1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543
//! WebAssembly module and function translation state.
//!
//! The `ModuleTranslationState` struct defined in this module is used to keep track of data about
//! the whole WebAssembly module, such as the decoded type signatures.
//!
//! The `FuncTranslationState` struct defined in this module is used to keep track of the WebAssembly
//! value and control stacks during the translation of a single function.
use crate::environ::{FuncEnvironment, GlobalVariable};
use crate::{FuncIndex, GlobalIndex, MemoryIndex, TableIndex, TypeIndex, WasmResult};
use crate::{HashMap, Occupied, Vacant};
use cranelift_codegen::ir::{self, Block, Inst, Value};
use std::vec::Vec;
/// Information about the presence of an associated `else` for an `if`, or the
/// lack thereof.
#[derive(Debug)]
pub enum ElseData {
/// The `if` does not already have an `else` block.
///
/// This doesn't mean that it will never have an `else`, just that we
/// haven't seen it yet.
NoElse {
/// If we discover that we need an `else` block, this is the jump
/// instruction that needs to be fixed up to point to the new `else`
/// block rather than the destination block after the `if...end`.
branch_inst: Inst,
},
/// We have already allocated an `else` block.
///
/// Usually we don't know whether we will hit an `if .. end` or an `if
/// .. else .. end`, but sometimes we can tell based on the block's type
/// signature that the signature is not valid if there isn't an `else`. In
/// these cases, we pre-allocate the `else` block.
WithElse {
/// This is the `else` block.
else_block: Block,
},
}
/// A control stack frame can be an `if`, a `block` or a `loop`, each one having the following
/// fields:
///
/// - `destination`: reference to the `Block` that will hold the code after the control block;
/// - `num_return_values`: number of values returned by the control block;
/// - `original_stack_size`: size of the value stack at the beginning of the control block.
///
/// Moreover, the `if` frame has the `branch_inst` field that points to the `brz` instruction
/// separating the `true` and `false` branch. The `loop` frame has a `header` field that references
/// the `Block` that contains the beginning of the body of the loop.
#[derive(Debug)]
pub enum ControlStackFrame {
If {
destination: Block,
else_data: ElseData,
num_param_values: usize,
num_return_values: usize,
original_stack_size: usize,
exit_is_branched_to: bool,
blocktype: wasmparser::BlockType,
/// Was the head of the `if` reachable?
head_is_reachable: bool,
/// What was the reachability at the end of the consequent?
///
/// This is `None` until we're finished translating the consequent, and
/// is set to `Some` either by hitting an `else` when we will begin
/// translating the alternative, or by hitting an `end` in which case
/// there is no alternative.
consequent_ends_reachable: Option<bool>,
// Note: no need for `alternative_ends_reachable` because that is just
// `state.reachable` when we hit the `end` in the `if .. else .. end`.
},
Block {
destination: Block,
num_param_values: usize,
num_return_values: usize,
original_stack_size: usize,
exit_is_branched_to: bool,
},
Loop {
destination: Block,
header: Block,
num_param_values: usize,
num_return_values: usize,
original_stack_size: usize,
},
}
/// Helper methods for the control stack objects.
impl ControlStackFrame {
pub fn num_return_values(&self) -> usize {
match *self {
Self::If {
num_return_values, ..
}
| Self::Block {
num_return_values, ..
}
| Self::Loop {
num_return_values, ..
} => num_return_values,
}
}
pub fn num_param_values(&self) -> usize {
match *self {
Self::If {
num_param_values, ..
}
| Self::Block {
num_param_values, ..
}
| Self::Loop {
num_param_values, ..
} => num_param_values,
}
}
pub fn following_code(&self) -> Block {
match *self {
Self::If { destination, .. }
| Self::Block { destination, .. }
| Self::Loop { destination, .. } => destination,
}
}
pub fn br_destination(&self) -> Block {
match *self {
Self::If { destination, .. } | Self::Block { destination, .. } => destination,
Self::Loop { header, .. } => header,
}
}
/// Private helper. Use `truncate_value_stack_to_else_params()` or
/// `truncate_value_stack_to_original_size()` to restore value-stack state.
fn original_stack_size(&self) -> usize {
match *self {
Self::If {
original_stack_size,
..
}
| Self::Block {
original_stack_size,
..
}
| Self::Loop {
original_stack_size,
..
} => original_stack_size,
}
}
pub fn is_loop(&self) -> bool {
match *self {
Self::If { .. } | Self::Block { .. } => false,
Self::Loop { .. } => true,
}
}
pub fn exit_is_branched_to(&self) -> bool {
match *self {
Self::If {
exit_is_branched_to,
..
}
| Self::Block {
exit_is_branched_to,
..
} => exit_is_branched_to,
Self::Loop { .. } => false,
}
}
pub fn set_branched_to_exit(&mut self) {
match *self {
Self::If {
ref mut exit_is_branched_to,
..
}
| Self::Block {
ref mut exit_is_branched_to,
..
} => *exit_is_branched_to = true,
Self::Loop { .. } => {}
}
}
/// Pop values from the value stack so that it is left at the
/// input-parameters to an else-block.
pub fn truncate_value_stack_to_else_params(&self, stack: &mut Vec<Value>) {
debug_assert!(matches!(self, &ControlStackFrame::If { .. }));
stack.truncate(self.original_stack_size());
}
/// Pop values from the value stack so that it is left at the state it was
/// before this control-flow frame.
pub fn truncate_value_stack_to_original_size(&self, stack: &mut Vec<Value>) {
// The "If" frame pushes its parameters twice, so they're available to the else block
// (see also `FuncTranslationState::push_if`).
// Yet, the original_stack_size member accounts for them only once, so that the else
// block can see the same number of parameters as the consequent block. As a matter of
// fact, we need to substract an extra number of parameter values for if blocks.
let num_duplicated_params = match self {
&ControlStackFrame::If {
num_param_values, ..
} => {
debug_assert!(num_param_values <= self.original_stack_size());
num_param_values
}
_ => 0,
};
stack.truncate(self.original_stack_size() - num_duplicated_params);
}
}
/// Contains information passed along during a function's translation and that records:
///
/// - The current value and control stacks.
/// - The depth of the two unreachable control blocks stacks, that are manipulated when translating
/// unreachable code;
pub struct FuncTranslationState {
/// A stack of values corresponding to the active values in the input wasm function at this
/// point.
pub(crate) stack: Vec<Value>,
/// A stack of active control flow operations at this point in the input wasm function.
pub(crate) control_stack: Vec<ControlStackFrame>,
/// Is the current translation state still reachable? This is false when translating operators
/// like End, Return, or Unreachable.
pub(crate) reachable: bool,
// Map of global variables that have already been created by `FuncEnvironment::make_global`.
globals: HashMap<GlobalIndex, GlobalVariable>,
// Map of heaps that have been created by `FuncEnvironment::make_heap`.
heaps: HashMap<MemoryIndex, ir::Heap>,
// Map of tables that have been created by `FuncEnvironment::make_table`.
pub(crate) tables: HashMap<TableIndex, ir::Table>,
// Map of indirect call signatures that have been created by
// `FuncEnvironment::make_indirect_sig()`.
// Stores both the signature reference and the number of WebAssembly arguments
signatures: HashMap<TypeIndex, (ir::SigRef, usize)>,
// Imported and local functions that have been created by
// `FuncEnvironment::make_direct_func()`.
// Stores both the function reference and the number of WebAssembly arguments
functions: HashMap<FuncIndex, (ir::FuncRef, usize)>,
}
// Public methods that are exposed to non-`cranelift_wasm` API consumers.
impl FuncTranslationState {
/// True if the current translation state expresses reachable code, false if it is unreachable.
#[inline]
pub fn reachable(&self) -> bool {
self.reachable
}
}
impl FuncTranslationState {
/// Construct a new, empty, `FuncTranslationState`
pub(crate) fn new() -> Self {
Self {
stack: Vec::new(),
control_stack: Vec::new(),
reachable: true,
globals: HashMap::new(),
heaps: HashMap::new(),
tables: HashMap::new(),
signatures: HashMap::new(),
functions: HashMap::new(),
}
}
fn clear(&mut self) {
debug_assert!(self.stack.is_empty());
debug_assert!(self.control_stack.is_empty());
self.reachable = true;
self.globals.clear();
self.heaps.clear();
self.tables.clear();
self.signatures.clear();
self.functions.clear();
}
/// Initialize the state for compiling a function with the given signature.
///
/// This resets the state to containing only a single block representing the whole function.
/// The exit block is the last block in the function which will contain the return instruction.
pub(crate) fn initialize(&mut self, sig: &ir::Signature, exit_block: Block) {
self.clear();
self.push_block(
exit_block,
0,
sig.returns
.iter()
.filter(|arg| arg.purpose == ir::ArgumentPurpose::Normal)
.count(),
);
}
/// Push a value.
pub(crate) fn push1(&mut self, val: Value) {
self.stack.push(val);
}
/// Push multiple values.
pub(crate) fn pushn(&mut self, vals: &[Value]) {
self.stack.extend_from_slice(vals);
}
/// Pop one value.
pub(crate) fn pop1(&mut self) -> Value {
self.stack
.pop()
.expect("attempted to pop a value from an empty stack")
}
/// Peek at the top of the stack without popping it.
pub(crate) fn peek1(&self) -> Value {
*self
.stack
.last()
.expect("attempted to peek at a value on an empty stack")
}
/// Pop two values. Return them in the order they were pushed.
pub(crate) fn pop2(&mut self) -> (Value, Value) {
let v2 = self.stack.pop().unwrap();
let v1 = self.stack.pop().unwrap();
(v1, v2)
}
/// Pop three values. Return them in the order they were pushed.
pub(crate) fn pop3(&mut self) -> (Value, Value, Value) {
let v3 = self.stack.pop().unwrap();
let v2 = self.stack.pop().unwrap();
let v1 = self.stack.pop().unwrap();
(v1, v2, v3)
}
/// Helper to ensure the the stack size is at least as big as `n`; note that due to
/// `debug_assert` this will not execute in non-optimized builds.
#[inline]
fn ensure_length_is_at_least(&self, n: usize) {
debug_assert!(
n <= self.stack.len(),
"attempted to access {} values but stack only has {} values",
n,
self.stack.len()
)
}
/// Pop the top `n` values on the stack.
///
/// The popped values are not returned. Use `peekn` to look at them before popping.
pub(crate) fn popn(&mut self, n: usize) {
self.ensure_length_is_at_least(n);
let new_len = self.stack.len() - n;
self.stack.truncate(new_len);
}
/// Peek at the top `n` values on the stack in the order they were pushed.
pub(crate) fn peekn(&self, n: usize) -> &[Value] {
self.ensure_length_is_at_least(n);
&self.stack[self.stack.len() - n..]
}
/// Peek at the top `n` values on the stack in the order they were pushed.
pub(crate) fn peekn_mut(&mut self, n: usize) -> &mut [Value] {
self.ensure_length_is_at_least(n);
let len = self.stack.len();
&mut self.stack[len - n..]
}
/// Push a block on the control stack.
pub(crate) fn push_block(
&mut self,
following_code: Block,
num_param_types: usize,
num_result_types: usize,
) {
debug_assert!(num_param_types <= self.stack.len());
self.control_stack.push(ControlStackFrame::Block {
destination: following_code,
original_stack_size: self.stack.len() - num_param_types,
num_param_values: num_param_types,
num_return_values: num_result_types,
exit_is_branched_to: false,
});
}
/// Push a loop on the control stack.
pub(crate) fn push_loop(
&mut self,
header: Block,
following_code: Block,
num_param_types: usize,
num_result_types: usize,
) {
debug_assert!(num_param_types <= self.stack.len());
self.control_stack.push(ControlStackFrame::Loop {
header,
destination: following_code,
original_stack_size: self.stack.len() - num_param_types,
num_param_values: num_param_types,
num_return_values: num_result_types,
});
}
/// Push an if on the control stack.
pub(crate) fn push_if(
&mut self,
destination: Block,
else_data: ElseData,
num_param_types: usize,
num_result_types: usize,
blocktype: wasmparser::BlockType,
) {
debug_assert!(num_param_types <= self.stack.len());
// Push a second copy of our `if`'s parameters on the stack. This lets
// us avoid saving them on the side in the `ControlStackFrame` for our
// `else` block (if it exists), which would require a second heap
// allocation. See also the comment in `translate_operator` for
// `Operator::Else`.
self.stack.reserve(num_param_types);
for i in (self.stack.len() - num_param_types)..self.stack.len() {
let val = self.stack[i];
self.stack.push(val);
}
self.control_stack.push(ControlStackFrame::If {
destination,
else_data,
original_stack_size: self.stack.len() - num_param_types,
num_param_values: num_param_types,
num_return_values: num_result_types,
exit_is_branched_to: false,
head_is_reachable: self.reachable,
consequent_ends_reachable: None,
blocktype,
});
}
}
/// Methods for handling entity references.
impl FuncTranslationState {
/// Get the `GlobalVariable` reference that should be used to access the global variable
/// `index`. Create the reference if necessary.
/// Also return the WebAssembly type of the global.
pub(crate) fn get_global<FE: FuncEnvironment + ?Sized>(
&mut self,
func: &mut ir::Function,
index: u32,
environ: &mut FE,
) -> WasmResult<GlobalVariable> {
let index = GlobalIndex::from_u32(index);
match self.globals.entry(index) {
Occupied(entry) => Ok(*entry.get()),
Vacant(entry) => Ok(*entry.insert(environ.make_global(func, index)?)),
}
}
/// Get the `Heap` reference that should be used to access linear memory `index`.
/// Create the reference if necessary.
pub(crate) fn get_heap<FE: FuncEnvironment + ?Sized>(
&mut self,
func: &mut ir::Function,
index: u32,
environ: &mut FE,
) -> WasmResult<ir::Heap> {
let index = MemoryIndex::from_u32(index);
match self.heaps.entry(index) {
Occupied(entry) => Ok(*entry.get()),
Vacant(entry) => Ok(*entry.insert(environ.make_heap(func, index)?)),
}
}
/// Get the `Table` reference that should be used to access table `index`.
/// Create the reference if necessary.
pub(crate) fn get_or_create_table<FE: FuncEnvironment + ?Sized>(
&mut self,
func: &mut ir::Function,
index: u32,
environ: &mut FE,
) -> WasmResult<ir::Table> {
let index = TableIndex::from_u32(index);
match self.tables.entry(index) {
Occupied(entry) => Ok(*entry.get()),
Vacant(entry) => Ok(*entry.insert(environ.make_table(func, index)?)),
}
}
/// Get the `SigRef` reference that should be used to make an indirect call with signature
/// `index`. Also return the number of WebAssembly arguments in the signature.
///
/// Create the signature if necessary.
pub(crate) fn get_indirect_sig<FE: FuncEnvironment + ?Sized>(
&mut self,
func: &mut ir::Function,
index: u32,
environ: &mut FE,
) -> WasmResult<(ir::SigRef, usize)> {
let index = TypeIndex::from_u32(index);
match self.signatures.entry(index) {
Occupied(entry) => Ok(*entry.get()),
Vacant(entry) => {
let sig = environ.make_indirect_sig(func, index)?;
Ok(*entry.insert((sig, num_wasm_parameters(environ, &func.dfg.signatures[sig]))))
}
}
}
/// Get the `FuncRef` reference that should be used to make a direct call to function
/// `index`. Also return the number of WebAssembly arguments in the signature.
///
/// Create the function reference if necessary.
pub(crate) fn get_direct_func<FE: FuncEnvironment + ?Sized>(
&mut self,
func: &mut ir::Function,
index: u32,
environ: &mut FE,
) -> WasmResult<(ir::FuncRef, usize)> {
let index = FuncIndex::from_u32(index);
match self.functions.entry(index) {
Occupied(entry) => Ok(*entry.get()),
Vacant(entry) => {
let fref = environ.make_direct_func(func, index)?;
let sig = func.dfg.ext_funcs[fref].signature;
Ok(*entry.insert((
fref,
num_wasm_parameters(environ, &func.dfg.signatures[sig]),
)))
}
}
}
}
fn num_wasm_parameters<FE: FuncEnvironment + ?Sized>(
environ: &FE,
signature: &ir::Signature,
) -> usize {
(0..signature.params.len())
.filter(|index| environ.is_wasm_parameter(signature, *index))
.count()
}