1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
//! ASN.1 `SET OF` support.
//!
//! # Ordering Notes
//!
//! Some DER serializer implementations fail to properly sort elements of a
//! `SET OF`. This is technically non-canonical, but occurs frequently
//! enough that most DER decoders tolerate it. Unfortunately because
//! of that, we must also follow suit.
//!
//! However, all types in this module sort elements of a set at decode-time,
//! ensuring they'll be in the proper order if reserialized.

use crate::{
    arrayvec, ord::iter_cmp, ArrayVec, Decode, DecodeValue, DerOrd, Encode, EncodeValue, Error,
    ErrorKind, FixedTag, Header, Length, Reader, Result, Tag, ValueOrd, Writer,
};
use core::cmp::Ordering;

#[cfg(feature = "alloc")]
use {alloc::vec::Vec, core::slice};

/// ASN.1 `SET OF` backed by an array.
///
/// This type implements an append-only `SET OF` type which is stack-based
/// and does not depend on `alloc` support.
// TODO(tarcieri): use `ArrayVec` when/if it's merged into `core`
// See: https://github.com/rust-lang/rfcs/pull/2990
#[derive(Clone, Debug, Eq, PartialEq, PartialOrd, Ord)]
pub struct SetOf<T, const N: usize>
where
    T: DerOrd,
{
    inner: ArrayVec<T, N>,
}

impl<T, const N: usize> SetOf<T, N>
where
    T: DerOrd,
{
    /// Create a new [`SetOf`].
    pub fn new() -> Self {
        Self {
            inner: ArrayVec::default(),
        }
    }

    /// Add an element to this [`SetOf`].
    ///
    /// Items MUST be added in lexicographical order according to the
    /// [`DerOrd`] impl on `T`.
    pub fn add(&mut self, new_elem: T) -> Result<()> {
        // Ensure set elements are lexicographically ordered
        if let Some(last_elem) = self.inner.last() {
            if new_elem.der_cmp(last_elem)? != Ordering::Greater {
                return Err(ErrorKind::SetOrdering.into());
            }
        }

        self.inner.add(new_elem)
    }

    /// Get the nth element from this [`SetOf`].
    pub fn get(&self, index: usize) -> Option<&T> {
        self.inner.get(index)
    }

    /// Iterate over the elements of this [`SetOf`].
    pub fn iter(&self) -> SetOfIter<'_, T> {
        SetOfIter {
            inner: self.inner.iter(),
        }
    }

    /// Is this [`SetOf`] empty?
    pub fn is_empty(&self) -> bool {
        self.inner.is_empty()
    }

    /// Number of elements in this [`SetOf`].
    pub fn len(&self) -> usize {
        self.inner.len()
    }
}

impl<T, const N: usize> Default for SetOf<T, N>
where
    T: DerOrd,
{
    fn default() -> Self {
        Self::new()
    }
}

impl<'a, T, const N: usize> DecodeValue<'a> for SetOf<T, N>
where
    T: Decode<'a> + DerOrd,
{
    fn decode_value<R: Reader<'a>>(reader: &mut R, header: Header) -> Result<Self> {
        reader.read_nested(header.length, |reader| {
            let mut result = Self::new();

            while !reader.is_finished() {
                result.inner.add(T::decode(reader)?)?;
            }

            der_sort(result.inner.as_mut())?;
            validate(result.inner.as_ref())?;
            Ok(result)
        })
    }
}

impl<'a, T, const N: usize> EncodeValue for SetOf<T, N>
where
    T: 'a + Decode<'a> + Encode + DerOrd,
{
    fn value_len(&self) -> Result<Length> {
        self.iter()
            .fold(Ok(Length::ZERO), |len, elem| len + elem.encoded_len()?)
    }

    fn encode_value(&self, writer: &mut dyn Writer) -> Result<()> {
        for elem in self.iter() {
            elem.encode(writer)?;
        }

        Ok(())
    }
}

impl<'a, T, const N: usize> FixedTag for SetOf<T, N>
where
    T: Decode<'a> + DerOrd,
{
    const TAG: Tag = Tag::Set;
}

impl<T, const N: usize> TryFrom<[T; N]> for SetOf<T, N>
where
    T: DerOrd,
{
    type Error = Error;

    fn try_from(mut arr: [T; N]) -> Result<SetOf<T, N>> {
        der_sort(&mut arr)?;

        let mut result = SetOf::new();

        for elem in arr {
            result.add(elem)?;
        }

        Ok(result)
    }
}

impl<T, const N: usize> ValueOrd for SetOf<T, N>
where
    T: DerOrd,
{
    fn value_cmp(&self, other: &Self) -> Result<Ordering> {
        iter_cmp(self.iter(), other.iter())
    }
}

/// Iterator over the elements of an [`SetOf`].
#[derive(Clone, Debug)]
pub struct SetOfIter<'a, T> {
    /// Inner iterator.
    inner: arrayvec::Iter<'a, T>,
}

impl<'a, T> Iterator for SetOfIter<'a, T> {
    type Item = &'a T;

    fn next(&mut self) -> Option<&'a T> {
        self.inner.next()
    }
}

impl<'a, T> ExactSizeIterator for SetOfIter<'a, T> {}

/// ASN.1 `SET OF` backed by a [`Vec`].
///
/// This type implements an append-only `SET OF` type which is heap-backed
/// and depends on `alloc` support.
#[cfg(feature = "alloc")]
#[cfg_attr(docsrs, doc(cfg(feature = "alloc")))]
#[derive(Clone, Debug, Eq, PartialEq, PartialOrd, Ord)]
pub struct SetOfVec<T>
where
    T: DerOrd,
{
    inner: Vec<T>,
}

#[cfg(feature = "alloc")]
#[cfg_attr(docsrs, doc(cfg(feature = "alloc")))]
impl<T: DerOrd> Default for SetOfVec<T> {
    fn default() -> Self {
        Self {
            inner: Default::default(),
        }
    }
}

#[cfg(feature = "alloc")]
#[cfg_attr(docsrs, doc(cfg(feature = "alloc")))]
impl<T> SetOfVec<T>
where
    T: DerOrd,
{
    /// Create a new [`SetOfVec`].
    pub fn new() -> Self {
        Self {
            inner: Vec::default(),
        }
    }

    /// Add an element to this [`SetOfVec`].
    ///
    /// Items MUST be added in lexicographical order according to the
    /// [`DerOrd`] impl on `T`.
    pub fn add(&mut self, new_elem: T) -> Result<()> {
        // Ensure set elements are lexicographically ordered
        if let Some(last_elem) = self.inner.last() {
            if new_elem.der_cmp(last_elem)? != Ordering::Greater {
                return Err(ErrorKind::SetOrdering.into());
            }
        }

        self.inner.push(new_elem);
        Ok(())
    }

    /// Borrow the elements of this [`SetOfVec`] as a slice.
    pub fn as_slice(&self) -> &[T] {
        self.inner.as_slice()
    }

    /// Get the nth element from this [`SetOfVec`].
    pub fn get(&self, index: usize) -> Option<&T> {
        self.inner.get(index)
    }

    /// Convert this [`SetOfVec`] into the inner [`Vec`].
    pub fn into_vec(self) -> Vec<T> {
        self.inner
    }

    /// Iterate over the elements of this [`SetOfVec`].
    pub fn iter(&self) -> slice::Iter<'_, T> {
        self.inner.iter()
    }

    /// Is this [`SetOfVec`] empty?
    pub fn is_empty(&self) -> bool {
        self.inner.is_empty()
    }

    /// Number of elements in this [`SetOfVec`].
    pub fn len(&self) -> usize {
        self.inner.len()
    }
}

#[cfg(feature = "alloc")]
#[cfg_attr(docsrs, doc(cfg(feature = "alloc")))]
impl<T> AsRef<[T]> for SetOfVec<T>
where
    T: DerOrd,
{
    fn as_ref(&self) -> &[T] {
        self.as_slice()
    }
}

#[cfg(feature = "alloc")]
#[cfg_attr(docsrs, doc(cfg(feature = "alloc")))]
impl<'a, T> DecodeValue<'a> for SetOfVec<T>
where
    T: Decode<'a> + DerOrd,
{
    fn decode_value<R: Reader<'a>>(reader: &mut R, header: Header) -> Result<Self> {
        reader.read_nested(header.length, |reader| {
            let mut inner = Vec::new();

            while !reader.is_finished() {
                inner.push(T::decode(reader)?);
            }

            der_sort(inner.as_mut())?;
            validate(inner.as_ref())?;
            Ok(Self { inner })
        })
    }
}

#[cfg(feature = "alloc")]
#[cfg_attr(docsrs, doc(cfg(feature = "alloc")))]
impl<'a, T> EncodeValue for SetOfVec<T>
where
    T: 'a + Decode<'a> + Encode + DerOrd,
{
    fn value_len(&self) -> Result<Length> {
        self.iter()
            .fold(Ok(Length::ZERO), |len, elem| len + elem.encoded_len()?)
    }

    fn encode_value(&self, writer: &mut dyn Writer) -> Result<()> {
        for elem in self.iter() {
            elem.encode(writer)?;
        }

        Ok(())
    }
}

#[cfg(feature = "alloc")]
#[cfg_attr(docsrs, doc(cfg(feature = "alloc")))]
impl<T> FixedTag for SetOfVec<T>
where
    T: DerOrd,
{
    const TAG: Tag = Tag::Set;
}

#[cfg(feature = "alloc")]
#[cfg_attr(docsrs, doc(cfg(feature = "alloc")))]
impl<T> From<SetOfVec<T>> for Vec<T>
where
    T: DerOrd,
{
    fn from(set: SetOfVec<T>) -> Vec<T> {
        set.into_vec()
    }
}

#[cfg(feature = "alloc")]
#[cfg_attr(docsrs, doc(cfg(feature = "alloc")))]
impl<T> TryFrom<Vec<T>> for SetOfVec<T>
where
    T: DerOrd,
{
    type Error = Error;

    fn try_from(mut vec: Vec<T>) -> Result<SetOfVec<T>> {
        // TODO(tarcieri): use `[T]::sort_by` here?
        der_sort(vec.as_mut_slice())?;
        Ok(SetOfVec { inner: vec })
    }
}

#[cfg(feature = "alloc")]
#[cfg_attr(docsrs, doc(cfg(feature = "alloc")))]
impl<T, const N: usize> TryFrom<[T; N]> for SetOfVec<T>
where
    T: DerOrd,
{
    type Error = Error;

    fn try_from(arr: [T; N]) -> Result<SetOfVec<T>> {
        Vec::from(arr).try_into()
    }
}

#[cfg(feature = "alloc")]
#[cfg_attr(docsrs, doc(cfg(feature = "alloc")))]
impl<T> ValueOrd for SetOfVec<T>
where
    T: DerOrd,
{
    fn value_cmp(&self, other: &Self) -> Result<Ordering> {
        iter_cmp(self.iter(), other.iter())
    }
}

/// Sort a mut slice according to its [`DerOrd`], returning any errors which
/// might occur during the comparison.
///
/// The algorithm is insertion sort, which should perform well when the input
/// is mostly sorted to begin with.
///
/// This function is used rather than Rust's built-in `[T]::sort_by` in order
/// to support heapless `no_std` targets as well as to enable bubbling up
/// sorting errors.
#[allow(clippy::integer_arithmetic)]
fn der_sort<T: DerOrd>(slice: &mut [T]) -> Result<()> {
    for i in 0..slice.len() {
        let mut j = i;

        while j > 0 && slice[j - 1].der_cmp(&slice[j])? == Ordering::Greater {
            slice.swap(j - 1, j);
            j -= 1;
        }
    }

    Ok(())
}

/// Validate the elements of a `SET OF`, ensuring that they are all in order
/// and that there are no duplicates.
fn validate<T: DerOrd>(slice: &[T]) -> Result<()> {
    if let Some(len) = slice.len().checked_sub(1) {
        for i in 0..len {
            let j = i.checked_add(1).ok_or(ErrorKind::Overflow)?;

            match slice.get(i..=j) {
                Some([a, b]) => {
                    if a.der_cmp(b)? != Ordering::Less {
                        return Err(ErrorKind::SetOrdering.into());
                    }
                }
                _ => return Err(Tag::Set.value_error()),
            }
        }
    }

    Ok(())
}

#[cfg(all(test, feature = "alloc"))]
mod tests {
    use super::{SetOf, SetOfVec};
    use alloc::vec::Vec;

    #[test]
    fn setof_tryfrom_array() {
        let arr = [3u16, 2, 1, 65535, 0];
        let set = SetOf::try_from(arr).unwrap();
        assert_eq!(
            set.iter().cloned().collect::<Vec<u16>>(),
            &[0, 1, 2, 3, 65535]
        );
    }

    #[test]
    fn setofvec_tryfrom_array() {
        let arr = [3u16, 2, 1, 65535, 0];
        let set = SetOfVec::try_from(arr).unwrap();
        assert_eq!(set.as_ref(), &[0, 1, 2, 3, 65535]);
    }

    #[cfg(feature = "alloc")]
    #[test]
    fn setofvec_tryfrom_vec() {
        let vec = vec![3u16, 2, 1, 65535, 0];
        let set = SetOfVec::try_from(vec).unwrap();
        assert_eq!(set.as_ref(), &[0, 1, 2, 3, 65535]);
    }
}