1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
// -*- mode: rust; -*-
//
// This file is part of curve25519-dalek.
// Copyright (c) 2019 Oleg Andreev
// See LICENSE for licensing information.
//
// Authors:
// - Oleg Andreev <oleganza@gmail.com>
//! Implementation of a variant of Pippenger's algorithm.
#![allow(non_snake_case)]
use alloc::vec::Vec;
use core::borrow::Borrow;
use core::cmp::Ordering;
use crate::edwards::EdwardsPoint;
use crate::scalar::Scalar;
use crate::traits::VartimeMultiscalarMul;
/// Implements a version of Pippenger's algorithm.
///
/// The algorithm works as follows:
///
/// Let `n` be a number of point-scalar pairs.
/// Let `w` be a window of bits (6..8, chosen based on `n`, see cost factor).
///
/// 1. Prepare `2^(w-1) - 1` buckets with indices `[1..2^(w-1))` initialized with identity points.
/// Bucket 0 is not needed as it would contain points multiplied by 0.
/// 2. Convert scalars to a radix-`2^w` representation with signed digits in `[-2^w/2, 2^w/2]`.
/// Note: only the last digit may equal `2^w/2`.
/// 3. Starting with the last window, for each point `i=[0..n)` add it to a a bucket indexed by
/// the point's scalar's value in the window.
/// 4. Once all points in a window are sorted into buckets, add buckets by multiplying each
/// by their index. Efficient way of doing it is to start with the last bucket and compute two sums:
/// intermediate sum from the last to the first, and the full sum made of all intermediate sums.
/// 5. Shift the resulting sum of buckets by `w` bits by using `w` doublings.
/// 6. Add to the return value.
/// 7. Repeat the loop.
///
/// Approximate cost w/o wNAF optimizations (A = addition, D = doubling):
///
/// ```ascii
/// cost = (n*A + 2*(2^w/2)*A + w*D + A)*256/w
/// | | | | |
/// | | | | looping over 256/w windows
/// | | | adding to the result
/// sorting points | shifting the sum by w bits (to the next window, starting from last window)
/// one by one |
/// into buckets adding/subtracting all buckets
/// multiplied by their indexes
/// using a sum of intermediate sums
/// ```
///
/// For large `n`, dominant factor is (n*256/w) additions.
/// However, if `w` is too big and `n` is not too big, then `(2^w/2)*A` could dominate.
/// Therefore, the optimal choice of `w` grows slowly as `n` grows.
///
/// This algorithm is adapted from section 4 of <https://eprint.iacr.org/2012/549.pdf>.
pub struct Pippenger;
impl VartimeMultiscalarMul for Pippenger {
type Point = EdwardsPoint;
fn optional_multiscalar_mul<I, J>(scalars: I, points: J) -> Option<EdwardsPoint>
where
I: IntoIterator,
I::Item: Borrow<Scalar>,
J: IntoIterator<Item = Option<EdwardsPoint>>,
{
use crate::traits::Identity;
let mut scalars = scalars.into_iter();
let size = scalars.by_ref().size_hint().0;
// Digit width in bits. As digit width grows,
// number of point additions goes down, but amount of
// buckets and bucket additions grows exponentially.
let w = if size < 500 {
6
} else if size < 800 {
7
} else {
8
};
let max_digit: usize = 1 << w;
let digits_count: usize = Scalar::to_radix_2w_size_hint(w);
let buckets_count: usize = max_digit / 2; // digits are signed+centered hence 2^w/2, excluding 0-th bucket
// Collect optimized scalars and points in buffers for repeated access
// (scanning the whole set per digit position).
let scalars = scalars.map(|s| s.borrow().as_radix_2w(w));
let points = points
.into_iter()
.map(|p| p.map(|P| P.as_projective_niels()));
let scalars_points = scalars
.zip(points)
.map(|(s, maybe_p)| maybe_p.map(|p| (s, p)))
.collect::<Option<Vec<_>>>()?;
// Prepare 2^w/2 buckets.
// buckets[i] corresponds to a multiplication factor (i+1).
let mut buckets: Vec<_> = (0..buckets_count)
.map(|_| EdwardsPoint::identity())
.collect();
let mut columns = (0..digits_count).rev().map(|digit_index| {
// Clear the buckets when processing another digit.
for bucket in &mut buckets {
*bucket = EdwardsPoint::identity();
}
// Iterate over pairs of (point, scalar)
// and add/sub the point to the corresponding bucket.
// Note: if we add support for precomputed lookup tables,
// we'll be adding/subtracting point premultiplied by `digits[i]` to buckets[0].
for (digits, pt) in scalars_points.iter() {
// Widen digit so that we don't run into edge cases when w=8.
let digit = digits[digit_index] as i16;
match digit.cmp(&0) {
Ordering::Greater => {
let b = (digit - 1) as usize;
buckets[b] = (&buckets[b] + pt).as_extended();
}
Ordering::Less => {
let b = (-digit - 1) as usize;
buckets[b] = (&buckets[b] - pt).as_extended();
}
Ordering::Equal => {}
}
}
// Add the buckets applying the multiplication factor to each bucket.
// The most efficient way to do that is to have a single sum with two running sums:
// an intermediate sum from last bucket to the first, and a sum of intermediate sums.
//
// For example, to add buckets 1*A, 2*B, 3*C we need to add these points:
// C
// C B
// C B A Sum = C + (C+B) + (C+B+A)
let mut buckets_intermediate_sum = buckets[buckets_count - 1];
let mut buckets_sum = buckets[buckets_count - 1];
for i in (0..(buckets_count - 1)).rev() {
buckets_intermediate_sum += buckets[i];
buckets_sum += buckets_intermediate_sum;
}
buckets_sum
});
// Take the high column as an initial value to avoid wasting time doubling the identity element in `fold()`.
// `unwrap()` always succeeds because we know we have more than zero digits.
let hi_column = columns.next().unwrap();
Some(columns.fold(hi_column, |total, p| total.mul_by_pow_2(w as u32) + p))
}
}
#[cfg(test)]
mod test {
use super::*;
use crate::constants;
use crate::scalar::Scalar;
#[test]
fn test_vartime_pippenger() {
// Reuse points across different tests
let mut n = 512;
let x = Scalar::from(2128506u64).invert();
let y = Scalar::from(4443282u64).invert();
let points: Vec<_> = (0..n)
.map(|i| constants::ED25519_BASEPOINT_POINT * Scalar::from(1 + i as u64))
.collect();
let scalars: Vec<_> = (0..n)
.map(|i| x + (Scalar::from(i as u64) * y)) // fast way to make ~random but deterministic scalars
.collect();
let premultiplied: Vec<EdwardsPoint> = scalars
.iter()
.zip(points.iter())
.map(|(sc, pt)| sc * pt)
.collect();
while n > 0 {
let scalars = &scalars[0..n].to_vec();
let points = &points[0..n].to_vec();
let control: EdwardsPoint = premultiplied[0..n].iter().sum();
let subject = Pippenger::vartime_multiscalar_mul(scalars.clone(), points.clone());
assert_eq!(subject.compress(), control.compress());
n /= 2;
}
}
}