1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362
// Copyright 2019 Parity Technologies (UK) Ltd.
//
// Permission is hereby granted, free of charge, to any person obtaining a
// copy of this software and associated documentation files (the "Software"),
// to deal in the Software without restriction, including without limitation
// the rights to use, copy, modify, merge, publish, distribute, sublicense,
// and/or sell copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
// DEALINGS IN THE SOFTWARE.
//! Legacy Noise protocols based on X25519.
//!
//! **Note**: This set of protocols is not interoperable with other
//! libp2p implementations.
use crate::{NoiseConfig, NoiseError, Protocol, ProtocolParams};
use curve25519_dalek::edwards::CompressedEdwardsY;
use libp2p_core::UpgradeInfo;
use libp2p_core::{identity, identity::ed25519};
use once_cell::sync::Lazy;
use rand::Rng;
use sha2::{Digest, Sha512};
use x25519_dalek::{x25519, X25519_BASEPOINT_BYTES};
use zeroize::Zeroize;
use super::*;
static PARAMS_IK: Lazy<ProtocolParams> = Lazy::new(|| {
"Noise_IK_25519_ChaChaPoly_SHA256"
.parse()
.map(ProtocolParams)
.expect("Invalid protocol name")
});
static PARAMS_IX: Lazy<ProtocolParams> = Lazy::new(|| {
"Noise_IX_25519_ChaChaPoly_SHA256"
.parse()
.map(ProtocolParams)
.expect("Invalid protocol name")
});
static PARAMS_XX: Lazy<ProtocolParams> = Lazy::new(|| {
"Noise_XX_25519_ChaChaPoly_SHA256"
.parse()
.map(ProtocolParams)
.expect("Invalid protocol name")
});
/// A X25519 key.
#[derive(Clone)]
pub struct X25519([u8; 32]);
impl AsRef<[u8]> for X25519 {
fn as_ref(&self) -> &[u8] {
self.0.as_ref()
}
}
impl Zeroize for X25519 {
fn zeroize(&mut self) {
self.0.zeroize()
}
}
impl UpgradeInfo for NoiseConfig<IX, X25519> {
type Info = &'static [u8];
type InfoIter = std::iter::Once<Self::Info>;
fn protocol_info(&self) -> Self::InfoIter {
std::iter::once(b"/noise/ix/25519/chachapoly/sha256/0.1.0")
}
}
impl UpgradeInfo for NoiseConfig<XX, X25519> {
type Info = &'static [u8];
type InfoIter = std::iter::Once<Self::Info>;
fn protocol_info(&self) -> Self::InfoIter {
std::iter::once(b"/noise/xx/25519/chachapoly/sha256/0.1.0")
}
}
impl<R> UpgradeInfo for NoiseConfig<IK, X25519, R> {
type Info = &'static [u8];
type InfoIter = std::iter::Once<Self::Info>;
fn protocol_info(&self) -> Self::InfoIter {
std::iter::once(b"/noise/ik/25519/chachapoly/sha256/0.1.0")
}
}
/// Legacy Noise protocol for X25519.
///
/// **Note**: This `Protocol` provides no configuration that
/// is interoperable with other libp2p implementations.
/// See [`crate::X25519Spec`] instead.
impl Protocol<X25519> for X25519 {
fn params_ik() -> ProtocolParams {
PARAMS_IK.clone()
}
fn params_ix() -> ProtocolParams {
PARAMS_IX.clone()
}
fn params_xx() -> ProtocolParams {
PARAMS_XX.clone()
}
fn public_from_bytes(bytes: &[u8]) -> Result<PublicKey<X25519>, NoiseError> {
if bytes.len() != 32 {
return Err(NoiseError::InvalidLength);
}
let mut pk = [0u8; 32];
pk.copy_from_slice(bytes);
Ok(PublicKey(X25519(pk)))
}
#[allow(irrefutable_let_patterns)]
fn linked(id_pk: &identity::PublicKey, dh_pk: &PublicKey<X25519>) -> bool {
if let identity::PublicKey::Ed25519(ref p) = id_pk {
PublicKey::from_ed25519(p).as_ref() == dh_pk.as_ref()
} else {
false
}
}
}
impl Keypair<X25519> {
/// An "empty" keypair as a starting state for DH computations in `snow`,
/// which get manipulated through the `snow::types::Dh` interface.
pub(super) fn default() -> Self {
Keypair {
secret: SecretKey(X25519([0u8; 32])),
public: PublicKey(X25519([0u8; 32])),
}
}
/// Create a new X25519 keypair.
pub fn new() -> Keypair<X25519> {
let mut sk_bytes = [0u8; 32];
rand::thread_rng().fill(&mut sk_bytes);
let sk = SecretKey(X25519(sk_bytes)); // Copy
sk_bytes.zeroize();
Self::from(sk)
}
/// Creates an X25519 `Keypair` from an [`identity::Keypair`], if possible.
///
/// The returned keypair will be [associated with](KeypairIdentity) the
/// given identity keypair.
///
/// Returns `None` if the given identity keypair cannot be used as an X25519 keypair.
///
/// > **Note**: If the identity keypair is already used in the context
/// > of other cryptographic protocols outside of Noise, it should be preferred to
/// > create a new static X25519 keypair for use in the Noise protocol.
/// >
/// > See also:
/// >
/// > * [Noise: Static Key Reuse](http://www.noiseprotocol.org/noise.html#security-considerations)
#[allow(unreachable_patterns)]
pub fn from_identity(id_keys: &identity::Keypair) -> Option<AuthenticKeypair<X25519>> {
match id_keys {
identity::Keypair::Ed25519(p) => {
let kp = Keypair::from(SecretKey::from_ed25519(&p.secret()));
let id = KeypairIdentity {
public: id_keys.public(),
signature: None,
};
Some(AuthenticKeypair {
keypair: kp,
identity: id,
})
}
_ => None,
}
}
}
impl Default for Keypair<X25519> {
fn default() -> Self {
Self::new()
}
}
/// Promote a X25519 secret key into a keypair.
impl From<SecretKey<X25519>> for Keypair<X25519> {
fn from(secret: SecretKey<X25519>) -> Keypair<X25519> {
let public = PublicKey(X25519(x25519((secret.0).0, X25519_BASEPOINT_BYTES)));
Keypair { secret, public }
}
}
impl PublicKey<X25519> {
/// Construct a curve25519 public key from an Ed25519 public key.
pub fn from_ed25519(pk: &ed25519::PublicKey) -> Self {
PublicKey(X25519(
CompressedEdwardsY(pk.encode())
.decompress()
.expect("An Ed25519 public key is a valid point by construction.")
.to_montgomery()
.0,
))
}
}
impl SecretKey<X25519> {
/// Construct a X25519 secret key from a Ed25519 secret key.
///
/// > **Note**: If the Ed25519 secret key is already used in the context
/// > of other cryptographic protocols outside of Noise, it should be preferred
/// > to create a new keypair for use in the Noise protocol.
/// >
/// > See also:
/// >
/// > * [Noise: Static Key Reuse](http://www.noiseprotocol.org/noise.html#security-considerations)
/// > * [Ed25519 to Curve25519](https://libsodium.gitbook.io/doc/advanced/ed25519-curve25519)
pub fn from_ed25519(ed25519_sk: &ed25519::SecretKey) -> Self {
// An Ed25519 public key is derived off the left half of the SHA512 of the
// secret scalar, hence a matching conversion of the secret key must do
// the same to yield a Curve25519 keypair with the same public key.
// let ed25519_sk = ed25519::SecretKey::from(ed);
let mut curve25519_sk: [u8; 32] = [0; 32];
let hash = Sha512::digest(ed25519_sk.as_ref());
curve25519_sk.copy_from_slice(&hash[..32]);
let sk = SecretKey(X25519(curve25519_sk)); // Copy
curve25519_sk.zeroize();
sk
}
}
#[doc(hidden)]
impl snow::types::Dh for Keypair<X25519> {
fn name(&self) -> &'static str {
"25519"
}
fn pub_len(&self) -> usize {
32
}
fn priv_len(&self) -> usize {
32
}
fn pubkey(&self) -> &[u8] {
self.public.as_ref()
}
fn privkey(&self) -> &[u8] {
self.secret.as_ref()
}
fn set(&mut self, sk: &[u8]) {
let mut secret = [0u8; 32];
secret.copy_from_slice(sk);
self.secret = SecretKey(X25519(secret)); // Copy
self.public = PublicKey(X25519(x25519(secret, X25519_BASEPOINT_BYTES)));
secret.zeroize();
}
fn generate(&mut self, rng: &mut dyn snow::types::Random) {
let mut secret = [0u8; 32];
rng.fill_bytes(&mut secret);
self.secret = SecretKey(X25519(secret)); // Copy
self.public = PublicKey(X25519(x25519(secret, X25519_BASEPOINT_BYTES)));
secret.zeroize();
}
fn dh(&self, pk: &[u8], shared_secret: &mut [u8]) -> Result<(), snow::Error> {
let mut p = [0; 32];
p.copy_from_slice(&pk[..32]);
let ss = x25519((self.secret.0).0, p);
shared_secret[..32].copy_from_slice(&ss[..]);
Ok(())
}
}
#[cfg(test)]
mod tests {
use super::*;
// Use the ed25519_compact for testing
use ed25519_compact;
use libp2p_core::identity::ed25519;
// Use the libsodium-sys-stable crypto_sign imports for testing
use libsodium_sys::crypto_sign_ed25519_pk_to_curve25519;
use libsodium_sys::crypto_sign_ed25519_sk_to_curve25519;
use quickcheck::*;
use x25519_dalek::StaticSecret;
// ed25519 to x25519 keypair conversion must yield the same results as
// obtained through libsodium.
#[test]
fn prop_ed25519_to_x25519_matches_libsodium() {
fn prop() -> bool {
let ed25519 = ed25519::Keypair::generate();
let x25519 = Keypair::from(SecretKey::from_ed25519(&ed25519.secret()));
let sodium_sec =
ed25519_sk_to_curve25519(&ed25519_compact::SecretKey::new(ed25519.encode()));
let sodium_pub = ed25519_pk_to_curve25519(&ed25519_compact::PublicKey::new(
ed25519.public().encode(),
));
let our_pub = x25519.public.0;
// libsodium does the [clamping] of the scalar upon key construction,
// just like x25519-dalek, but this module uses the raw byte-oriented x25519
// function from x25519-dalek, as defined in RFC7748, so "our" secret scalar
// must be clamped before comparing it to the one computed by libsodium.
// That happens in `StaticSecret::from`.
//
// [clamping]: http://www.lix.polytechnique.fr/~smith/ECC/#scalar-clamping
let our_sec = StaticSecret::from((x25519.secret.0).0).to_bytes();
sodium_sec.as_ref() == Some(&our_sec) && sodium_pub.as_ref() == Some(&our_pub.0)
}
quickcheck(prop as fn() -> _);
}
// The x25519 public key obtained through ed25519 keypair conversion
// (and thus derived from the converted secret key) must match the x25519
// public key derived directly from the ed25519 public key.
#[test]
fn prop_public_ed25519_to_x25519_matches() {
fn prop() -> bool {
let ed25519 = ed25519::Keypair::generate();
let x25519 = Keypair::from(SecretKey::from_ed25519(&ed25519.secret()));
let x25519_public = PublicKey::from_ed25519(&ed25519.public());
x25519.public == x25519_public
}
quickcheck(prop as fn() -> _);
}
pub fn ed25519_pk_to_curve25519(k: &ed25519_compact::PublicKey) -> Option<[u8; 32]> {
let mut out = [0u8; 32];
unsafe {
if crypto_sign_ed25519_pk_to_curve25519(out.as_mut_ptr(), k.as_ptr()) == 0 {
Some(out)
} else {
None
}
}
}
pub fn ed25519_sk_to_curve25519(k: &ed25519_compact::SecretKey) -> Option<[u8; 32]> {
let mut out = [0u8; 32];
unsafe {
if crypto_sign_ed25519_sk_to_curve25519(out.as_mut_ptr(), k.as_ptr()) == 0 {
Some(out)
} else {
None
}
}
}
}