1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
//!
//! This module contains the single trait [`IntegerSquareRoot`] and implements it for primitive
//! integer types.
//!
//! # Example
//!
//! ```
//! extern crate integer_sqrt;
//! // `use` trait to get functionality
//! use integer_sqrt::IntegerSquareRoot;
//!
//! # fn main() {
//! assert_eq!(4u8.integer_sqrt(), 2);
//! # }
//! ```
//!
//! [`IntegerSquareRoot`]: ./trait.IntegerSquareRoot.html
#![no_std]
/// A trait implementing integer square root.
pub trait IntegerSquareRoot {
/// Find the integer square root.
///
/// See [Integer_square_root on wikipedia][wiki_article] for more information (and also the
/// source of this algorithm)
///
/// # Panics
///
/// For negative numbers (`i` family) this function will panic on negative input
///
/// [wiki_article]: https://en.wikipedia.org/wiki/Integer_square_root
fn integer_sqrt(&self) -> Self
where
Self: Sized,
{
self.integer_sqrt_checked()
.expect("cannot calculate square root of negative number")
}
/// Find the integer square root, returning `None` if the number is negative (this can never
/// happen for unsigned types).
fn integer_sqrt_checked(&self) -> Option<Self>
where
Self: Sized;
}
impl<T: num_traits::PrimInt> IntegerSquareRoot for T {
fn integer_sqrt_checked(&self) -> Option<Self> {
use core::cmp::Ordering;
match self.cmp(&T::zero()) {
// Hopefully this will be stripped for unsigned numbers (impossible condition)
Ordering::Less => return None,
Ordering::Equal => return Some(T::zero()),
_ => {}
}
// Compute bit, the largest power of 4 <= n
let max_shift: u32 = T::zero().leading_zeros() - 1;
let shift: u32 = (max_shift - self.leading_zeros()) & !1;
let mut bit = T::one().unsigned_shl(shift);
// Algorithm based on the implementation in:
// https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Binary_numeral_system_(base_2)
// Note that result/bit are logically unsigned (even if T is signed).
let mut n = *self;
let mut result = T::zero();
while bit != T::zero() {
if n >= (result + bit) {
n = n - (result + bit);
result = result.unsigned_shr(1) + bit;
} else {
result = result.unsigned_shr(1);
}
bit = bit.unsigned_shr(2);
}
Some(result)
}
}
#[cfg(test)]
mod tests {
use super::IntegerSquareRoot;
use core::{i8, u16, u64, u8};
macro_rules! gen_tests {
($($type:ty => $fn_name:ident),*) => {
$(
#[test]
fn $fn_name() {
let newton_raphson = |val, square| 0.5 * (val + (square / val as $type) as f64);
let max_sqrt = {
let square = <$type>::max_value();
let mut value = (square as f64).sqrt();
for _ in 0..2 {
value = newton_raphson(value, square);
}
let mut value = value as $type;
// make sure we are below the max value (this is how integer square
// root works)
if value.checked_mul(value).is_none() {
value -= 1;
}
value
};
let tests: [($type, $type); 9] = [
(0, 0),
(1, 1),
(2, 1),
(3, 1),
(4, 2),
(81, 9),
(80, 8),
(<$type>::max_value(), max_sqrt),
(<$type>::max_value() - 1, max_sqrt),
];
for &(in_, out) in tests.iter() {
assert_eq!(in_.integer_sqrt(), out, "in {}", in_);
}
}
)*
};
}
gen_tests! {
i8 => i8_test,
u8 => u8_test,
i16 => i16_test,
u16 => u16_test,
i32 => i32_test,
u32 => u32_test,
i64 => i64_test,
u64 => u64_test,
u128 => u128_test,
isize => isize_test,
usize => usize_test
}
#[test]
fn i128_test() {
let tests: [(i128, i128); 8] = [
(0, 0),
(1, 1),
(2, 1),
(3, 1),
(4, 2),
(81, 9),
(80, 8),
(i128::max_value(), 13_043_817_825_332_782_212),
];
for &(in_, out) in tests.iter() {
assert_eq!(in_.integer_sqrt(), out, "in {}", in_);
}
}
}