1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
use super::plumbing::*;
use super::*;
use std::iter;
use std::usize;
/// Iterator adaptor for [the `repeat()` function](fn.repeat.html).
#[derive(Debug, Clone)]
pub struct Repeat<T: Clone + Send> {
element: T,
}
/// Creates a parallel iterator that endlessly repeats `elt` (by
/// cloning it). Note that this iterator has "infinite" length, so
/// typically you would want to use `zip` or `take` or some other
/// means to shorten it, or consider using
/// [the `repeatn()` function](fn.repeatn.html) instead.
///
/// # Examples
///
/// ```
/// use rayon::prelude::*;
/// use rayon::iter::repeat;
/// let x: Vec<(i32, i32)> = repeat(22).zip(0..3).collect();
/// assert_eq!(x, vec![(22, 0), (22, 1), (22, 2)]);
/// ```
pub fn repeat<T: Clone + Send>(elt: T) -> Repeat<T> {
Repeat { element: elt }
}
impl<T> Repeat<T>
where
T: Clone + Send,
{
/// Takes only `n` repeats of the element, similar to the general
/// [`take()`](trait.IndexedParallelIterator.html#method.take).
///
/// The resulting `RepeatN` is an `IndexedParallelIterator`, allowing
/// more functionality than `Repeat` alone.
pub fn take(self, n: usize) -> RepeatN<T> {
repeatn(self.element, n)
}
/// Iterates tuples, repeating the element with items from another
/// iterator, similar to the general
/// [`zip()`](trait.IndexedParallelIterator.html#method.zip).
pub fn zip<Z>(self, zip_op: Z) -> Zip<RepeatN<T>, Z::Iter>
where
Z: IntoParallelIterator,
Z::Iter: IndexedParallelIterator,
{
let z = zip_op.into_par_iter();
let n = z.len();
self.take(n).zip(z)
}
}
impl<T> ParallelIterator for Repeat<T>
where
T: Clone + Send,
{
type Item = T;
fn drive_unindexed<C>(self, consumer: C) -> C::Result
where
C: UnindexedConsumer<Self::Item>,
{
let producer = RepeatProducer {
element: self.element,
};
bridge_unindexed(producer, consumer)
}
}
/// Unindexed producer for `Repeat`.
struct RepeatProducer<T: Clone + Send> {
element: T,
}
impl<T: Clone + Send> UnindexedProducer for RepeatProducer<T> {
type Item = T;
fn split(self) -> (Self, Option<Self>) {
(
RepeatProducer {
element: self.element.clone(),
},
Some(RepeatProducer {
element: self.element,
}),
)
}
fn fold_with<F>(self, folder: F) -> F
where
F: Folder<T>,
{
folder.consume_iter(iter::repeat(self.element))
}
}
/// Iterator adaptor for [the `repeatn()` function](fn.repeatn.html).
#[derive(Debug, Clone)]
pub struct RepeatN<T: Clone + Send> {
element: T,
count: usize,
}
/// Creates a parallel iterator that produces `n` repeats of `elt`
/// (by cloning it).
///
/// # Examples
///
/// ```
/// use rayon::prelude::*;
/// use rayon::iter::repeatn;
/// let x: Vec<(i32, i32)> = repeatn(22, 3).zip(0..3).collect();
/// assert_eq!(x, vec![(22, 0), (22, 1), (22, 2)]);
/// ```
pub fn repeatn<T: Clone + Send>(elt: T, n: usize) -> RepeatN<T> {
RepeatN {
element: elt,
count: n,
}
}
impl<T> ParallelIterator for RepeatN<T>
where
T: Clone + Send,
{
type Item = T;
fn drive_unindexed<C>(self, consumer: C) -> C::Result
where
C: UnindexedConsumer<Self::Item>,
{
bridge(self, consumer)
}
fn opt_len(&self) -> Option<usize> {
Some(self.count)
}
}
impl<T> IndexedParallelIterator for RepeatN<T>
where
T: Clone + Send,
{
fn drive<C>(self, consumer: C) -> C::Result
where
C: Consumer<Self::Item>,
{
bridge(self, consumer)
}
fn with_producer<CB>(self, callback: CB) -> CB::Output
where
CB: ProducerCallback<Self::Item>,
{
callback.callback(RepeatNProducer {
element: self.element,
count: self.count,
})
}
fn len(&self) -> usize {
self.count
}
}
/// Producer for `RepeatN`.
struct RepeatNProducer<T: Clone + Send> {
element: T,
count: usize,
}
impl<T: Clone + Send> Producer for RepeatNProducer<T> {
type Item = T;
type IntoIter = Iter<T>;
fn into_iter(self) -> Self::IntoIter {
Iter {
element: self.element,
count: self.count,
}
}
fn split_at(self, index: usize) -> (Self, Self) {
(
RepeatNProducer {
element: self.element.clone(),
count: index,
},
RepeatNProducer {
element: self.element,
count: self.count - index,
},
)
}
}
/// Iterator for `RepeatN`.
///
/// This is conceptually like `std::iter::Take<std::iter::Repeat<T>>`, but
/// we need `DoubleEndedIterator` and unconditional `ExactSizeIterator`.
struct Iter<T: Clone> {
element: T,
count: usize,
}
impl<T: Clone> Iterator for Iter<T> {
type Item = T;
#[inline]
fn next(&mut self) -> Option<T> {
if self.count > 0 {
self.count -= 1;
Some(self.element.clone())
} else {
None
}
}
#[inline]
fn size_hint(&self) -> (usize, Option<usize>) {
(self.count, Some(self.count))
}
}
impl<T: Clone> DoubleEndedIterator for Iter<T> {
#[inline]
fn next_back(&mut self) -> Option<T> {
self.next()
}
}
impl<T: Clone> ExactSizeIterator for Iter<T> {
#[inline]
fn len(&self) -> usize {
self.count
}
}