags),
&InstructionData::AtomicRmw { flags, .. } => Some(flags),
&InstructionData::Load { flags, .. }
| &InstructionData::LoadNoOffset { flags, .. }
| &InstructionData::Store { flags, .. } => Some(flags),
&InstructionData::StoreNoOffset { flags, .. } => Some(flags),
_ => None,
}
}
/// Get the source location for a given instruction.
pub fn srcloc(&self, ir_inst: Inst) -> RelSourceLoc {
self.f.rel_srclocs()[ir_inst]
}
/// Get the number of inputs to the given IR instruction.
pub fn num_inputs(&self, ir_inst: Inst) -> usize {
self.f.dfg.inst_args(ir_inst).len()
}
/// Get the number of outputs to the given IR instruction.
pub fn num_outputs(&self, ir_inst: Inst) -> usize {
self.f.dfg.inst_results(ir_inst).len()
}
/// Get the type for an instruction's input.
pub fn input_ty(&self, ir_inst: Inst, idx: usize) -> Type {
self.value_ty(self.input_as_value(ir_inst, idx))
}
/// Get the type for a value.
pub fn value_ty(&self, val: Value) -> Type {
self.f.dfg.value_type(val)
}
/// Get the type for an instruction's output.
pub fn output_ty(&self, ir_inst: Inst, idx: usize) -> Type {
self.f.dfg.value_type(self.f.dfg.inst_results(ir_inst)[idx])
}
/// Get the value of a constant instruction (`iconst`, etc.) as a 64-bit
/// value, if possible.
pub fn get_constant(&self, ir_inst: Inst) -> Option<u64> {
self.inst_constants.get(&ir_inst).cloned()
}
/// Get the input as one of two options other than a direct register:
///
/// - An instruction, given that it is effect-free or able to sink its
/// effect to the current instruction being lowered, and given it has only
/// one output, and if effect-ful, given that this is the only use;
/// - A constant, if the value is a constant.
///
/// The instruction input may be available in either of these forms. It may
/// be available in neither form, if the conditions are not met; if so, use
/// `put_input_in_regs()` instead to get it in a register.
///
/// If the backend merges the effect of a side-effecting instruction, it
/// must call `sink_inst()`. When this is called, it indicates that the
/// effect has been sunk to the current scan location. The sunk
/// instruction's result(s) must have *no* uses remaining, because it will
/// not be codegen'd (it has been integrated into the current instruction).
pub fn input_as_value(&self, ir_inst: Inst, idx: usize) -> Value {
let val = self.f.dfg.inst_args(ir_inst)[idx];
self.f.dfg.resolve_aliases(val)
}
/// Like `get_input_as_source_or_const` but with a `Value`.
pub fn get_input_as_source_or_const(&self, ir_inst: Inst, idx: usize) -> NonRegInput {
let val = self.input_as_value(ir_inst, idx);
self.get_value_as_source_or_const(val)
}
/// Resolves a particular input of an instruction to the `Value` that it is
/// represented with.
pub fn get_value_as_source_or_const(&self, val: Value) -> NonRegInput {
trace!(
"get_input_for_val: val {} at cur_inst {:?} cur_scan_entry_color {:?}",
val,
self.cur_inst,
self.cur_scan_entry_color,
);
let inst = match self.f.dfg.value_def(val) {
// OK to merge source instruction if (i) we have a source
// instruction, and:
// - It has no side-effects, OR
// - It has a side-effect, has one output value, that one
// output has only one use, directly or indirectly (so
// cannot be duplicated -- see comment on
// `ValueUseState`), and the instruction's color is *one
// less than* the current scan color.
//
// This latter set of conditions is testing whether a
// side-effecting instruction can sink to the current scan
// location; this is possible if the in-color of this inst is
// equal to the out-color of the producing inst, so no other
// side-effecting ops occur between them (which will only be true
// if they are in the same BB, because color increments at each BB
// start).
//
// If it is actually sunk, then in `merge_inst()`, we update the
// scan color so that as we scan over the range past which the
// instruction was sunk, we allow other instructions (that came
// prior to the sunk instruction) to sink.
ValueDef::Result(src_inst, result_idx) => {
let src_side_effect = has_lowering_side_effect(self.f, src_inst);
trace!(" -> src inst {}", src_inst);
trace!(" -> has lowering side effect: {}", src_side_effect);
if !src_side_effect {
// Pure instruction: always possible to
// sink. Let's determine whether we are the only
// user or not.
if self.value_ir_uses[val] == ValueUseState::Once {
InputSourceInst::UniqueUse(src_inst, result_idx)
} else {
InputSourceInst::Use(src_inst, result_idx)
}
} else {
// Side-effect: test whether this is the only use of the
// only result of the instruction, and whether colors allow
// the code-motion.
trace!(
" -> side-effecting op {} for val {}: use state {:?}",
src_inst,
val,
self.value_ir_uses[val]
);
if self.cur_scan_entry_color.is_some()
&& self.value_ir_uses[val] == ValueUseState::Once
&& self.num_outputs(src_inst) == 1
&& self
.side_effect_inst_entry_colors
.get(&src_inst)
.unwrap()
.get()
+ 1
== self.cur_scan_entry_color.unwrap().get()
{
InputSourceInst::UniqueUse(src_inst, 0)
} else {
InputSourceInst::None
}
}
}
_ => InputSourceInst::None,
};
let constant = inst.as_inst().and_then(|(inst, _)| self.get_constant(inst));
NonRegInput { inst, constant }
}
/// Increment the reference count for the Value, ensuring that it gets lowered.
pub fn increment_lowered_uses(&mut self, val: Value) {
self.value_lowered_uses[val] += 1
}
/// Put the `idx`th input into register(s) and return the assigned register.
pub fn put_input_in_regs(&mut self, ir_inst: Inst, idx: usize) -> ValueRegs<Reg> {
let val = self.f.dfg.inst_args(ir_inst)[idx];
self.put_value_in_regs(val)
}
/// Put the given value into register(s) and return the assigned register.
pub fn put_value_in_regs(&mut self, val: Value) -> ValueRegs<Reg> {
let val = self.f.dfg.resolve_aliases(val);
trace!("put_value_in_regs: val {}", val);
// Assert that the value is not `iflags`/`fflags`-typed; these
// cannot be reified into normal registers. TODO(#3249)
// eventually remove the `iflags` type altogether!
let ty = self.f.dfg.value_type(val);
assert!(ty != IFLAGS && ty != FFLAGS);
if let Some(inst) = self.f.dfg.value_def(val).inst() {
assert!(!self.inst_sunk.contains(&inst));
}
// If the value is a constant, then (re)materialize it at each use. This
// lowers register pressure.
if let Some(c) = self
.f
.dfg
.value_def(val)
.inst()
.and_then(|inst| self.get_constant(inst))
{
let regs = self.alloc_tmp(ty);
trace!(" -> regs {:?}", regs);
assert!(regs.is_valid());
let insts = I::gen_constant(regs, c.into(), ty, |ty| {
self.alloc_tmp(ty).only_reg().unwrap()
});
for inst in insts {
self.emit(inst);
}
return non_writable_value_regs(regs);
}
let mut regs = self.value_regs[val];
trace!(" -> regs {:?}", regs);
assert!(regs.is_valid());
self.value_lowered_uses[val] += 1;
// Pinned-reg hack: if backend specifies a fixed pinned register, use it
// directly when we encounter a GetPinnedReg op, rather than lowering
// the actual op, and do not return the source inst to the caller; the
// value comes "out of the ether" and we will not force generation of
// the superfluous move.
if let ValueDef::Result(i, 0) = self.f.dfg.value_def(val) {
if self.f.dfg[i].opcode() == Opcode::GetPinnedReg {
if let Some(pr) = self.pinned_reg {
regs = ValueRegs::one(pr);
}
}
}
regs
}
/// Get the `idx`th output register(s) of the given IR instruction.
///
/// When `backend.lower_inst_to_regs(ctx, inst)` is called, it is expected
/// that the backend will write results to these output register(s). This
/// register will always be "fresh"; it is guaranteed not to overlap with
/// any of the inputs, and can be freely used as a scratch register within
/// the lowered instruction sequence, as long as its final value is the
/// result of the computation.
pub fn get_output(&self, ir_inst: Inst, idx: usize) -> ValueRegs<Writable<Reg>> {
let val = self.f.dfg.inst_results(ir_inst)[idx];
writable_value_regs(self.value_regs[val])
}
}
/// Codegen primitives: allocate temps, emit instructions, set result registers,
/// ask for an input to be gen'd into a register.
impl<'func, I: VCodeInst> Lower<'func, I> {
/// Get a new temp.
pub fn alloc_tmp(&mut self, ty: Type) -> ValueRegs<Writable<Reg>> {
writable_value_regs(alloc_vregs(ty, &mut self.next_vreg, &mut self.vcode).unwrap())
}
/// Emit a machine instruction.
pub fn emit(&mut self, mach_inst: I) {
trace!("emit: {:?}", mach_inst);
self.ir_insts.push(mach_inst);
}
/// Indicate that the side-effect of an instruction has been sunk to the
/// current scan location. This should only be done with the instruction's
/// original results are not used (i.e., `put_input_in_regs` is not invoked
/// for the input produced by the sunk instruction), otherwise the
/// side-effect will occur twice.
pub fn sink_inst(&mut self, ir_inst: Inst) {
assert!(has_lowering_side_effect(self.f, ir_inst));
assert!(self.cur_scan_entry_color.is_some());
for result in self.dfg().inst_results(ir_inst) {
assert!(self.value_lowered_uses[*result] == 0);
}
let sunk_inst_entry_color = self
.side_effect_inst_entry_colors
.get(&ir_inst)
.cloned()
.unwrap();
let sunk_inst_exit_color = InstColor::new(sunk_inst_entry_color.get() + 1);
assert!(sunk_inst_exit_color == self.cur_scan_entry_color.unwrap());
self.cur_scan_entry_color = Some(sunk_inst_entry_color);
self.inst_sunk.insert(ir_inst);
}
/// Retrieve immediate data given a handle.
pub fn get_immediate_data(&self, imm: Immediate) -> &ConstantData {
self.f.dfg.immediates.get(imm).unwrap()
}
/// Retrieve constant data given a handle.
pub fn get_constant_data(&self, constant_handle: Constant) -> &ConstantData {
self.f.dfg.constants.get(constant_handle)
}
/// Indicate that a constant should be emitted.
pub fn use_constant(&mut self, constant: VCodeConstantData) -> VCodeConstant {
self.vcode.constants().insert(constant)
}
/// Cause the value in `reg` to be in a virtual reg, by copying it into a new virtual reg
/// if `reg` is a real reg. `ty` describes the type of the value in `reg`.
pub fn ensure_in_vreg(&mut self, reg: Reg, ty: Type) -> Reg {
if reg.to_virtual_reg().is_some() {
reg
} else {
let new_reg = self.alloc_tmp(ty).only_reg().unwrap();
self.emit(I::gen_move(new_reg, reg, ty));
new_reg.to_reg()
}
}
/// Note that one vreg is to be treated as an alias of another.
pub fn set_vreg_alias(&mut self, from: Reg, to: Reg) {
trace!("set vreg alias: from {:?} to {:?}", from, to);
self.vcode.set_vreg_alias(from, to);
}
}