1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762
// Copyright 2020 Parity Technologies (UK) Ltd.
// This file is part of Polkadot.
// Polkadot is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// Polkadot is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with Polkadot. If not, see <http://www.gnu.org/licenses/>.
use crate::{
configuration::{self, HostConfiguration},
initializer,
};
use frame_support::{pallet_prelude::*, traits::EnsureOrigin};
use frame_system::pallet_prelude::*;
use primitives::v2::{Id as ParaId, UpwardMessage};
use sp_std::{collections::btree_map::BTreeMap, fmt, marker::PhantomData, mem, prelude::*};
use xcm::latest::Outcome;
pub use pallet::*;
/// Maximum value that `config.max_upward_message_size` can be set to
///
/// This is used for benchmarking sanely bounding relevant storate items. It is expected from the `configurations`
/// pallet to check these values before setting.
pub const MAX_UPWARD_MESSAGE_SIZE_BOUND: u32 = 50 * 1024;
#[cfg(feature = "runtime-benchmarks")]
mod benchmarking;
#[cfg(test)]
pub(crate) mod tests;
/// All upward messages coming from parachains will be funneled into an implementation of this trait.
///
/// The message is opaque from the perspective of UMP. The message size can range from 0 to
/// `config.max_upward_message_size`.
///
/// It's up to the implementation of this trait to decide what to do with a message as long as it
/// returns the amount of weight consumed in the process of handling. Ignoring a message is a valid
/// strategy.
///
/// There are no guarantees on how much time it takes for the message sent by a candidate to end up
/// in the sink after the candidate was enacted. That typically depends on the UMP traffic, the sizes
/// of upward messages and the configuration of UMP.
///
/// It is possible that by the time the message is sank the origin parachain was offboarded. It is
/// up to the implementer to check that if it cares.
pub trait UmpSink {
/// Process an incoming upward message and return the amount of weight it consumed, or `None` if
/// it did not begin processing a message since it would otherwise exceed `max_weight`.
///
/// See the trait docs for more details.
fn process_upward_message(
origin: ParaId,
msg: &[u8],
max_weight: Weight,
) -> Result<Weight, (MessageId, Weight)>;
}
/// An implementation of a sink that just swallows the message without consuming any weight. Returns
/// `Some(0)` indicating that no messages existed for it to process.
impl UmpSink for () {
fn process_upward_message(
_: ParaId,
_: &[u8],
_: Weight,
) -> Result<Weight, (MessageId, Weight)> {
Ok(Weight::zero())
}
}
/// Simple type used to identify messages for the purpose of reporting events. Secure if and only
/// if the message content is unique.
pub type MessageId = [u8; 32];
/// Index used to identify overweight messages.
pub type OverweightIndex = u64;
/// A specific implementation of a `UmpSink` where messages are in the XCM format
/// and will be forwarded to the XCM Executor.
pub struct XcmSink<XcmExecutor, Config>(PhantomData<(XcmExecutor, Config)>);
/// Returns a [`MessageId`] for the given upward message payload.
fn upward_message_id(data: &[u8]) -> MessageId {
sp_io::hashing::blake2_256(data)
}
impl<XcmExecutor: xcm::latest::ExecuteXcm<C::RuntimeCall>, C: Config> UmpSink
for XcmSink<XcmExecutor, C>
{
fn process_upward_message(
origin: ParaId,
mut data: &[u8],
max_weight: Weight,
) -> Result<Weight, (MessageId, Weight)> {
use parity_scale_codec::DecodeLimit;
use xcm::{
latest::{Error as XcmError, Junction, Xcm},
VersionedXcm,
};
let id = upward_message_id(data);
let maybe_msg_and_weight = VersionedXcm::<C::RuntimeCall>::decode_all_with_depth_limit(
xcm::MAX_XCM_DECODE_DEPTH,
&mut data,
)
.map(|xcm| {
(
Xcm::<C::RuntimeCall>::try_from(xcm),
// NOTE: We are overestimating slightly here.
// The benchmark is timing this whole function with different message sizes and a NOOP extrinsic to
// measure the size-dependent weight. But as we use the weight funtion **in** the benchmarked funtion we
// are taking call and control-flow overhead into account twice.
<C as Config>::WeightInfo::process_upward_message(data.len() as u32),
)
});
match maybe_msg_and_weight {
Err(_) => {
Pallet::<C>::deposit_event(Event::InvalidFormat(id));
Ok(Weight::zero())
},
Ok((Err(()), weight_used)) => {
Pallet::<C>::deposit_event(Event::UnsupportedVersion(id));
Ok(weight_used)
},
Ok((Ok(xcm_message), weight_used)) => {
let xcm_junction = Junction::Parachain(origin.into());
let outcome =
XcmExecutor::execute_xcm(xcm_junction, xcm_message, max_weight.ref_time());
match outcome {
Outcome::Error(XcmError::WeightLimitReached(required)) =>
Err((id, Weight::from_ref_time(required))),
outcome => {
let outcome_weight = Weight::from_ref_time(outcome.weight_used());
Pallet::<C>::deposit_event(Event::ExecutedUpward(id, outcome));
Ok(weight_used.saturating_add(outcome_weight))
},
}
},
}
}
}
/// An error returned by [`check_upward_messages`] that indicates a violation of one of acceptance
/// criteria rules.
pub enum AcceptanceCheckErr {
MoreMessagesThanPermitted { sent: u32, permitted: u32 },
MessageSize { idx: u32, msg_size: u32, max_size: u32 },
CapacityExceeded { count: u32, limit: u32 },
TotalSizeExceeded { total_size: u32, limit: u32 },
}
impl fmt::Debug for AcceptanceCheckErr {
fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
match *self {
AcceptanceCheckErr::MoreMessagesThanPermitted { sent, permitted } => write!(
fmt,
"more upward messages than permitted by config ({} > {})",
sent, permitted,
),
AcceptanceCheckErr::MessageSize { idx, msg_size, max_size } => write!(
fmt,
"upward message idx {} larger than permitted by config ({} > {})",
idx, msg_size, max_size,
),
AcceptanceCheckErr::CapacityExceeded { count, limit } => write!(
fmt,
"the ump queue would have more items than permitted by config ({} > {})",
count, limit,
),
AcceptanceCheckErr::TotalSizeExceeded { total_size, limit } => write!(
fmt,
"the ump queue would have grown past the max size permitted by config ({} > {})",
total_size, limit,
),
}
}
}
/// Weight information of this pallet.
pub trait WeightInfo {
fn service_overweight() -> Weight;
fn process_upward_message(s: u32) -> Weight;
fn clean_ump_after_outgoing() -> Weight;
}
/// fallback implementation
pub struct TestWeightInfo;
impl WeightInfo for TestWeightInfo {
fn service_overweight() -> Weight {
Weight::MAX
}
fn process_upward_message(_msg_size: u32) -> Weight {
Weight::MAX
}
fn clean_ump_after_outgoing() -> Weight {
Weight::MAX
}
}
#[frame_support::pallet]
pub mod pallet {
use super::*;
#[pallet::pallet]
#[pallet::generate_store(pub(super) trait Store)]
#[pallet::without_storage_info]
pub struct Pallet<T>(_);
#[pallet::config]
pub trait Config: frame_system::Config + configuration::Config {
/// The aggregate event.
type RuntimeEvent: From<Event> + IsType<<Self as frame_system::Config>::RuntimeEvent>;
/// A place where all received upward messages are funneled.
type UmpSink: UmpSink;
/// The factor by which the weight limit it multiplied for the first UMP message to execute with.
///
/// An amount less than 100 keeps more available weight in the queue for messages after the first, and potentially
/// stalls the queue in doing so. More than 100 will provide additional weight for the first message only.
///
/// Generally you'll want this to be a bit more - 150 or 200 would be good values.
type FirstMessageFactorPercent: Get<u64>;
/// Origin which is allowed to execute overweight messages.
type ExecuteOverweightOrigin: EnsureOrigin<Self::RuntimeOrigin>;
/// Weight information for extrinsics in this pallet.
type WeightInfo: WeightInfo;
}
#[pallet::event]
#[pallet::generate_deposit(pub(super) fn deposit_event)]
pub enum Event {
/// Upward message is invalid XCM.
/// \[ id \]
InvalidFormat(MessageId),
/// Upward message is unsupported version of XCM.
/// \[ id \]
UnsupportedVersion(MessageId),
/// Upward message executed with the given outcome.
/// \[ id, outcome \]
ExecutedUpward(MessageId, Outcome),
/// The weight limit for handling upward messages was reached.
/// \[ id, remaining, required \]
WeightExhausted(MessageId, Weight, Weight),
/// Some upward messages have been received and will be processed.
/// \[ para, count, size \]
UpwardMessagesReceived(ParaId, u32, u32),
/// The weight budget was exceeded for an individual upward message.
///
/// This message can be later dispatched manually using `service_overweight` dispatchable
/// using the assigned `overweight_index`.
///
/// \[ para, id, overweight_index, required \]
OverweightEnqueued(ParaId, MessageId, OverweightIndex, Weight),
/// Upward message from the overweight queue was executed with the given actual weight
/// used.
///
/// \[ overweight_index, used \]
OverweightServiced(OverweightIndex, Weight),
}
#[pallet::error]
pub enum Error<T> {
/// The message index given is unknown.
UnknownMessageIndex,
/// The amount of weight given is possibly not enough for executing the message.
WeightOverLimit,
}
/// The messages waiting to be handled by the relay-chain originating from a certain parachain.
///
/// Note that some upward messages might have been already processed by the inclusion logic. E.g.
/// channel management messages.
///
/// The messages are processed in FIFO order.
#[pallet::storage]
pub type RelayDispatchQueues<T: Config> =
StorageMap<_, Twox64Concat, ParaId, Vec<UpwardMessage>, ValueQuery>;
/// Size of the dispatch queues. Caches sizes of the queues in `RelayDispatchQueue`.
///
/// First item in the tuple is the count of messages and second
/// is the total length (in bytes) of the message payloads.
///
/// Note that this is an auxiliary mapping: it's possible to tell the byte size and the number of
/// messages only looking at `RelayDispatchQueues`. This mapping is separate to avoid the cost of
/// loading the whole message queue if only the total size and count are required.
///
/// Invariant:
/// - The set of keys should exactly match the set of keys of `RelayDispatchQueues`.
// NOTE that this field is used by parachains via merkle storage proofs, therefore changing
// the format will require migration of parachains.
#[pallet::storage]
pub type RelayDispatchQueueSize<T: Config> =
StorageMap<_, Twox64Concat, ParaId, (u32, u32), ValueQuery>;
/// The ordered list of `ParaId`s that have a `RelayDispatchQueue` entry.
///
/// Invariant:
/// - The set of items from this vector should be exactly the set of the keys in
/// `RelayDispatchQueues` and `RelayDispatchQueueSize`.
#[pallet::storage]
pub type NeedsDispatch<T: Config> = StorageValue<_, Vec<ParaId>, ValueQuery>;
/// This is the para that gets will get dispatched first during the next upward dispatchable queue
/// execution round.
///
/// Invariant:
/// - If `Some(para)`, then `para` must be present in `NeedsDispatch`.
#[pallet::storage]
pub type NextDispatchRoundStartWith<T: Config> = StorageValue<_, ParaId>;
/// The messages that exceeded max individual message weight budget.
///
/// These messages stay there until manually dispatched.
#[pallet::storage]
pub type Overweight<T: Config> =
StorageMap<_, Twox64Concat, OverweightIndex, (ParaId, Vec<u8>), OptionQuery>;
/// The number of overweight messages ever recorded in `Overweight` (and thus the lowest free
/// index).
#[pallet::storage]
pub type OverweightCount<T: Config> = StorageValue<_, OverweightIndex, ValueQuery>;
#[pallet::call]
impl<T: Config> Pallet<T> {
/// Service a single overweight upward message.
///
/// - `origin`: Must pass `ExecuteOverweightOrigin`.
/// - `index`: The index of the overweight message to service.
/// - `weight_limit`: The amount of weight that message execution may take.
///
/// Errors:
/// - `UnknownMessageIndex`: Message of `index` is unknown.
/// - `WeightOverLimit`: Message execution may use greater than `weight_limit`.
///
/// Events:
/// - `OverweightServiced`: On success.
#[pallet::call_index(0)]
#[pallet::weight(weight_limit.saturating_add(<T as Config>::WeightInfo::service_overweight()))]
pub fn service_overweight(
origin: OriginFor<T>,
index: OverweightIndex,
weight_limit: Weight,
) -> DispatchResultWithPostInfo {
T::ExecuteOverweightOrigin::ensure_origin(origin)?;
let (sender, data) =
Overweight::<T>::get(index).ok_or(Error::<T>::UnknownMessageIndex)?;
let used = T::UmpSink::process_upward_message(sender, &data[..], weight_limit)
.map_err(|_| Error::<T>::WeightOverLimit)?;
Overweight::<T>::remove(index);
Self::deposit_event(Event::OverweightServiced(index, used));
Ok(Some(used.saturating_add(<T as Config>::WeightInfo::service_overweight())).into())
}
}
}
/// Routines related to the upward message passing.
impl<T: Config> Pallet<T> {
/// Block initialization logic, called by initializer.
pub(crate) fn initializer_initialize(_now: T::BlockNumber) -> Weight {
Weight::zero()
}
/// Block finalization logic, called by initializer.
pub(crate) fn initializer_finalize() {}
/// Called by the initializer to note that a new session has started.
pub(crate) fn initializer_on_new_session(
_notification: &initializer::SessionChangeNotification<T::BlockNumber>,
outgoing_paras: &[ParaId],
) -> Weight {
Self::perform_outgoing_para_cleanup(outgoing_paras)
}
/// Iterate over all paras that were noted for offboarding and remove all the data
/// associated with them.
fn perform_outgoing_para_cleanup(outgoing: &[ParaId]) -> Weight {
let mut weight: Weight = Weight::zero();
for outgoing_para in outgoing {
weight = weight.saturating_add(Self::clean_ump_after_outgoing(outgoing_para));
}
weight
}
/// Remove all relevant storage items for an outgoing parachain.
pub(crate) fn clean_ump_after_outgoing(outgoing_para: &ParaId) -> Weight {
<Self as Store>::RelayDispatchQueueSize::remove(outgoing_para);
<Self as Store>::RelayDispatchQueues::remove(outgoing_para);
// Remove the outgoing para from the `NeedsDispatch` list and from
// `NextDispatchRoundStartWith`.
//
// That's needed for maintaining invariant that `NextDispatchRoundStartWith` points to an
// existing item in `NeedsDispatch`.
<Self as Store>::NeedsDispatch::mutate(|v| {
if let Ok(i) = v.binary_search(outgoing_para) {
v.remove(i);
}
});
<Self as Store>::NextDispatchRoundStartWith::mutate(|v| {
*v = v.filter(|p| p == outgoing_para)
});
<T as Config>::WeightInfo::clean_ump_after_outgoing()
}
/// Check that all the upward messages sent by a candidate pass the acceptance criteria. Returns
/// false, if any of the messages doesn't pass.
pub(crate) fn check_upward_messages(
config: &HostConfiguration<T::BlockNumber>,
para: ParaId,
upward_messages: &[UpwardMessage],
) -> Result<(), AcceptanceCheckErr> {
if upward_messages.len() as u32 > config.max_upward_message_num_per_candidate {
return Err(AcceptanceCheckErr::MoreMessagesThanPermitted {
sent: upward_messages.len() as u32,
permitted: config.max_upward_message_num_per_candidate,
})
}
let (mut para_queue_count, mut para_queue_size) =
<Self as Store>::RelayDispatchQueueSize::get(¶);
for (idx, msg) in upward_messages.into_iter().enumerate() {
let msg_size = msg.len() as u32;
if msg_size > config.max_upward_message_size {
return Err(AcceptanceCheckErr::MessageSize {
idx: idx as u32,
msg_size,
max_size: config.max_upward_message_size,
})
}
para_queue_count += 1;
para_queue_size += msg_size;
}
// make sure that the queue is not overfilled.
// we do it here only once since returning false invalidates the whole relay-chain block.
if para_queue_count > config.max_upward_queue_count {
return Err(AcceptanceCheckErr::CapacityExceeded {
count: para_queue_count,
limit: config.max_upward_queue_count,
})
}
if para_queue_size > config.max_upward_queue_size {
return Err(AcceptanceCheckErr::TotalSizeExceeded {
total_size: para_queue_size,
limit: config.max_upward_queue_size,
})
}
Ok(())
}
/// Enqueues `upward_messages` from a `para`'s accepted candidate block.
pub(crate) fn receive_upward_messages(
para: ParaId,
upward_messages: Vec<UpwardMessage>,
) -> Weight {
let mut weight = Weight::zero();
if !upward_messages.is_empty() {
let (extra_count, extra_size) = upward_messages
.iter()
.fold((0, 0), |(cnt, size), d| (cnt + 1, size + d.len() as u32));
<Self as Store>::RelayDispatchQueues::mutate(¶, |v| {
v.extend(upward_messages.into_iter())
});
<Self as Store>::RelayDispatchQueueSize::mutate(
¶,
|(ref mut cnt, ref mut size)| {
*cnt += extra_count;
*size += extra_size;
},
);
<Self as Store>::NeedsDispatch::mutate(|v| {
if let Err(i) = v.binary_search(¶) {
v.insert(i, para);
}
});
// NOTE: The actual computation is not accounted for. It should be benchmarked.
weight += T::DbWeight::get().reads_writes(3, 3);
Self::deposit_event(Event::UpwardMessagesReceived(para, extra_count, extra_size));
}
weight
}
/// Devote some time into dispatching pending upward messages.
pub(crate) fn process_pending_upward_messages() -> Weight {
let mut weight_used = Weight::zero();
let config = <configuration::Pallet<T>>::config();
let mut cursor = NeedsDispatchCursor::new::<T>();
let mut queue_cache = QueueCache::new();
while let Some(dispatchee) = cursor.peek() {
if weight_used.any_gte(config.ump_service_total_weight) {
// Then check whether we've reached or overshoot the
// preferred weight for the dispatching stage.
//
// if so - bail.
break
}
let max_weight = if weight_used == Weight::zero() {
// we increase the amount of weight that we're allowed to use on the first message to try to prevent
// the possibility of blockage of the queue.
config
.ump_service_total_weight
.saturating_mul(T::FirstMessageFactorPercent::get()) /
100
} else {
config.ump_service_total_weight - weight_used
};
// attempt to process the next message from the queue of the dispatchee; if not beyond
// our remaining weight limit, then consume it.
let maybe_next = queue_cache.peek_front::<T>(dispatchee);
if let Some(upward_message) = maybe_next {
match T::UmpSink::process_upward_message(dispatchee, upward_message, max_weight) {
Ok(used) => {
weight_used += used;
let _ = queue_cache.consume_front::<T>(dispatchee);
},
Err((id, required)) => {
if required.any_gt(config.ump_max_individual_weight) {
// overweight - add to overweight queue and continue with message
// execution consuming the message.
let upward_message = queue_cache.consume_front::<T>(dispatchee).expect(
"`consume_front` should return the same msg as `peek_front`;\
if we get into this branch then `peek_front` returned `Some`;\
thus `upward_message` cannot be `None`; qed",
);
let index = Self::stash_overweight(dispatchee, upward_message);
Self::deposit_event(Event::OverweightEnqueued(
dispatchee, id, index, required,
));
} else {
// we process messages in order and don't drop them if we run out of weight,
// so need to break here without calling `consume_front`.
Self::deposit_event(Event::WeightExhausted(id, max_weight, required));
break
}
},
}
}
if queue_cache.is_empty::<T>(dispatchee) {
// the queue is empty now - this para doesn't need attention anymore.
cursor.remove();
} else {
cursor.advance();
}
}
cursor.flush::<T>();
queue_cache.flush::<T>();
weight_used
}
/// Puts a given upward message into the list of overweight messages allowing it to be executed
/// later.
fn stash_overweight(sender: ParaId, upward_message: Vec<u8>) -> OverweightIndex {
let index = <Self as Store>::OverweightCount::mutate(|count| {
let index = *count;
*count += 1;
index
});
<Self as Store>::Overweight::insert(index, (sender, upward_message));
index
}
}
/// To avoid constant fetching, deserializing and serialization the queues are cached.
///
/// After an item dequeued from a queue for the first time, the queue is stored in this struct
/// rather than being serialized and persisted.
///
/// This implementation works best when:
///
/// 1. when the queues are shallow
/// 2. the dispatcher makes more than one cycle
///
/// if the queues are deep and there are many we would load and keep the queues for a long time,
/// thus increasing the peak memory consumption of the wasm runtime. Under such conditions persisting
/// queues might play better since it's unlikely that they are going to be requested once more.
///
/// On the other hand, the situation when deep queues exist and it takes more than one dispatcher
/// cycle to traverse the queues is already sub-optimal and better be avoided.
///
/// This struct is not supposed to be dropped but rather to be consumed by [`flush`].
struct QueueCache(BTreeMap<ParaId, QueueCacheEntry>);
struct QueueCacheEntry {
queue: Vec<UpwardMessage>,
total_size: u32,
consumed_count: usize,
consumed_size: usize,
}
impl QueueCache {
fn new() -> Self {
Self(BTreeMap::new())
}
fn ensure_cached<T: Config>(&mut self, para: ParaId) -> &mut QueueCacheEntry {
self.0.entry(para).or_insert_with(|| {
let queue = RelayDispatchQueues::<T>::get(¶);
let (_, total_size) = RelayDispatchQueueSize::<T>::get(¶);
QueueCacheEntry { queue, total_size, consumed_count: 0, consumed_size: 0 }
})
}
/// Returns the message at the front of `para`'s queue, or `None` if the queue is empty.
///
/// Does not mutate the queue.
fn peek_front<T: Config>(&mut self, para: ParaId) -> Option<&UpwardMessage> {
let entry = self.ensure_cached::<T>(para);
entry.queue.get(entry.consumed_count)
}
/// Attempts to remove one message from the front of `para`'s queue. If the queue is empty, then
/// does nothing.
fn consume_front<T: Config>(&mut self, para: ParaId) -> Option<UpwardMessage> {
let cache_entry = self.ensure_cached::<T>(para);
match cache_entry.queue.get_mut(cache_entry.consumed_count) {
Some(msg) => {
cache_entry.consumed_count += 1;
cache_entry.consumed_size += msg.len();
Some(mem::take(msg))
},
None => None,
}
}
/// Returns if the queue for the given para is empty.
///
/// That is, if this returns `true` then the next call to [`peek_front`] will return `None`.
///
/// Does not mutate the queue.
fn is_empty<T: Config>(&mut self, para: ParaId) -> bool {
let cache_entry = self.ensure_cached::<T>(para);
cache_entry.consumed_count >= cache_entry.queue.len()
}
/// Flushes the updated queues into the storage.
fn flush<T: Config>(self) {
// NOTE we use an explicit method here instead of Drop impl because it has unwanted semantics
// within runtime. It is dangerous to use because of double-panics and flushing on a panic
// is not necessary as well.
for (para, entry) in self.0 {
if entry.consumed_count >= entry.queue.len() {
// remove the entries altogether.
RelayDispatchQueues::<T>::remove(¶);
RelayDispatchQueueSize::<T>::remove(¶);
} else if entry.consumed_count > 0 {
RelayDispatchQueues::<T>::insert(¶, &entry.queue[entry.consumed_count..]);
let count = (entry.queue.len() - entry.consumed_count) as u32;
let size = entry.total_size.saturating_sub(entry.consumed_size as u32);
RelayDispatchQueueSize::<T>::insert(¶, (count, size));
}
}
}
}
/// A cursor that iterates over all entries in `NeedsDispatch`.
///
/// This cursor will start with the para indicated by `NextDispatchRoundStartWith` storage entry.
/// This cursor is cyclic meaning that after reaching the end it will jump to the beginning. Unlike
/// an iterator, this cursor allows removing items during the iteration.
///
/// Each iteration cycle *must be* concluded with a call to either `advance` or `remove`.
///
/// This struct is not supposed to be dropped but rather to be consumed by [`flush`].
#[derive(Debug)]
struct NeedsDispatchCursor {
needs_dispatch: Vec<ParaId>,
index: usize,
}
impl NeedsDispatchCursor {
fn new<T: Config>() -> Self {
let needs_dispatch: Vec<ParaId> = <Pallet<T> as Store>::NeedsDispatch::get();
let start_with = <Pallet<T> as Store>::NextDispatchRoundStartWith::get();
let initial_index = match start_with {
Some(para) => match needs_dispatch.binary_search(¶) {
Ok(found_index) => found_index,
Err(_supposed_index) => {
// well that's weird because we maintain an invariant that
// `NextDispatchRoundStartWith` must point into one of the items in
// `NeedsDispatch`.
//
// let's select 0 as the starting index as a safe bet.
debug_assert!(false);
0
},
},
None => 0,
};
Self { needs_dispatch, index: initial_index }
}
/// Returns the item the cursor points to.
fn peek(&self) -> Option<ParaId> {
self.needs_dispatch.get(self.index).cloned()
}
/// Moves the cursor to the next item.
fn advance(&mut self) {
if self.needs_dispatch.is_empty() {
return
}
self.index = (self.index + 1) % self.needs_dispatch.len();
}
/// Removes the item under the cursor.
fn remove(&mut self) {
if self.needs_dispatch.is_empty() {
return
}
let _ = self.needs_dispatch.remove(self.index);
// we might've removed the last element and that doesn't necessarily mean that `needs_dispatch`
// became empty. Reposition the cursor in this case to the beginning.
if self.needs_dispatch.get(self.index).is_none() {
self.index = 0;
}
}
/// Flushes the dispatcher state into the persistent storage.
fn flush<T: Config>(self) {
let next_one = self.peek();
<Pallet<T> as Store>::NextDispatchRoundStartWith::set(next_one);
<Pallet<T> as Store>::NeedsDispatch::put(self.needs_dispatch);
}
}