1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440
/// Provides both inherent and trait impls for a field element type which are
/// backed by a core set of arithmetic functions specified as macro arguments.
///
/// # Inherent impls
/// - `const ZERO: Self`
/// - `const ONE: Self` (multiplicative identity)
/// - `pub fn from_be_bytes`
/// - `pub fn from_be_slice`
/// - `pub fn from_le_bytes`
/// - `pub fn from_le_slice`
/// - `pub fn from_uint`
/// - `fn from_uint_unchecked`
/// - `pub fn to_be_bytes`
/// - `pub fn to_le_bytes`
/// - `pub fn to_canonical`
/// - `pub fn is_odd`
/// - `pub fn is_zero`
/// - `pub fn double`
///
/// NOTE: field implementations must provide their own inherent impls of
/// the following methods in order for the code generated by this macro to
/// compile:
///
/// - `pub fn invert`
/// - `pub fn sqrt`
///
/// # Trait impls
/// - `AsRef<$arr>`
/// - `ConditionallySelectable`
/// - `ConstantTimeEq`
/// - `ConstantTimeGreater`
/// - `ConstantTimeLess`
/// - `Default`
/// - `DefaultIsZeroes`
/// - `Eq`
/// - `Field`
/// - `PartialEq`
///
/// ## Ops
/// - `Add`
/// - `AddAssign`
/// - `Sub`
/// - `SubAssign`
/// - `Mul`
/// - `MulAssign`
/// - `Neg`
#[macro_export]
macro_rules! impl_field_element {
(
$fe:tt,
$bytes:ty,
$uint:ty,
$modulus:expr,
$arr:ty,
$from_mont:ident,
$to_mont:ident,
$add:ident,
$sub:ident,
$mul:ident,
$neg:ident,
$square:ident
) => {
impl $fe {
/// Zero element.
pub const ZERO: Self = Self(<$uint>::ZERO);
/// Multiplicative identity.
pub const ONE: Self = Self::from_uint_unchecked(<$uint>::ONE);
/// Create a [`
#[doc = stringify!($fe)]
/// `] from a canonical big-endian representation.
pub fn from_be_bytes(repr: $bytes) -> $crate::subtle::CtOption<Self> {
use $crate::bigint::ArrayEncoding as _;
Self::from_uint(<$uint>::from_be_byte_array(repr))
}
/// Decode [`
#[doc = stringify!($fe)]
/// `] from a big endian byte slice.
pub fn from_be_slice(slice: &[u8]) -> $crate::Result<Self> {
<$uint as $crate::bigint::Encoding>::Repr::try_from(slice)
.ok()
.and_then(|array| Self::from_be_bytes(array.into()).into())
.ok_or($crate::Error)
}
/// Create a [`
#[doc = stringify!($fe)]
/// `] from a canonical little-endian representation.
pub fn from_le_bytes(repr: $bytes) -> $crate::subtle::CtOption<Self> {
use $crate::bigint::ArrayEncoding as _;
Self::from_uint(<$uint>::from_le_byte_array(repr))
}
/// Decode [`
#[doc = stringify!($fe)]
/// `] from a little endian byte slice.
pub fn from_le_slice(slice: &[u8]) -> $crate::Result<Self> {
<$uint as $crate::bigint::Encoding>::Repr::try_from(slice)
.ok()
.and_then(|array| Self::from_le_bytes(array.into()).into())
.ok_or($crate::Error)
}
/// Decode [`
#[doc = stringify!($fe)]
/// `]
/// from [`
#[doc = stringify!($uint)]
/// `] converting it into Montgomery form:
///
/// ```text
/// w * R^2 * R^-1 mod p = wR mod p
/// ```
pub fn from_uint(uint: $uint) -> $crate::subtle::CtOption<Self> {
use $crate::subtle::ConstantTimeLess as _;
let is_some = uint.ct_lt(&$modulus);
$crate::subtle::CtOption::new(Self::from_uint_unchecked(uint), is_some)
}
/// Parse a [`
#[doc = stringify!($fe)]
/// `] from big endian hex-encoded bytes.
///
/// Does *not* perform a check that the field element does not overflow the order.
///
/// This method is primarily intended for defining internal constants.
#[allow(dead_code)]
pub(crate) const fn from_be_hex(hex: &str) -> Self {
Self::from_uint_unchecked(<$uint>::from_be_hex(hex))
}
/// Parse a [`
#[doc = stringify!($fe)]
/// `] from little endian hex-encoded bytes.
///
/// Does *not* perform a check that the field element does not overflow the order.
///
/// This method is primarily intended for defining internal constants.
#[allow(dead_code)]
pub(crate) const fn from_le_hex(hex: &str) -> Self {
Self::from_uint_unchecked(<$uint>::from_le_hex(hex))
}
/// Decode [`
#[doc = stringify!($fe)]
/// `] from [`
#[doc = stringify!($uint)]
/// `] converting it into Montgomery form.
///
/// Does *not* perform a check that the field element does not overflow the order.
///
/// Used incorrectly this can lead to invalid results!
pub(crate) const fn from_uint_unchecked(w: $uint) -> Self {
Self(<$uint>::from_words($to_mont(w.as_words())))
}
/// Returns the big-endian encoding of this [`
#[doc = stringify!($fe)]
/// `].
pub fn to_be_bytes(self) -> $bytes {
use $crate::bigint::ArrayEncoding as _;
self.to_canonical().to_be_byte_array()
}
/// Returns the little-endian encoding of this [`
#[doc = stringify!($fe)]
/// `].
pub fn to_le_bytes(self) -> $bytes {
use $crate::bigint::ArrayEncoding as _;
self.to_canonical().to_le_byte_array()
}
/// Translate [`
#[doc = stringify!($fe)]
/// `] out of the Montgomery domain, returning a [`
#[doc = stringify!($uint)]
/// `] in canonical form.
#[inline]
pub const fn to_canonical(self) -> $uint {
<$uint>::from_words($from_mont(self.0.as_words()))
}
/// Determine if this [`
#[doc = stringify!($fe)]
/// `] is odd in the SEC1 sense: `self mod 2 == 1`.
///
/// # Returns
///
/// If odd, return `Choice(1)`. Otherwise, return `Choice(0)`.
pub fn is_odd(&self) -> Choice {
use $crate::bigint::Integer;
self.to_canonical().is_odd()
}
/// Determine if this [`
#[doc = stringify!($fe)]
/// `] is even in the SEC1 sense: `self mod 2 == 0`.
///
/// # Returns
///
/// If even, return `Choice(1)`. Otherwise, return `Choice(0)`.
pub fn is_even(&self) -> Choice {
!self.is_odd()
}
/// Determine if this [`
#[doc = stringify!($fe)]
/// `] is zero.
///
/// # Returns
///
/// If zero, return `Choice(1)`. Otherwise, return `Choice(0)`.
pub fn is_zero(&self) -> Choice {
self.ct_eq(&Self::ZERO)
}
/// Add elements.
pub const fn add(&self, rhs: &Self) -> Self {
Self(<$uint>::from_words($add(
self.0.as_words(),
rhs.0.as_words(),
)))
}
/// Double element (add it to itself).
#[must_use]
pub const fn double(&self) -> Self {
self.add(self)
}
/// Subtract elements.
pub const fn sub(&self, rhs: &Self) -> Self {
Self(<$uint>::from_words($sub(
self.0.as_words(),
rhs.0.as_words(),
)))
}
/// Multiply elements.
pub const fn mul(&self, rhs: &Self) -> Self {
Self(<$uint>::from_words($mul(
self.0.as_words(),
rhs.0.as_words(),
)))
}
/// Negate element.
pub const fn neg(&self) -> Self {
Self(<$uint>::from_words($neg(self.0.as_words())))
}
/// Compute modular square.
#[must_use]
pub const fn square(&self) -> Self {
Self(<$uint>::from_words($square(self.0.as_words())))
}
}
impl AsRef<$arr> for $fe {
fn as_ref(&self) -> &$arr {
self.0.as_ref()
}
}
impl Default for $fe {
fn default() -> Self {
Self::ZERO
}
}
impl Eq for $fe {}
impl PartialEq for $fe {
fn eq(&self, rhs: &Self) -> bool {
self.0.ct_eq(&(rhs.0)).into()
}
}
impl $crate::subtle::ConditionallySelectable for $fe {
fn conditional_select(a: &Self, b: &Self, choice: Choice) -> Self {
Self(<$uint>::conditional_select(&a.0, &b.0, choice))
}
}
impl $crate::subtle::ConstantTimeEq for $fe {
fn ct_eq(&self, other: &Self) -> $crate::subtle::Choice {
self.0.ct_eq(&other.0)
}
}
impl $crate::subtle::ConstantTimeGreater for $fe {
fn ct_gt(&self, other: &Self) -> $crate::subtle::Choice {
self.0.ct_gt(&other.0)
}
}
impl $crate::subtle::ConstantTimeLess for $fe {
fn ct_lt(&self, other: &Self) -> $crate::subtle::Choice {
self.0.ct_lt(&other.0)
}
}
impl $crate::zeroize::DefaultIsZeroes for $fe {}
impl $crate::ff::Field for $fe {
fn random(mut rng: impl $crate::rand_core::RngCore) -> Self {
// NOTE: can't use ScalarCore::random due to CryptoRng bound
let mut bytes = <$bytes>::default();
loop {
rng.fill_bytes(&mut bytes);
if let Some(fe) = Self::from_be_bytes(bytes).into() {
return fe;
}
}
}
fn zero() -> Self {
Self::ZERO
}
fn one() -> Self {
Self::ONE
}
fn is_zero(&self) -> Choice {
Self::ZERO.ct_eq(self)
}
#[must_use]
fn square(&self) -> Self {
self.square()
}
#[must_use]
fn double(&self) -> Self {
self.double()
}
fn invert(&self) -> CtOption<Self> {
self.invert()
}
fn sqrt(&self) -> CtOption<Self> {
self.sqrt()
}
}
$crate::impl_field_op!($fe, $uint, Add, add, $add);
$crate::impl_field_op!($fe, $uint, Sub, sub, $sub);
$crate::impl_field_op!($fe, $uint, Mul, mul, $mul);
impl AddAssign<$fe> for $fe {
#[inline]
fn add_assign(&mut self, other: $fe) {
*self = *self + other;
}
}
impl AddAssign<&$fe> for $fe {
#[inline]
fn add_assign(&mut self, other: &$fe) {
*self = *self + other;
}
}
impl SubAssign<$fe> for $fe {
#[inline]
fn sub_assign(&mut self, other: $fe) {
*self = *self - other;
}
}
impl SubAssign<&$fe> for $fe {
#[inline]
fn sub_assign(&mut self, other: &$fe) {
*self = *self - other;
}
}
impl MulAssign<&$fe> for $fe {
#[inline]
fn mul_assign(&mut self, other: &$fe) {
*self = *self * other;
}
}
impl MulAssign for $fe {
#[inline]
fn mul_assign(&mut self, other: $fe) {
*self = *self * other;
}
}
impl Neg for $fe {
type Output = $fe;
#[inline]
fn neg(self) -> $fe {
Self($neg(self.as_ref()).into())
}
}
};
}
/// Emit impls for a `core::ops` trait for all combinations of reference types,
/// which thunk to the given function.
#[macro_export]
macro_rules! impl_field_op {
($fe:tt, $uint:ty, $op:tt, $op_fn:ident, $func:ident) => {
impl ::core::ops::$op for $fe {
type Output = $fe;
#[inline]
fn $op_fn(self, rhs: $fe) -> $fe {
$fe($func(self.as_ref(), rhs.as_ref()).into())
}
}
impl ::core::ops::$op<&$fe> for $fe {
type Output = $fe;
#[inline]
fn $op_fn(self, rhs: &$fe) -> $fe {
$fe($func(self.as_ref(), rhs.as_ref()).into())
}
}
impl ::core::ops::$op<&$fe> for &$fe {
type Output = $fe;
#[inline]
fn $op_fn(self, rhs: &$fe) -> $fe {
$fe($func(self.as_ref(), rhs.as_ref()).into())
}
}
};
}