1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
// This file is part of Substrate.

// Copyright (C) 2022 Parity Technologies (UK) Ltd.
// SPDX-License-Identifier: GPL-3.0-or-later WITH Classpath-exception-2.0

// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program. If not, see <https://www.gnu.org/licenses/>.

//! This crate contains the code necessary to gather basic hardware
//! and software telemetry information about the node on which we're running.

use futures::prelude::*;
use std::time::Duration;

mod sysinfo;
#[cfg(target_os = "linux")]
mod sysinfo_linux;

pub use sysinfo::{
	benchmark_cpu, benchmark_disk_random_writes, benchmark_disk_sequential_writes,
	benchmark_memory, benchmark_sr25519_verify, gather_hwbench, gather_sysinfo,
	serialize_throughput, serialize_throughput_option, Throughput,
};

/// The operating system part of the current target triplet.
pub const TARGET_OS: &str = include_str!(concat!(env!("OUT_DIR"), "/target_os.txt"));

/// The CPU ISA architecture part of the current target triplet.
pub const TARGET_ARCH: &str = include_str!(concat!(env!("OUT_DIR"), "/target_arch.txt"));

/// The environment part of the current target triplet.
pub const TARGET_ENV: &str = include_str!(concat!(env!("OUT_DIR"), "/target_env.txt"));

/// Hardware benchmark results for the node.
#[derive(Clone, Debug, serde::Serialize)]
pub struct HwBench {
	/// The CPU speed, as measured in how many MB/s it can hash using the BLAKE2b-256 hash.
	#[serde(serialize_with = "serialize_throughput")]
	pub cpu_hashrate_score: Throughput,
	/// Memory bandwidth in MB/s, calculated by measuring the throughput of `memcpy`.
	#[serde(serialize_with = "serialize_throughput")]
	pub memory_memcpy_score: Throughput,
	/// Sequential disk write speed in MB/s.
	#[serde(
		serialize_with = "serialize_throughput_option",
		skip_serializing_if = "Option::is_none"
	)]
	pub disk_sequential_write_score: Option<Throughput>,
	/// Random disk write speed in MB/s.
	#[serde(
		serialize_with = "serialize_throughput_option",
		skip_serializing_if = "Option::is_none"
	)]
	pub disk_random_write_score: Option<Throughput>,
}

/// Limit the execution time of a benchmark.
pub enum ExecutionLimit {
	/// Limit by the maximal duration.
	MaxDuration(Duration),

	/// Limit by the maximal number of iterations.
	MaxIterations(usize),

	/// Limit by the maximal duration and maximal number of iterations.
	Both { max_iterations: usize, max_duration: Duration },
}

impl ExecutionLimit {
	/// Creates a new execution limit with the passed seconds as duration limit.
	pub fn from_secs_f32(secs: f32) -> Self {
		Self::MaxDuration(Duration::from_secs_f32(secs))
	}

	/// Returns the duration limit or `MAX` if none is present.
	pub fn max_duration(&self) -> Duration {
		match self {
			Self::MaxDuration(d) => *d,
			Self::Both { max_duration, .. } => *max_duration,
			_ => Duration::from_secs(u64::MAX),
		}
	}

	/// Returns the iterations limit or `MAX` if none is present.
	pub fn max_iterations(&self) -> usize {
		match self {
			Self::MaxIterations(d) => *d,
			Self::Both { max_iterations, .. } => *max_iterations,
			_ => usize::MAX,
		}
	}
}

/// Prints out the system software/hardware information in the logs.
pub fn print_sysinfo(sysinfo: &sc_telemetry::SysInfo) {
	log::info!("💻 Operating system: {}", TARGET_OS);
	log::info!("💻 CPU architecture: {}", TARGET_ARCH);
	if !TARGET_ENV.is_empty() {
		log::info!("💻 Target environment: {}", TARGET_ENV);
	}

	if let Some(ref cpu) = sysinfo.cpu {
		log::info!("💻 CPU: {}", cpu);
	}
	if let Some(core_count) = sysinfo.core_count {
		log::info!("💻 CPU cores: {}", core_count);
	}
	if let Some(memory) = sysinfo.memory {
		log::info!("💻 Memory: {}MB", memory / (1024 * 1024));
	}
	if let Some(ref linux_kernel) = sysinfo.linux_kernel {
		log::info!("💻 Kernel: {}", linux_kernel);
	}
	if let Some(ref linux_distro) = sysinfo.linux_distro {
		log::info!("💻 Linux distribution: {}", linux_distro);
	}
	if let Some(is_virtual_machine) = sysinfo.is_virtual_machine {
		log::info!("💻 Virtual machine: {}", if is_virtual_machine { "yes" } else { "no" });
	}
}

/// Prints out the results of the hardware benchmarks in the logs.
pub fn print_hwbench(hwbench: &HwBench) {
	log::info!("🏁 CPU score: {}", hwbench.cpu_hashrate_score);
	log::info!("🏁 Memory score: {}", hwbench.memory_memcpy_score);

	if let Some(score) = hwbench.disk_sequential_write_score {
		log::info!("🏁 Disk score (seq. writes): {}", score);
	}
	if let Some(score) = hwbench.disk_random_write_score {
		log::info!("🏁 Disk score (rand. writes): {}", score);
	}
}

/// Initializes the hardware benchmarks telemetry.
pub fn initialize_hwbench_telemetry(
	telemetry_handle: sc_telemetry::TelemetryHandle,
	hwbench: HwBench,
) -> impl std::future::Future<Output = ()> {
	let mut connect_stream = telemetry_handle.on_connect_stream();
	async move {
		let payload = serde_json::to_value(&hwbench)
			.expect("the `HwBench` can always be serialized into a JSON object; qed");
		let mut payload = match payload {
			serde_json::Value::Object(map) => map,
			_ => unreachable!("the `HwBench` always serializes into a JSON object; qed"),
		};
		payload.insert("msg".into(), "sysinfo.hwbench".into());
		while connect_stream.next().await.is_some() {
			telemetry_handle.send_telemetry(sc_telemetry::SUBSTRATE_INFO, payload.clone());
		}
	}
}