1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
//! This module implements lowering (instruction selection) from Cranelift IR
//! to machine instructions with virtual registers. This is *almost* the final
//! machine code, except for register allocation.

// TODO: separate the IR-query core of `Lower` from the lowering logic built on
// top of it, e.g. the side-effect/coloring analysis and the scan support.

use crate::entity::SecondaryMap;
use crate::fx::{FxHashMap, FxHashSet};
use crate::inst_predicates::{has_lowering_side_effect, is_constant_64bit};
use crate::ir::{
    types::{FFLAGS, IFLAGS},
    ArgumentPurpose, Block, Constant, ConstantData, DataFlowGraph, ExternalName, Function,
    GlobalValue, GlobalValueData, Immediate, Inst, InstructionData, MemFlags, Opcode, RelSourceLoc,
    Type, Value, ValueDef, ValueLabelAssignments, ValueLabelStart,
};
use crate::machinst::{
    non_writable_value_regs, writable_value_regs, BlockIndex, BlockLoweringOrder, Callee,
    LoweredBlock, MachLabel, Reg, SigSet, VCode, VCodeBuilder, VCodeConstant, VCodeConstantData,
    VCodeConstants, VCodeInst, ValueRegs, Writable,
};
use crate::{trace, CodegenError, CodegenResult};
use alloc::vec::Vec;
use regalloc2::VReg;
use smallvec::{smallvec, SmallVec};
use std::fmt::Debug;

use super::{first_user_vreg_index, VCodeBuildDirection};

/// An "instruction color" partitions CLIF instructions by side-effecting ops.
/// All instructions with the same "color" are guaranteed not to be separated by
/// any side-effecting op (for this purpose, loads are also considered
/// side-effecting, to avoid subtle questions w.r.t. the memory model), and
/// furthermore, it is guaranteed that for any two instructions A and B such
/// that color(A) == color(B), either A dominates B and B postdominates A, or
/// vice-versa. (For now, in practice, only ops in the same basic block can ever
/// have the same color, trivially providing the second condition.) Intuitively,
/// this means that the ops of the same color must always execute "together", as
/// part of one atomic contiguous section of the dynamic execution trace, and
/// they can be freely permuted (modulo true dataflow dependencies) without
/// affecting program behavior.
#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
struct InstColor(u32);
impl InstColor {
    fn new(n: u32) -> InstColor {
        InstColor(n)
    }

    /// Get an arbitrary index representing this color. The index is unique
    /// *within a single function compilation*, but indices may be reused across
    /// functions.
    pub fn get(self) -> u32 {
        self.0
    }
}

/// A representation of all of the ways in which a value is available, aside
/// from as a direct register.
///
/// - An instruction, if it would be allowed to occur at the current location
///   instead (see [Lower::get_input_as_source_or_const()] for more details).
///
/// - A constant, if the value is known to be a constant.
#[derive(Clone, Copy, Debug)]
pub struct NonRegInput {
    /// An instruction produces this value (as the given output), and its
    /// computation (and side-effect if applicable) could occur at the
    /// current instruction's location instead.
    ///
    /// If this instruction's operation is merged into the current instruction,
    /// the backend must call [Lower::sink_inst()].
    ///
    /// This enum indicates whether this use of the source instruction
    /// is unique or not.
    pub inst: InputSourceInst,
    /// The value is a known constant.
    pub constant: Option<u64>,
}

/// When examining an input to an instruction, this enum provides one
/// of several options: there is or isn't a single instruction (that
/// we can see and merge with) that produces that input's value, and
/// we are or aren't the single user of that instruction.
#[derive(Clone, Copy, Debug)]
pub enum InputSourceInst {
    /// The input in question is the single, unique use of the given
    /// instruction and output index, and it can be sunk to the
    /// location of this input.
    UniqueUse(Inst, usize),
    /// The input in question is one of multiple uses of the given
    /// instruction. It can still be sunk to the location of this
    /// input.
    Use(Inst, usize),
    /// We cannot determine which instruction produced the input, or
    /// it is one of several instructions (e.g., due to a control-flow
    /// merge and blockparam), or the source instruction cannot be
    /// allowed to sink to the current location due to side-effects.
    None,
}

impl InputSourceInst {
    /// Get the instruction and output index for this source, whether
    /// we are its single or one of many users.
    pub fn as_inst(&self) -> Option<(Inst, usize)> {
        match self {
            &InputSourceInst::UniqueUse(inst, output_idx)
            | &InputSourceInst::Use(inst, output_idx) => Some((inst, output_idx)),
            &InputSourceInst::None => None,
        }
    }
}

/// A machine backend.
pub trait LowerBackend {
    /// The machine instruction type.
    type MInst: VCodeInst;

    /// Lower a single instruction.
    ///
    /// For a branch, this function should not generate the actual branch
    /// instruction. However, it must force any values it needs for the branch
    /// edge (block-param actuals) into registers, because the actual branch
    /// generation (`lower_branch_group()`) happens *after* any possible merged
    /// out-edge.
    fn lower(&self, ctx: &mut Lower<Self::MInst>, inst: Inst) -> CodegenResult<()>;

    /// Lower a block-terminating group of branches (which together can be seen
    /// as one N-way branch), given a vcode MachLabel for each target.
    fn lower_branch_group(
        &self,
        ctx: &mut Lower<Self::MInst>,
        insts: &[Inst],
        targets: &[MachLabel],
    ) -> CodegenResult<()>;

    /// A bit of a hack: give a fixed register that always holds the result of a
    /// `get_pinned_reg` instruction, if known.  This allows elision of moves
    /// into the associated vreg, instead using the real reg directly.
    fn maybe_pinned_reg(&self) -> Option<Reg> {
        None
    }
}

/// Machine-independent lowering driver / machine-instruction container. Maintains a correspondence
/// from original Inst to MachInsts.
pub struct Lower<'func, I: VCodeInst> {
    /// The function to lower.
    f: &'func Function,

    /// Lowered machine instructions.
    vcode: VCodeBuilder<I>,

    /// Mapping from `Value` (SSA value in IR) to virtual register.
    value_regs: SecondaryMap<Value, ValueRegs<Reg>>,

    /// Return-value vregs.
    retval_regs: Vec<ValueRegs<Reg>>,

    /// Instruction colors at block exits. From this map, we can recover all
    /// instruction colors by scanning backward from the block end and
    /// decrementing on any color-changing (side-effecting) instruction.
    block_end_colors: SecondaryMap<Block, InstColor>,

    /// Instruction colors at side-effecting ops. This is the *entry* color,
    /// i.e., the version of global state that exists before an instruction
    /// executes.  For each side-effecting instruction, the *exit* color is its
    /// entry color plus one.
    side_effect_inst_entry_colors: FxHashMap<Inst, InstColor>,

    /// Current color as we scan during lowering. While we are lowering an
    /// instruction, this is equal to the color *at entry to* the instruction.
    cur_scan_entry_color: Option<InstColor>,

    /// Current instruction as we scan during lowering.
    cur_inst: Option<Inst>,

    /// Instruction constant values, if known.
    inst_constants: FxHashMap<Inst, u64>,

    /// Use-counts per SSA value, as counted in the input IR. These
    /// are "coarsened", in the abstract-interpretation sense: we only
    /// care about "0, 1, many" states, as this is all we need and
    /// this lets us do an efficient fixpoint analysis.
    ///
    /// See doc comment on `ValueUseState` for more details.
    value_ir_uses: SecondaryMap<Value, ValueUseState>,

    /// Actual uses of each SSA value so far, incremented while lowering.
    value_lowered_uses: SecondaryMap<Value, u32>,

    /// Effectful instructions that have been sunk; they are not codegen'd at
    /// their original locations.
    inst_sunk: FxHashSet<Inst>,

    /// Next virtual register number to allocate.
    next_vreg: usize,

    /// Instructions collected for the CLIF inst in progress, in forward order.
    ir_insts: Vec<I>,

    /// The register to use for GetPinnedReg, if any, on this architecture.
    pinned_reg: Option<Reg>,
}

/// How is a value used in the IR?
///
/// This can be seen as a coarsening of an integer count. We only need
/// distinct states for zero, one, or many.
///
/// This analysis deserves further explanation. The basic idea is that
/// we want to allow instruction lowering to know whether a value that
/// an instruction references is *only* referenced by that one use, or
/// by others as well. This is necessary to know when we might want to
/// move a side-effect: we cannot, for example, duplicate a load, so
/// we cannot let instruction lowering match a load as part of a
/// subpattern and potentially incorporate it.
///
/// Note that a lot of subtlety comes into play once we have
/// *indirect* uses. The classical example of this in our development
/// history was the x86 compare instruction, which is incorporated
/// into flags users (e.g. `selectif`, `trueif`, branches) and can
/// subsequently incorporate loads, or at least we would like it
/// to. However, danger awaits: the compare might be the only user of
/// a load, so we might think we can just move the load (and nothing
/// is duplicated -- success!), except that the compare itself is
/// codegen'd in multiple places, where it is incorporated as a
/// subpattern itself.
///
/// So we really want a notion of "unique all the way along the
/// matching path". Rust's `&T` and `&mut T` offer a partial analogy
/// to the semantics that we want here: we want to know when we've
/// matched a unique use of an instruction, and that instruction's
/// unique use of another instruction, etc, just as `&mut T` can only
/// be obtained by going through a chain of `&mut T`. If one has a
/// `&T` to a struct containing `&mut T` (one of several uses of an
/// instruction that itself has a unique use of an instruction), one
/// can only get a `&T` (one can only get a "I am one of several users
/// of this instruction" result).
///
/// We could track these paths, either dynamically as one "looks up the operand
/// tree" or precomputed. But the former requires state and means that the
/// `Lower` API carries that state implicitly, which we'd like to avoid if we
/// can. And the latter implies O(n^2) storage: it is an all-pairs property (is
/// inst `i` unique from the point of view of `j`).
///
/// To make matters even a little more complex still, a value that is
/// not uniquely used when initially viewing the IR can *become*
/// uniquely used, at least as a root allowing further unique uses of
/// e.g. loads to merge, if no other instruction actually merges
/// it. To be more concrete, if we have `v1 := load; v2 := op v1; v3
/// := op v2; v4 := op v2` then `v2` is non-uniquely used, so from the
/// point of view of lowering `v4` or `v3`, we cannot merge the load
/// at `v1`. But if we decide just to use the assigned register for
/// `v2` at both `v3` and `v4`, then we only actually codegen `v2`
/// once, so it *is* a unique root at that point and we *can* merge
/// the load.
///
/// Note also that the color scheme is not sufficient to give us this
/// information, for various reasons: reasoning about side-effects
/// does not tell us about potential duplication of uses through pure
/// ops.
///
/// To keep things simple and avoid error-prone lowering APIs that
/// would extract more information about whether instruction merging
/// happens or not (we don't have that info now, and it would be
/// difficult to refactor to get it and make that refactor 100%
/// correct), we give up on the above "can become unique if not
/// actually merged" point. Instead, we compute a
/// transitive-uniqueness. That is what this enum represents.
///
/// To define it plainly: a value is `Unused` if no references exist
/// to it; `Once` if only one other op refers to it, *and* that other
/// op is `Unused` or `Once`; and `Multiple` otherwise. In other
/// words, `Multiple` is contagious: even if an op's result value is
/// directly used only once in the CLIF, that value is `Multiple` if
/// the op that uses it is itself used multiple times (hence could be
/// codegen'd multiple times). In brief, this analysis tells us
/// whether, if every op merged all of its operand tree, a given op
/// could be codegen'd in more than one place.
///
/// To compute this, we first consider direct uses. At this point
/// `Unused` answers are correct, `Multiple` answers are correct, but
/// some `Once`s may change to `Multiple`s. Then we propagate
/// `Multiple` transitively using a workqueue/fixpoint algorithm.
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
enum ValueUseState {
    /// Not used at all.
    Unused,
    /// Used exactly once.
    Once,
    /// Used multiple times.
    Multiple,
}

impl ValueUseState {
    /// Add one use.
    fn inc(&mut self) {
        let new = match self {
            Self::Unused => Self::Once,
            Self::Once | Self::Multiple => Self::Multiple,
        };
        *self = new;
    }
}

/// Notion of "relocation distance". This gives an estimate of how far away a symbol will be from a
/// reference.
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub enum RelocDistance {
    /// Target of relocation is "nearby". The threshold for this is fuzzy but should be interpreted
    /// as approximately "within the compiled output of one module"; e.g., within AArch64's +/-
    /// 128MB offset. If unsure, use `Far` instead.
    Near,
    /// Target of relocation could be anywhere in the address space.
    Far,
}

fn alloc_vregs<I: VCodeInst>(
    ty: Type,
    next_vreg: &mut usize,
    vcode: &mut VCodeBuilder<I>,
) -> CodegenResult<ValueRegs<Reg>> {
    let v = *next_vreg;
    let (regclasses, tys) = I::rc_for_type(ty)?;
    *next_vreg += regclasses.len();
    if *next_vreg >= VReg::MAX {
        return Err(CodegenError::CodeTooLarge);
    }

    let regs: ValueRegs<Reg> = match regclasses {
        &[rc0] => ValueRegs::one(VReg::new(v, rc0).into()),
        &[rc0, rc1] => ValueRegs::two(VReg::new(v, rc0).into(), VReg::new(v + 1, rc1).into()),
        // We can extend this if/when we support 32-bit targets; e.g.,
        // an i128 on a 32-bit machine will need up to four machine regs
        // for a `Value`.
        _ => panic!("Value must reside in 1 or 2 registers"),
    };
    for (&reg_ty, &reg) in tys.iter().zip(regs.regs().iter()) {
        vcode.set_vreg_type(reg.to_virtual_reg().unwrap(), reg_ty);
    }
    Ok(regs)
}

impl<'func, I: VCodeInst> Lower<'func, I> {
    /// Prepare a new lowering context for the given IR function.
    pub fn new(
        f: &'func Function,
        abi: Callee<I::ABIMachineSpec>,
        emit_info: I::Info,
        block_order: BlockLoweringOrder,
        sigs: SigSet,
    ) -> CodegenResult<Lower<'func, I>> {
        let constants = VCodeConstants::with_capacity(f.dfg.constants.len());
        let mut vcode = VCodeBuilder::new(
            sigs,
            abi,
            emit_info,
            block_order,
            constants,
            VCodeBuildDirection::Backward,
        );

        let mut next_vreg: usize = first_user_vreg_index();

        let mut value_regs = SecondaryMap::with_default(ValueRegs::invalid());

        // Assign a vreg to each block param and each inst result.
        for bb in f.layout.blocks() {
            for &param in f.dfg.block_params(bb) {
                let ty = f.dfg.value_type(param);
                if value_regs[param].is_invalid() {
                    let regs = alloc_vregs(ty, &mut next_vreg, &mut vcode)?;
                    value_regs[param] = regs;
                    trace!("bb {} param {}: regs {:?}", bb, param, regs);
                }
            }
            for inst in f.layout.block_insts(bb) {
                for &result in f.dfg.inst_results(inst) {
                    let ty = f.dfg.value_type(result);
                    if value_regs[result].is_invalid() {
                        let regs = alloc_vregs(ty, &mut next_vreg, &mut vcode)?;
                        value_regs[result] = regs;
                        trace!(
                            "bb {} inst {} ({:?}): result {} regs {:?}",
                            bb,
                            inst,
                            f.dfg[inst],
                            result,
                            regs,
                        );
                    }
                }
            }
        }

        // Assign vreg(s) to each return value.
        let mut retval_regs = vec![];
        for ret in &vcode.abi().signature().returns.clone() {
            let regs = alloc_vregs(ret.value_type, &mut next_vreg, &mut vcode)?;
            retval_regs.push(regs);
            trace!("retval gets regs {:?}", regs);
        }

        // Compute instruction colors, find constant instructions, and find instructions with
        // side-effects, in one combined pass.
        let mut cur_color = 0;
        let mut block_end_colors = SecondaryMap::with_default(InstColor::new(0));
        let mut side_effect_inst_entry_colors = FxHashMap::default();
        let mut inst_constants = FxHashMap::default();
        for bb in f.layout.blocks() {
            cur_color += 1;
            for inst in f.layout.block_insts(bb) {
                let side_effect = has_lowering_side_effect(f, inst);

                trace!("bb {} inst {} has color {}", bb, inst, cur_color);
                if side_effect {
                    side_effect_inst_entry_colors.insert(inst, InstColor::new(cur_color));
                    trace!(" -> side-effecting; incrementing color for next inst");
                    cur_color += 1;
                }

                // Determine if this is a constant; if so, add to the table.
                if let Some(c) = is_constant_64bit(f, inst) {
                    trace!(" -> constant: {}", c);
                    inst_constants.insert(inst, c);
                }
            }

            block_end_colors[bb] = InstColor::new(cur_color);
        }

        let value_ir_uses = Self::compute_use_states(f);

        Ok(Lower {
            f,
            vcode,
            value_regs,
            retval_regs,
            block_end_colors,
            side_effect_inst_entry_colors,
            inst_constants,
            next_vreg,
            value_ir_uses,
            value_lowered_uses: SecondaryMap::default(),
            inst_sunk: FxHashSet::default(),
            cur_scan_entry_color: None,
            cur_inst: None,
            ir_insts: vec![],
            pinned_reg: None,
        })
    }

    pub fn sigs(&self) -> &SigSet {
        self.vcode.sigs()
    }

    pub fn sigs_mut(&mut self) -> &mut SigSet {
        self.vcode.sigs_mut()
    }

    /// Pre-analysis: compute `value_ir_uses`. See comment on
    /// `ValueUseState` for a description of what this analysis
    /// computes.
    fn compute_use_states<'a>(f: &'a Function) -> SecondaryMap<Value, ValueUseState> {
        // We perform the analysis without recursion, so we don't
        // overflow the stack on long chains of ops in the input.
        //
        // This is sort of a hybrid of a "shallow use-count" pass and
        // a DFS. We iterate over all instructions and mark their args
        // as used. However when we increment a use-count to
        // "Multiple" we push its args onto the stack and do a DFS,
        // immediately marking the whole dependency tree as
        // Multiple. Doing both (shallow use-counting over all insts,
        // and deep Multiple propagation) lets us trim both
        // traversals, stopping recursion when a node is already at
        // the appropriate state.
        //
        // In particular, note that the *coarsening* into {Unused,
        // Once, Multiple} is part of what makes this pass more
        // efficient than a full indirect-use-counting pass.

        let mut value_ir_uses: SecondaryMap<Value, ValueUseState> =
            SecondaryMap::with_default(ValueUseState::Unused);

        // Stack of iterators over Values as we do DFS to mark
        // Multiple-state subtrees.
        type StackVec<'a> = SmallVec<[std::slice::Iter<'a, Value>; 16]>;
        let mut stack: StackVec = smallvec![];

        // Push args for a given inst onto the DFS stack.
        let push_args_on_stack = |stack: &mut StackVec<'a>, value| {
            trace!(" -> pushing args for {} onto stack", value);
            if let ValueDef::Result(src_inst, _) = f.dfg.value_def(value) {
                stack.push(f.dfg.inst_args(src_inst).iter());
            }
        };

        // Do a DFS through `value_ir_uses` to mark a subtree as
        // Multiple.
        let mark_all_uses_as_multiple =
            |value_ir_uses: &mut SecondaryMap<Value, ValueUseState>, stack: &mut StackVec<'a>| {
                while let Some(iter) = stack.last_mut() {
                    if let Some(&value) = iter.next() {
                        let value = f.dfg.resolve_aliases(value);
                        trace!(" -> DFS reaches {}", value);
                        if value_ir_uses[value] == ValueUseState::Multiple {
                            // Truncate DFS here: no need to go further,
                            // as whole subtree must already be Multiple.
                            #[cfg(debug_assertions)]
                            {
                                // With debug asserts, check one level
                                // of that invariant at least.
                                if let ValueDef::Result(src_inst, _) = f.dfg.value_def(value) {
                                    debug_assert!(f.dfg.inst_args(src_inst).iter().all(|&arg| {
                                        let arg = f.dfg.resolve_aliases(arg);
                                        value_ir_uses[arg] == ValueUseState::Multiple
                                    }));
                                }
                            }
                            continue;
                        }
                        value_ir_uses[value] = ValueUseState::Multiple;
                        trace!(" -> became Multiple");
                        push_args_on_stack(stack, value);
                    } else {
                        // Empty iterator, discard.
                        stack.pop();
                    }
                }
            };

        for inst in f
            .layout
            .blocks()
            .flat_map(|block| f.layout.block_insts(block))
        {
            // If this inst produces multiple values, we must mark all
            // of its args as Multiple, because otherwise two uses
            // could come in as Once on our two different results.
            let force_multiple = f.dfg.inst_results(inst).len() > 1;

            // Iterate over all args of all instructions, noting an
            // additional use on each operand. If an operand becomes Multiple,
            for &arg in f.dfg.inst_args(inst) {
                let arg = f.dfg.resolve_aliases(arg);
                let old = value_ir_uses[arg];
                if force_multiple {
                    trace!(
                        "forcing arg {} to Multiple because of multiple results of user inst",
                        arg
                    );
                    value_ir_uses[arg] = ValueUseState::Multiple;
                } else {
                    value_ir_uses[arg].inc();
                }
                let new = value_ir_uses[arg];
                trace!("arg {} used, old state {:?}, new {:?}", arg, old, new,);
                // On transition to Multiple, do DFS.
                if old != ValueUseState::Multiple && new == ValueUseState::Multiple {
                    push_args_on_stack(&mut stack, arg);
                    mark_all_uses_as_multiple(&mut value_ir_uses, &mut stack);
                }
            }
        }

        value_ir_uses
    }

    fn gen_arg_setup(&mut self) {
        if let Some(entry_bb) = self.f.layout.entry_block() {
            trace!(
                "gen_arg_setup: entry BB {} args are:\n{:?}",
                entry_bb,
                self.f.dfg.block_params(entry_bb)
            );

            // Make the vmctx available in debuginfo.
            if let Some(vmctx_val) = self.f.special_param(ArgumentPurpose::VMContext) {
                self.emit_value_label_marks_for_value(vmctx_val);
            }

            for (i, param) in self.f.dfg.block_params(entry_bb).iter().enumerate() {
                if !self.vcode.abi().arg_is_needed_in_body(i) {
                    continue;
                }
                let regs = writable_value_regs(self.value_regs[*param]);
                for insn in self
                    .vcode
                    .abi()
                    .gen_copy_arg_to_regs(self.sigs(), i, regs)
                    .into_iter()
                {
                    self.emit(insn);
                }
                if self.abi().signature().params[i].purpose == ArgumentPurpose::StructReturn {
                    assert!(regs.len() == 1);
                    let ty = self.abi().signature().params[i].value_type;
                    // The ABI implementation must have ensured that a StructReturn
                    // arg is present in the return values.
                    let struct_ret_idx = self
                        .abi()
                        .signature()
                        .returns
                        .iter()
                        .position(|ret| ret.purpose == ArgumentPurpose::StructReturn)
                        .expect("StructReturn return value not present!");
                    self.emit(I::gen_move(
                        Writable::from_reg(self.retval_regs[struct_ret_idx].regs()[0]),
                        regs.regs()[0].to_reg(),
                        ty,
                    ));
                }
            }
            if let Some(insn) = self.vcode.abi().gen_retval_area_setup(self.sigs()) {
                self.emit(insn);
            }
        }
    }

    fn gen_retval_setup(&mut self) {
        let retval_regs = self.retval_regs.clone();
        for (i, regs) in retval_regs.into_iter().enumerate() {
            let regs = writable_value_regs(regs);
            for insn in self
                .vcode
                .abi()
                .gen_copy_regs_to_retval(self.sigs(), i, regs)
                .into_iter()
            {
                self.emit(insn);
            }
        }
        let inst = self.vcode.abi().gen_ret(self.sigs());
        self.emit(inst);

        // Hack: generate a virtual instruction that uses vmctx in
        // order to keep it alive for the duration of the function,
        // for the benefit of debuginfo.
        if self.f.dfg.values_labels.is_some() {
            if let Some(vmctx_val) = self.f.special_param(ArgumentPurpose::VMContext) {
                let vmctx_reg = self.value_regs[vmctx_val].only_reg().unwrap();
                self.emit(I::gen_dummy_use(vmctx_reg));
            }
        }
    }

    /// Has this instruction been sunk to a use-site (i.e., away from its
    /// original location)?
    fn is_inst_sunk(&self, inst: Inst) -> bool {
        self.inst_sunk.contains(&inst)
    }

    // Is any result of this instruction needed?
    fn is_any_inst_result_needed(&self, inst: Inst) -> bool {
        self.f
            .dfg
            .inst_results(inst)
            .iter()
            .any(|&result| self.value_lowered_uses[result] > 0)
    }

    fn lower_clif_block<B: LowerBackend<MInst = I>>(
        &mut self,
        backend: &B,
        block: Block,
    ) -> CodegenResult<()> {
        self.cur_scan_entry_color = Some(self.block_end_colors[block]);
        // Lowering loop:
        // - For each non-branch instruction, in reverse order:
        //   - If side-effecting (load, store, branch/call/return,
        //     possible trap), or if used outside of this block, or if
        //     demanded by another inst, then lower.
        //
        // That's it! Lowering of side-effecting ops will force all *needed*
        // (live) non-side-effecting ops to be lowered at the right places, via
        // the `use_input_reg()` callback on the `Lower` (that's us). That's
        // because `use_input_reg()` sets the eager/demand bit for any insts
        // whose result registers are used.
        //
        // We set the VCodeBuilder to "backward" mode, so we emit
        // blocks in reverse order wrt the BlockIndex sequence, and
        // emit instructions in reverse order within blocks.  Because
        // the machine backend calls `ctx.emit()` in forward order, we
        // collect per-IR-inst lowered instructions in `ir_insts`,
        // then reverse these and append to the VCode at the end of
        // each IR instruction.
        for inst in self.f.layout.block_insts(block).rev() {
            let data = &self.f.dfg[inst];
            let has_side_effect = has_lowering_side_effect(self.f, inst);
            // If  inst has been sunk to another location, skip it.
            if self.is_inst_sunk(inst) {
                continue;
            }
            // Are any outputs used at least once?
            let value_needed = self.is_any_inst_result_needed(inst);
            trace!(
                "lower_clif_block: block {} inst {} ({:?}) is_branch {} side_effect {} value_needed {}",
                block,
                inst,
                data,
                data.opcode().is_branch(),
                has_side_effect,
                value_needed,
            );

            // Update scan state to color prior to this inst (as we are scanning
            // backward).
            self.cur_inst = Some(inst);
            if has_side_effect {
                let entry_color = *self
                    .side_effect_inst_entry_colors
                    .get(&inst)
                    .expect("every side-effecting inst should have a color-map entry");
                self.cur_scan_entry_color = Some(entry_color);
            }

            // Skip lowering branches; these are handled separately
            // (see `lower_clif_branches()` below).
            if self.f.dfg[inst].opcode().is_branch() {
                continue;
            }

            // Normal instruction: codegen if the instruction is side-effecting
            // or any of its outputs its used.
            if has_side_effect || value_needed {
                trace!("lowering: inst {}: {:?}", inst, self.f.dfg[inst]);
                backend.lower(self, inst)?;
            }
            if data.opcode().is_return() {
                // Return: handle specially, using ABI-appropriate sequence.
                self.gen_retval_setup();
            }

            let loc = self.srcloc(inst);
            self.finish_ir_inst(loc);

            // Emit value-label markers if needed, to later recover
            // debug mappings. This must happen before the instruction
            // (so after we emit, in bottom-to-top pass).
            self.emit_value_label_markers_for_inst(inst);
        }

        // Add the block params to this block.
        self.add_block_params(block)?;

        self.cur_scan_entry_color = None;
        Ok(())
    }

    fn add_block_params(&mut self, block: Block) -> CodegenResult<()> {
        for &param in self.f.dfg.block_params(block) {
            let ty = self.f.dfg.value_type(param);
            let (_reg_rcs, reg_tys) = I::rc_for_type(ty)?;
            debug_assert_eq!(reg_tys.len(), self.value_regs[param].len());
            for (&reg, &rty) in self.value_regs[param].regs().iter().zip(reg_tys.iter()) {
                self.vcode
                    .add_block_param(reg.to_virtual_reg().unwrap(), rty);
            }
        }
        Ok(())
    }

    fn get_value_labels<'a>(&'a self, val: Value, depth: usize) -> Option<&'a [ValueLabelStart]> {
        if let Some(ref values_labels) = self.f.dfg.values_labels {
            trace!(
                "get_value_labels: val {} -> {} -> {:?}",
                val,
                self.f.dfg.resolve_aliases(val),
                values_labels.get(&self.f.dfg.resolve_aliases(val))
            );
            let val = self.f.dfg.resolve_aliases(val);
            match values_labels.get(&val) {
                Some(&ValueLabelAssignments::Starts(ref list)) => Some(&list[..]),
                Some(&ValueLabelAssignments::Alias { value, .. }) if depth < 10 => {
                    self.get_value_labels(value, depth + 1)
                }
                _ => None,
            }
        } else {
            None
        }
    }

    fn emit_value_label_marks_for_value(&mut self, val: Value) {
        let regs = self.value_regs[val];
        if regs.len() > 1 {
            return;
        }
        let reg = regs.only_reg().unwrap();

        if let Some(label_starts) = self.get_value_labels(val, 0) {
            let labels = label_starts
                .iter()
                .map(|&ValueLabelStart { label, .. }| label)
                .collect::<FxHashSet<_>>();
            for label in labels {
                trace!(
                    "value labeling: defines val {:?} -> reg {:?} -> label {:?}",
                    val,
                    reg,
                    label,
                );
                self.vcode.add_value_label(reg, label);
            }
        }
    }

    fn emit_value_label_markers_for_inst(&mut self, inst: Inst) {
        if self.f.dfg.values_labels.is_none() {
            return;
        }

        trace!(
            "value labeling: srcloc {}: inst {}",
            self.srcloc(inst),
            inst
        );
        for &val in self.f.dfg.inst_results(inst) {
            self.emit_value_label_marks_for_value(val);
        }
    }

    fn emit_value_label_markers_for_block_args(&mut self, block: Block) {
        if self.f.dfg.values_labels.is_none() {
            return;
        }

        trace!("value labeling: block {}", block);
        for &arg in self.f.dfg.block_params(block) {
            self.emit_value_label_marks_for_value(arg);
        }
        self.finish_ir_inst(Default::default());
    }

    fn finish_ir_inst(&mut self, loc: RelSourceLoc) {
        self.vcode.set_srcloc(loc);
        // The VCodeBuilder builds in reverse order (and reverses at
        // the end), but `ir_insts` is in forward order, so reverse
        // it.
        for inst in self.ir_insts.drain(..).rev() {
            self.vcode.push(inst);
        }
    }

    fn finish_bb(&mut self) {
        self.vcode.end_bb();
    }

    fn lower_clif_branches<B: LowerBackend<MInst = I>>(
        &mut self,
        backend: &B,
        // Lowered block index:
        bindex: BlockIndex,
        // Original CLIF block:
        block: Block,
        branches: &SmallVec<[Inst; 2]>,
        targets: &SmallVec<[MachLabel; 2]>,
    ) -> CodegenResult<()> {
        trace!(
            "lower_clif_branches: block {} branches {:?} targets {:?}",
            block,
            branches,
            targets,
        );
        // When considering code-motion opportunities, consider the current
        // program point to be the first branch.
        self.cur_inst = Some(branches[0]);
        backend.lower_branch_group(self, branches, targets)?;
        let loc = self.srcloc(branches[0]);
        self.finish_ir_inst(loc);
        // Add block param outputs for current block.
        self.lower_branch_blockparam_args(bindex);
        Ok(())
    }

    fn lower_branch_blockparam_args(&mut self, block: BlockIndex) {
        for succ_idx in 0..self.vcode.block_order().succ_indices(block).len() {
            // Avoid immutable borrow by explicitly indexing.
            let (inst, succ) = self.vcode.block_order().succ_indices(block)[succ_idx];
            // Get branch args and convert to Regs.
            let branch_args = self.f.dfg.inst_variable_args(inst);
            let mut branch_arg_vregs: SmallVec<[Reg; 16]> = smallvec![];
            for &arg in branch_args {
                let arg = self.f.dfg.resolve_aliases(arg);
                let regs = self.put_value_in_regs(arg);
                for &vreg in regs.regs() {
                    let vreg = self.vcode.resolve_vreg_alias(vreg.into());
                    branch_arg_vregs.push(vreg.into());
                }
            }
            self.vcode.add_succ(succ, &branch_arg_vregs[..]);
        }
        self.finish_ir_inst(Default::default());
    }

    fn collect_branches_and_targets(
        &self,
        bindex: BlockIndex,
        _bb: Block,
        branches: &mut SmallVec<[Inst; 2]>,
        targets: &mut SmallVec<[MachLabel; 2]>,
    ) {
        branches.clear();
        targets.clear();
        let mut last_inst = None;
        for &(inst, succ) in self.vcode.block_order().succ_indices(bindex) {
            // Avoid duplicates: this ensures a br_table is only inserted once.
            if last_inst != Some(inst) {
                branches.push(inst);
            } else {
                debug_assert!(self.f.dfg[inst].opcode() == Opcode::BrTable);
                debug_assert!(branches.len() == 1);
            }
            last_inst = Some(inst);
            targets.push(MachLabel::from_block(succ));
        }
    }

    /// Lower the function.
    pub fn lower<B: LowerBackend<MInst = I>>(mut self, backend: &B) -> CodegenResult<VCode<I>> {
        trace!("about to lower function: {:?}", self.f);

        // Initialize the ABI object, giving it temps if requested.
        let temps = self
            .vcode
            .abi()
            .temps_needed(self.sigs())
            .into_iter()
            .map(|temp_ty| self.alloc_tmp(temp_ty).only_reg().unwrap())
            .collect::<Vec<_>>();
        self.vcode.init_abi(temps);

        // Get the pinned reg here (we only parameterize this function on `B`,
        // not the whole `Lower` impl).
        self.pinned_reg = backend.maybe_pinned_reg();

        self.vcode.set_entry(BlockIndex::new(0));

        // Reused vectors for branch lowering.
        let mut branches: SmallVec<[Inst; 2]> = SmallVec::new();
        let mut targets: SmallVec<[MachLabel; 2]> = SmallVec::new();

        // get a copy of the lowered order; we hold this separately because we
        // need a mut ref to the vcode to mutate it below.
        let lowered_order: SmallVec<[LoweredBlock; 64]> = self
            .vcode
            .block_order()
            .lowered_order()
            .iter()
            .cloned()
            .collect();

        // Main lowering loop over lowered blocks.
        for (bindex, lb) in lowered_order.iter().enumerate().rev() {
            let bindex = BlockIndex::new(bindex);

            // Lower the block body in reverse order (see comment in
            // `lower_clif_block()` for rationale).

            // End branches.
            if let Some(bb) = lb.orig_block() {
                self.collect_branches_and_targets(bindex, bb, &mut branches, &mut targets);
                if branches.len() > 0 {
                    self.lower_clif_branches(backend, bindex, bb, &branches, &targets)?;
                    self.finish_ir_inst(self.srcloc(branches[0]));
                }
            } else {
                // If no orig block, this must be a pure edge block;
                // get the successor and emit a jump. Add block params
                // according to the one successor, and pass them
                // through; note that the successor must have an
                // original block.
                let (_, succ) = self.vcode.block_order().succ_indices(bindex)[0];

                let orig_succ = lowered_order[succ.index()];
                let orig_succ = orig_succ
                    .orig_block()
                    .expect("Edge block succ must be body block");

                let mut branch_arg_vregs: SmallVec<[Reg; 16]> = smallvec![];
                for ty in self.f.dfg.block_param_types(orig_succ) {
                    let regs = alloc_vregs(ty, &mut self.next_vreg, &mut self.vcode)?;
                    for &reg in regs.regs() {
                        branch_arg_vregs.push(reg);
                        let vreg = reg.to_virtual_reg().unwrap();
                        self.vcode
                            .add_block_param(vreg, self.vcode.get_vreg_type(vreg));
                    }
                }
                self.vcode.add_succ(succ, &branch_arg_vregs[..]);

                self.emit(I::gen_jump(MachLabel::from_block(succ)));
                self.finish_ir_inst(Default::default());
            }

            // Original block body.
            if let Some(bb) = lb.orig_block() {
                self.lower_clif_block(backend, bb)?;
                self.emit_value_label_markers_for_block_args(bb);
            }

            if bindex.index() == 0 {
                // Set up the function with arg vreg inits.
                self.gen_arg_setup();
                self.finish_ir_inst(Default::default());
            }

            self.finish_bb();
        }

        // Now that we've emitted all instructions into the
        // VCodeBuilder, let's build the VCode.
        let vcode = self.vcode.build();
        trace!("built vcode: {:?}", vcode);

        Ok(vcode)
    }
}

/// Function-level queries.
impl<'func, I: VCodeInst> Lower<'func, I> {
    pub fn dfg(&self) -> &DataFlowGraph {
        &self.f.dfg
    }

    /// Get the `Callee`.
    pub fn abi(&self) -> &Callee<I::ABIMachineSpec> {
        self.vcode.abi()
    }

    /// Get the `Callee`.
    pub fn abi_mut(&mut self) -> &mut Callee<I::ABIMachineSpec> {
        self.vcode.abi_mut()
    }

    /// Get the (virtual) register that receives the return value. A return
    /// instruction should lower into a sequence that fills this register. (Why
    /// not allow the backend to specify its own result register for the return?
    /// Because there may be multiple return points.)
    pub fn retval(&self, idx: usize) -> ValueRegs<Writable<Reg>> {
        writable_value_regs(self.retval_regs[idx])
    }
}

/// Instruction input/output queries.
impl<'func, I: VCodeInst> Lower<'func, I> {
    /// Get the instdata for a given IR instruction.
    pub fn data(&self, ir_inst: Inst) -> &InstructionData {
        &self.f.dfg[ir_inst]
    }

    /// Likewise, but starting with a GlobalValue identifier.
    pub fn symbol_value_data<'b>(
        &'b self,
        global_value: GlobalValue,
    ) -> Option<(&'b ExternalName, RelocDistance, i64)> {
        let gvdata = &self.f.global_values[global_value];
        match gvdata {
            &GlobalValueData::Symbol {
                ref name,
                ref offset,
                ..
            } => {
                let offset = offset.bits();
                let dist = gvdata.maybe_reloc_distance().unwrap();
                Some((name, dist, offset))
            }
            _ => None,
        }
    }

    /// Returns the memory flags of a given memory access.
    pub fn memflags(&self, ir_inst: Inst) -> Option<MemFlags> {
        match &self.f.dfg[ir_inst] {
            &InstructionData::AtomicCas { flags, .. } => Some(flags),
            &InstructionData::AtomicRmw { flags, .. } => Some(flags),
            &InstructionData::Load { flags, .. }
            | &InstructionData::LoadNoOffset { flags, .. }
            | &InstructionData::Store { flags, .. } => Some(flags),
            &InstructionData::StoreNoOffset { flags, .. } => Some(flags),
            _ => None,
        }
    }

    /// Get the source location for a given instruction.
    pub fn srcloc(&self, ir_inst: Inst) -> RelSourceLoc {
        self.f.rel_srclocs()[ir_inst]
    }

    /// Get the number of inputs to the given IR instruction.
    pub fn num_inputs(&self, ir_inst: Inst) -> usize {
        self.f.dfg.inst_args(ir_inst).len()
    }

    /// Get the number of outputs to the given IR instruction.
    pub fn num_outputs(&self, ir_inst: Inst) -> usize {
        self.f.dfg.inst_results(ir_inst).len()
    }

    /// Get the type for an instruction's input.
    pub fn input_ty(&self, ir_inst: Inst, idx: usize) -> Type {
        self.value_ty(self.input_as_value(ir_inst, idx))
    }

    /// Get the type for a value.
    pub fn value_ty(&self, val: Value) -> Type {
        self.f.dfg.value_type(val)
    }

    /// Get the type for an instruction's output.
    pub fn output_ty(&self, ir_inst: Inst, idx: usize) -> Type {
        self.f.dfg.value_type(self.f.dfg.inst_results(ir_inst)[idx])
    }

    /// Get the value of a constant instruction (`iconst`, etc.) as a 64-bit
    /// value, if possible.
    pub fn get_constant(&self, ir_inst: Inst) -> Option<u64> {
        self.inst_constants.get(&ir_inst).cloned()
    }

    /// Get the input as one of two options other than a direct register:
    ///
    /// - An instruction, given that it is effect-free or able to sink its
    ///   effect to the current instruction being lowered, and given it has only
    ///   one output, and if effect-ful, given that this is the only use;
    /// - A constant, if the value is a constant.
    ///
    /// The instruction input may be available in either of these forms.  It may
    /// be available in neither form, if the conditions are not met; if so, use
    /// `put_input_in_regs()` instead to get it in a register.
    ///
    /// If the backend merges the effect of a side-effecting instruction, it
    /// must call `sink_inst()`. When this is called, it indicates that the
    /// effect has been sunk to the current scan location. The sunk
    /// instruction's result(s) must have *no* uses remaining, because it will
    /// not be codegen'd (it has been integrated into the current instruction).
    pub fn input_as_value(&self, ir_inst: Inst, idx: usize) -> Value {
        let val = self.f.dfg.inst_args(ir_inst)[idx];
        self.f.dfg.resolve_aliases(val)
    }

    /// Like `get_input_as_source_or_const` but with a `Value`.
    pub fn get_input_as_source_or_const(&self, ir_inst: Inst, idx: usize) -> NonRegInput {
        let val = self.input_as_value(ir_inst, idx);
        self.get_value_as_source_or_const(val)
    }

    /// Resolves a particular input of an instruction to the `Value` that it is
    /// represented with.
    pub fn get_value_as_source_or_const(&self, val: Value) -> NonRegInput {
        trace!(
            "get_input_for_val: val {} at cur_inst {:?} cur_scan_entry_color {:?}",
            val,
            self.cur_inst,
            self.cur_scan_entry_color,
        );
        let inst = match self.f.dfg.value_def(val) {
            // OK to merge source instruction if (i) we have a source
            // instruction, and:
            // - It has no side-effects, OR
            // - It has a side-effect, has one output value, that one
            //   output has only one use, directly or indirectly (so
            //   cannot be duplicated -- see comment on
            //   `ValueUseState`), and the instruction's color is *one
            //   less than* the current scan color.
            //
            //   This latter set of conditions is testing whether a
            //   side-effecting instruction can sink to the current scan
            //   location; this is possible if the in-color of this inst is
            //   equal to the out-color of the producing inst, so no other
            //   side-effecting ops occur between them (which will only be true
            //   if they are in the same BB, because color increments at each BB
            //   start).
            //
            //   If it is actually sunk, then in `merge_inst()`, we update the
            //   scan color so that as we scan over the range past which the
            //   instruction was sunk, we allow other instructions (that came
            //   prior to the sunk instruction) to sink.
            ValueDef::Result(src_inst, result_idx) => {
                let src_side_effect = has_lowering_side_effect(self.f, src_inst);
                trace!(" -> src inst {}", src_inst);
                trace!(" -> has lowering side effect: {}", src_side_effect);
                if !src_side_effect {
                    // Pure instruction: always possible to
                    // sink. Let's determine whether we are the only
                    // user or not.
                    if self.value_ir_uses[val] == ValueUseState::Once {
                        InputSourceInst::UniqueUse(src_inst, result_idx)
                    } else {
                        InputSourceInst::Use(src_inst, result_idx)
                    }
                } else {
                    // Side-effect: test whether this is the only use of the
                    // only result of the instruction, and whether colors allow
                    // the code-motion.
                    trace!(
                        " -> side-effecting op {} for val {}: use state {:?}",
                        src_inst,
                        val,
                        self.value_ir_uses[val]
                    );
                    if self.cur_scan_entry_color.is_some()
                        && self.value_ir_uses[val] == ValueUseState::Once
                        && self.num_outputs(src_inst) == 1
                        && self
                            .side_effect_inst_entry_colors
                            .get(&src_inst)
                            .unwrap()
                            .get()
                            + 1
                            == self.cur_scan_entry_color.unwrap().get()
                    {
                        InputSourceInst::UniqueUse(src_inst, 0)
                    } else {
                        InputSourceInst::None
                    }
                }
            }
            _ => InputSourceInst::None,
        };
        let constant = inst.as_inst().and_then(|(inst, _)| self.get_constant(inst));

        NonRegInput { inst, constant }
    }

    /// Increment the reference count for the Value, ensuring that it gets lowered.
    pub fn increment_lowered_uses(&mut self, val: Value) {
        self.value_lowered_uses[val] += 1
    }

    /// Put the `idx`th input into register(s) and return the assigned register.
    pub fn put_input_in_regs(&mut self, ir_inst: Inst, idx: usize) -> ValueRegs<Reg> {
        let val = self.f.dfg.inst_args(ir_inst)[idx];
        self.put_value_in_regs(val)
    }

    /// Put the given value into register(s) and return the assigned register.
    pub fn put_value_in_regs(&mut self, val: Value) -> ValueRegs<Reg> {
        let val = self.f.dfg.resolve_aliases(val);
        trace!("put_value_in_regs: val {}", val);

        // Assert that the value is not `iflags`/`fflags`-typed; these
        // cannot be reified into normal registers. TODO(#3249)
        // eventually remove the `iflags` type altogether!
        let ty = self.f.dfg.value_type(val);
        assert!(ty != IFLAGS && ty != FFLAGS);

        if let Some(inst) = self.f.dfg.value_def(val).inst() {
            assert!(!self.inst_sunk.contains(&inst));
        }

        // If the value is a constant, then (re)materialize it at each use. This
        // lowers register pressure.
        if let Some(c) = self
            .f
            .dfg
            .value_def(val)
            .inst()
            .and_then(|inst| self.get_constant(inst))
        {
            let regs = self.alloc_tmp(ty);
            trace!(" -> regs {:?}", regs);
            assert!(regs.is_valid());

            let insts = I::gen_constant(regs, c.into(), ty, |ty| {
                self.alloc_tmp(ty).only_reg().unwrap()
            });
            for inst in insts {
                self.emit(inst);
            }
            return non_writable_value_regs(regs);
        }

        let mut regs = self.value_regs[val];
        trace!(" -> regs {:?}", regs);
        assert!(regs.is_valid());

        self.value_lowered_uses[val] += 1;

        // Pinned-reg hack: if backend specifies a fixed pinned register, use it
        // directly when we encounter a GetPinnedReg op, rather than lowering
        // the actual op, and do not return the source inst to the caller; the
        // value comes "out of the ether" and we will not force generation of
        // the superfluous move.
        if let ValueDef::Result(i, 0) = self.f.dfg.value_def(val) {
            if self.f.dfg[i].opcode() == Opcode::GetPinnedReg {
                if let Some(pr) = self.pinned_reg {
                    regs = ValueRegs::one(pr);
                }
            }
        }

        regs
    }

    /// Get the `idx`th output register(s) of the given IR instruction.
    ///
    /// When `backend.lower_inst_to_regs(ctx, inst)` is called, it is expected
    /// that the backend will write results to these output register(s).  This
    /// register will always be "fresh"; it is guaranteed not to overlap with
    /// any of the inputs, and can be freely used as a scratch register within
    /// the lowered instruction sequence, as long as its final value is the
    /// result of the computation.
    pub fn get_output(&self, ir_inst: Inst, idx: usize) -> ValueRegs<Writable<Reg>> {
        let val = self.f.dfg.inst_results(ir_inst)[idx];
        writable_value_regs(self.value_regs[val])
    }
}

/// Codegen primitives: allocate temps, emit instructions, set result registers,
/// ask for an input to be gen'd into a register.
impl<'func, I: VCodeInst> Lower<'func, I> {
    /// Get a new temp.
    pub fn alloc_tmp(&mut self, ty: Type) -> ValueRegs<Writable<Reg>> {
        writable_value_regs(alloc_vregs(ty, &mut self.next_vreg, &mut self.vcode).unwrap())
    }

    /// Emit a machine instruction.
    pub fn emit(&mut self, mach_inst: I) {
        trace!("emit: {:?}", mach_inst);
        self.ir_insts.push(mach_inst);
    }

    /// Indicate that the side-effect of an instruction has been sunk to the
    /// current scan location. This should only be done with the instruction's
    /// original results are not used (i.e., `put_input_in_regs` is not invoked
    /// for the input produced by the sunk instruction), otherwise the
    /// side-effect will occur twice.
    pub fn sink_inst(&mut self, ir_inst: Inst) {
        assert!(has_lowering_side_effect(self.f, ir_inst));
        assert!(self.cur_scan_entry_color.is_some());

        for result in self.dfg().inst_results(ir_inst) {
            assert!(self.value_lowered_uses[*result] == 0);
        }

        let sunk_inst_entry_color = self
            .side_effect_inst_entry_colors
            .get(&ir_inst)
            .cloned()
            .unwrap();
        let sunk_inst_exit_color = InstColor::new(sunk_inst_entry_color.get() + 1);
        assert!(sunk_inst_exit_color == self.cur_scan_entry_color.unwrap());
        self.cur_scan_entry_color = Some(sunk_inst_entry_color);
        self.inst_sunk.insert(ir_inst);
    }

    /// Retrieve immediate data given a handle.
    pub fn get_immediate_data(&self, imm: Immediate) -> &ConstantData {
        self.f.dfg.immediates.get(imm).unwrap()
    }

    /// Retrieve constant data given a handle.
    pub fn get_constant_data(&self, constant_handle: Constant) -> &ConstantData {
        self.f.dfg.constants.get(constant_handle)
    }

    /// Indicate that a constant should be emitted.
    pub fn use_constant(&mut self, constant: VCodeConstantData) -> VCodeConstant {
        self.vcode.constants().insert(constant)
    }

    /// Cause the value in `reg` to be in a virtual reg, by copying it into a new virtual reg
    /// if `reg` is a real reg.  `ty` describes the type of the value in `reg`.
    pub fn ensure_in_vreg(&mut self, reg: Reg, ty: Type) -> Reg {
        if reg.to_virtual_reg().is_some() {
            reg
        } else {
            let new_reg = self.alloc_tmp(ty).only_reg().unwrap();
            self.emit(I::gen_move(new_reg, reg, ty));
            new_reg.to_reg()
        }
    }

    /// Note that one vreg is to be treated as an alias of another.
    pub fn set_vreg_alias(&mut self, from: Reg, to: Reg) {
        trace!("set vreg alias: from {:?} to {:?}", from, to);
        self.vcode.set_vreg_alias(from, to);
    }
}