1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
use crate::{engine::Engine, DecodeError};
use std::{cmp, fmt, io};
// This should be large, but it has to fit on the stack.
pub(crate) const BUF_SIZE: usize = 1024;
// 4 bytes of base64 data encode 3 bytes of raw data (modulo padding).
const BASE64_CHUNK_SIZE: usize = 4;
const DECODED_CHUNK_SIZE: usize = 3;
/// A `Read` implementation that decodes base64 data read from an underlying reader.
///
/// # Examples
///
/// ```
/// use std::io::Read;
/// use std::io::Cursor;
/// use base64::engine::general_purpose;
///
/// // use a cursor as the simplest possible `Read` -- in real code this is probably a file, etc.
/// let mut wrapped_reader = Cursor::new(b"YXNkZg==");
/// let mut decoder = base64::read::DecoderReader::new(
/// &mut wrapped_reader,
/// &general_purpose::STANDARD);
///
/// // handle errors as you normally would
/// let mut result = Vec::new();
/// decoder.read_to_end(&mut result).unwrap();
///
/// assert_eq!(b"asdf", &result[..]);
///
/// ```
pub struct DecoderReader<'e, E: Engine, R: io::Read> {
engine: &'e E,
/// Where b64 data is read from
inner: R,
// Holds b64 data read from the delegate reader.
b64_buffer: [u8; BUF_SIZE],
// The start of the pending buffered data in b64_buffer.
b64_offset: usize,
// The amount of buffered b64 data.
b64_len: usize,
// Since the caller may provide us with a buffer of size 1 or 2 that's too small to copy a
// decoded chunk in to, we have to be able to hang on to a few decoded bytes.
// Technically we only need to hold 2 bytes but then we'd need a separate temporary buffer to
// decode 3 bytes into and then juggle copying one byte into the provided read buf and the rest
// into here, which seems like a lot of complexity for 1 extra byte of storage.
decoded_buffer: [u8; 3],
// index of start of decoded data
decoded_offset: usize,
// length of decoded data
decoded_len: usize,
// used to provide accurate offsets in errors
total_b64_decoded: usize,
}
impl<'e, E: Engine, R: io::Read> fmt::Debug for DecoderReader<'e, E, R> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.debug_struct("DecoderReader")
.field("b64_offset", &self.b64_offset)
.field("b64_len", &self.b64_len)
.field("decoded_buffer", &self.decoded_buffer)
.field("decoded_offset", &self.decoded_offset)
.field("decoded_len", &self.decoded_len)
.field("total_b64_decoded", &self.total_b64_decoded)
.finish()
}
}
impl<'e, E: Engine, R: io::Read> DecoderReader<'e, E, R> {
/// Create a new decoder that will read from the provided reader `r`.
pub fn new(reader: R, engine: &'e E) -> Self {
DecoderReader {
engine,
inner: reader,
b64_buffer: [0; BUF_SIZE],
b64_offset: 0,
b64_len: 0,
decoded_buffer: [0; DECODED_CHUNK_SIZE],
decoded_offset: 0,
decoded_len: 0,
total_b64_decoded: 0,
}
}
/// Write as much as possible of the decoded buffer into the target buffer.
/// Must only be called when there is something to write and space to write into.
/// Returns a Result with the number of (decoded) bytes copied.
fn flush_decoded_buf(&mut self, buf: &mut [u8]) -> io::Result<usize> {
debug_assert!(self.decoded_len > 0);
debug_assert!(!buf.is_empty());
let copy_len = cmp::min(self.decoded_len, buf.len());
debug_assert!(copy_len > 0);
debug_assert!(copy_len <= self.decoded_len);
buf[..copy_len].copy_from_slice(
&self.decoded_buffer[self.decoded_offset..self.decoded_offset + copy_len],
);
self.decoded_offset += copy_len;
self.decoded_len -= copy_len;
debug_assert!(self.decoded_len < DECODED_CHUNK_SIZE);
Ok(copy_len)
}
/// Read into the remaining space in the buffer after the current contents.
/// Must only be called when there is space to read into in the buffer.
/// Returns the number of bytes read.
fn read_from_delegate(&mut self) -> io::Result<usize> {
debug_assert!(self.b64_offset + self.b64_len < BUF_SIZE);
let read = self
.inner
.read(&mut self.b64_buffer[self.b64_offset + self.b64_len..])?;
self.b64_len += read;
debug_assert!(self.b64_offset + self.b64_len <= BUF_SIZE);
Ok(read)
}
/// Decode the requested number of bytes from the b64 buffer into the provided buffer. It's the
/// caller's responsibility to choose the number of b64 bytes to decode correctly.
///
/// Returns a Result with the number of decoded bytes written to `buf`.
fn decode_to_buf(&mut self, num_bytes: usize, buf: &mut [u8]) -> io::Result<usize> {
debug_assert!(self.b64_len >= num_bytes);
debug_assert!(self.b64_offset + self.b64_len <= BUF_SIZE);
debug_assert!(!buf.is_empty());
let decoded = self
.engine
.internal_decode(
&self.b64_buffer[self.b64_offset..self.b64_offset + num_bytes],
buf,
self.engine.internal_decoded_len_estimate(num_bytes),
)
.map_err(|e| match e {
DecodeError::InvalidByte(offset, byte) => {
DecodeError::InvalidByte(self.total_b64_decoded + offset, byte)
}
DecodeError::InvalidLength => DecodeError::InvalidLength,
DecodeError::InvalidLastSymbol(offset, byte) => {
DecodeError::InvalidLastSymbol(self.total_b64_decoded + offset, byte)
}
DecodeError::InvalidPadding => DecodeError::InvalidPadding,
})
.map_err(|e| io::Error::new(io::ErrorKind::InvalidData, e))?;
self.total_b64_decoded += num_bytes;
self.b64_offset += num_bytes;
self.b64_len -= num_bytes;
debug_assert!(self.b64_offset + self.b64_len <= BUF_SIZE);
Ok(decoded)
}
/// Unwraps this `DecoderReader`, returning the base reader which it reads base64 encoded
/// input from.
///
/// Because `DecoderReader` performs internal buffering, the state of the inner reader is
/// unspecified. This function is mainly provided because the inner reader type may provide
/// additional functionality beyond the `Read` implementation which may still be useful.
pub fn into_inner(self) -> R {
self.inner
}
}
impl<'e, E: Engine, R: io::Read> io::Read for DecoderReader<'e, E, R> {
/// Decode input from the wrapped reader.
///
/// Under non-error circumstances, this returns `Ok` with the value being the number of bytes
/// written in `buf`.
///
/// Where possible, this function buffers base64 to minimize the number of read() calls to the
/// delegate reader.
///
/// # Errors
///
/// Any errors emitted by the delegate reader are returned. Decoding errors due to invalid
/// base64 are also possible, and will have `io::ErrorKind::InvalidData`.
fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
if buf.is_empty() {
return Ok(0);
}
// offset == BUF_SIZE when we copied it all last time
debug_assert!(self.b64_offset <= BUF_SIZE);
debug_assert!(self.b64_offset + self.b64_len <= BUF_SIZE);
debug_assert!(if self.b64_offset == BUF_SIZE {
self.b64_len == 0
} else {
self.b64_len <= BUF_SIZE
});
debug_assert!(if self.decoded_len == 0 {
// can be = when we were able to copy the complete chunk
self.decoded_offset <= DECODED_CHUNK_SIZE
} else {
self.decoded_offset < DECODED_CHUNK_SIZE
});
// We shouldn't ever decode into here when we can't immediately write at least one byte into
// the provided buf, so the effective length should only be 3 momentarily between when we
// decode and when we copy into the target buffer.
debug_assert!(self.decoded_len < DECODED_CHUNK_SIZE);
debug_assert!(self.decoded_len + self.decoded_offset <= DECODED_CHUNK_SIZE);
if self.decoded_len > 0 {
// we have a few leftover decoded bytes; flush that rather than pull in more b64
self.flush_decoded_buf(buf)
} else {
let mut at_eof = false;
while self.b64_len < BASE64_CHUNK_SIZE {
// Work around lack of copy_within, which is only present in 1.37
// Copy any bytes we have to the start of the buffer.
// We know we have < 1 chunk, so we can use a tiny tmp buffer.
let mut memmove_buf = [0_u8; BASE64_CHUNK_SIZE];
memmove_buf[..self.b64_len].copy_from_slice(
&self.b64_buffer[self.b64_offset..self.b64_offset + self.b64_len],
);
self.b64_buffer[0..self.b64_len].copy_from_slice(&memmove_buf[..self.b64_len]);
self.b64_offset = 0;
// then fill in more data
let read = self.read_from_delegate()?;
if read == 0 {
// we never pass in an empty buf, so 0 => we've hit EOF
at_eof = true;
break;
}
}
if self.b64_len == 0 {
debug_assert!(at_eof);
// we must be at EOF, and we have no data left to decode
return Ok(0);
};
debug_assert!(if at_eof {
// if we are at eof, we may not have a complete chunk
self.b64_len > 0
} else {
// otherwise, we must have at least one chunk
self.b64_len >= BASE64_CHUNK_SIZE
});
debug_assert_eq!(0, self.decoded_len);
if buf.len() < DECODED_CHUNK_SIZE {
// caller requested an annoyingly short read
// have to write to a tmp buf first to avoid double mutable borrow
let mut decoded_chunk = [0_u8; DECODED_CHUNK_SIZE];
// if we are at eof, could have less than BASE64_CHUNK_SIZE, in which case we have
// to assume that these last few tokens are, in fact, valid (i.e. must be 2-4 b64
// tokens, not 1, since 1 token can't decode to 1 byte).
let to_decode = cmp::min(self.b64_len, BASE64_CHUNK_SIZE);
let decoded = self.decode_to_buf(to_decode, &mut decoded_chunk[..])?;
self.decoded_buffer[..decoded].copy_from_slice(&decoded_chunk[..decoded]);
self.decoded_offset = 0;
self.decoded_len = decoded;
// can be less than 3 on last block due to padding
debug_assert!(decoded <= 3);
self.flush_decoded_buf(buf)
} else {
let b64_bytes_that_can_decode_into_buf = (buf.len() / DECODED_CHUNK_SIZE)
.checked_mul(BASE64_CHUNK_SIZE)
.expect("too many chunks");
debug_assert!(b64_bytes_that_can_decode_into_buf >= BASE64_CHUNK_SIZE);
let b64_bytes_available_to_decode = if at_eof {
self.b64_len
} else {
// only use complete chunks
self.b64_len - self.b64_len % 4
};
let actual_decode_len = cmp::min(
b64_bytes_that_can_decode_into_buf,
b64_bytes_available_to_decode,
);
self.decode_to_buf(actual_decode_len, buf)
}
}
}
}