1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
use approx::{AbsDiffEq, RelativeEq, UlpsEq};
use num_complex::Complex;
use std::fmt;

use crate::base::{Matrix2, Matrix3, Normed, Unit, Vector1, Vector2};
use crate::geometry::{Point2, Rotation2};
use crate::Scalar;
use simba::scalar::RealField;
use simba::simd::SimdRealField;
use std::cmp::{Eq, PartialEq};

/// A 2D rotation represented as a complex number with magnitude 1.
///
/// All the methods specific [`UnitComplex`](crate::UnitComplex) are listed here. You may also
/// read the documentation of the [`Complex`](crate::Complex) type which
/// is used internally and accessible with `unit_complex.complex()`.
///
/// # Construction
/// * [Identity <span style="float:right;">`identity`</span>](#identity)
/// * [From a 2D rotation angle <span style="float:right;">`new`, `from_cos_sin_unchecked`…</span>](#construction-from-a-2d-rotation-angle)
/// * [From an existing 2D matrix or complex number <span style="float:right;">`from_matrix`, `rotation_to`, `powf`…</span>](#construction-from-an-existing-2d-matrix-or-complex-number)
/// * [From two vectors <span style="float:right;">`rotation_between`, `scaled_rotation_between_axis`…</span>](#construction-from-two-vectors)
///
/// # Transformation and composition
/// * [Angle extraction <span style="float:right;">`angle`, `angle_to`…</span>](#angle-extraction)
/// * [Transformation of a vector or a point <span style="float:right;">`transform_vector`, `inverse_transform_point`…</span>](#transformation-of-a-vector-or-a-point)
/// * [Conjugation and inversion <span style="float:right;">`conjugate`, `inverse_mut`…</span>](#conjugation-and-inversion)
/// * [Interpolation <span style="float:right;">`slerp`…</span>](#interpolation)
///
/// # Conversion
/// * [Conversion to a matrix <span style="float:right;">`to_rotation_matrix`, `to_homogeneous`…</span>](#conversion-to-a-matrix)
pub type UnitComplex<T> = Unit<Complex<T>>;

impl<T: Scalar + PartialEq> PartialEq for UnitComplex<T> {
    #[inline]
    fn eq(&self, rhs: &Self) -> bool {
        (**self).eq(&**rhs)
    }
}

impl<T: Scalar + Eq> Eq for UnitComplex<T> {}

impl<T: SimdRealField> Normed for Complex<T> {
    type Norm = T::SimdRealField;

    #[inline]
    fn norm(&self) -> T::SimdRealField {
        // We don't use `.norm_sqr()` because it requires
        // some very strong Num trait requirements.
        (self.re * self.re + self.im * self.im).simd_sqrt()
    }

    #[inline]
    fn norm_squared(&self) -> T::SimdRealField {
        // We don't use `.norm_sqr()` because it requires
        // some very strong Num trait requirements.
        self.re * self.re + self.im * self.im
    }

    #[inline]
    fn scale_mut(&mut self, n: Self::Norm) {
        self.re *= n;
        self.im *= n;
    }

    #[inline]
    fn unscale_mut(&mut self, n: Self::Norm) {
        self.re /= n;
        self.im /= n;
    }
}

/// # Angle extraction
impl<T: SimdRealField> UnitComplex<T>
where
    T::Element: SimdRealField,
{
    /// The rotation angle in `]-pi; pi]` of this unit complex number.
    ///
    /// # Example
    /// ```
    /// # use nalgebra::UnitComplex;
    /// let rot = UnitComplex::new(1.78);
    /// assert_eq!(rot.angle(), 1.78);
    /// ```
    #[inline]
    pub fn angle(&self) -> T {
        self.im.simd_atan2(self.re)
    }

    /// The sine of the rotation angle.
    ///
    /// # Example
    /// ```
    /// # use nalgebra::UnitComplex;
    /// let angle = 1.78f32;
    /// let rot = UnitComplex::new(angle);
    /// assert_eq!(rot.sin_angle(), angle.sin());
    /// ```
    #[inline]
    pub fn sin_angle(&self) -> T {
        self.im
    }

    /// The cosine of the rotation angle.
    ///
    /// # Example
    /// ```
    /// # use nalgebra::UnitComplex;
    /// let angle = 1.78f32;
    /// let rot = UnitComplex::new(angle);
    /// assert_eq!(rot.cos_angle(),angle.cos());
    /// ```
    #[inline]
    pub fn cos_angle(&self) -> T {
        self.re
    }

    /// The rotation angle returned as a 1-dimensional vector.
    ///
    /// This is generally used in the context of generic programming. Using
    /// the `.angle()` method instead is more common.
    #[inline]
    pub fn scaled_axis(&self) -> Vector1<T> {
        Vector1::new(self.angle())
    }

    /// The rotation axis and angle in ]0, pi] of this complex number.
    ///
    /// This is generally used in the context of generic programming. Using
    /// the `.angle()` method instead is more common.
    /// Returns `None` if the angle is zero.
    #[inline]
    pub fn axis_angle(&self) -> Option<(Unit<Vector1<T>>, T)>
    where
        T: RealField,
    {
        let ang = self.angle();

        if ang.is_zero() {
            None
        } else if ang.is_sign_negative() {
            Some((Unit::new_unchecked(Vector1::x()), -ang))
        } else {
            Some((Unit::new_unchecked(-Vector1::<T>::x()), ang))
        }
    }

    /// The rotation angle needed to make `self` and `other` coincide.
    ///
    /// # Example
    /// ```
    /// # #[macro_use] extern crate approx;
    /// # use nalgebra::UnitComplex;
    /// let rot1 = UnitComplex::new(0.1);
    /// let rot2 = UnitComplex::new(1.7);
    /// assert_relative_eq!(rot1.angle_to(&rot2), 1.6);
    /// ```
    #[inline]
    pub fn angle_to(&self, other: &Self) -> T {
        let delta = self.rotation_to(other);
        delta.angle()
    }
}

/// # Conjugation and inversion
impl<T: SimdRealField> UnitComplex<T>
where
    T::Element: SimdRealField,
{
    /// Compute the conjugate of this unit complex number.
    ///
    /// # Example
    /// ```
    /// # use nalgebra::UnitComplex;
    /// let rot = UnitComplex::new(1.78);
    /// let conj = rot.conjugate();
    /// assert_eq!(rot.complex().im, -conj.complex().im);
    /// assert_eq!(rot.complex().re, conj.complex().re);
    /// ```
    #[inline]
    #[must_use = "Did you mean to use conjugate_mut()?"]
    pub fn conjugate(&self) -> Self {
        Self::new_unchecked(self.conj())
    }

    /// Inverts this complex number if it is not zero.
    ///
    /// # Example
    /// ```
    /// # #[macro_use] extern crate approx;
    /// # use nalgebra::UnitComplex;
    /// let rot = UnitComplex::new(1.2);
    /// let inv = rot.inverse();
    /// assert_relative_eq!(rot * inv, UnitComplex::identity(), epsilon = 1.0e-6);
    /// assert_relative_eq!(inv * rot, UnitComplex::identity(), epsilon = 1.0e-6);
    /// ```
    #[inline]
    #[must_use = "Did you mean to use inverse_mut()?"]
    pub fn inverse(&self) -> Self {
        self.conjugate()
    }

    /// Compute in-place the conjugate of this unit complex number.
    ///
    /// # Example
    /// ```
    /// # #[macro_use] extern crate approx;
    /// # use nalgebra::UnitComplex;
    /// let angle = 1.7;
    /// let rot = UnitComplex::new(angle);
    /// let mut conj = UnitComplex::new(angle);
    /// conj.conjugate_mut();
    /// assert_eq!(rot.complex().im, -conj.complex().im);
    /// assert_eq!(rot.complex().re, conj.complex().re);
    /// ```
    #[inline]
    pub fn conjugate_mut(&mut self) {
        let me = self.as_mut_unchecked();
        me.im = -me.im;
    }

    /// Inverts in-place this unit complex number.
    ///
    /// # Example
    /// ```
    /// # #[macro_use] extern crate approx;
    /// # use nalgebra::UnitComplex;
    /// let angle = 1.7;
    /// let mut rot = UnitComplex::new(angle);
    /// rot.inverse_mut();
    /// assert_relative_eq!(rot * UnitComplex::new(angle), UnitComplex::identity());
    /// assert_relative_eq!(UnitComplex::new(angle) * rot, UnitComplex::identity());
    /// ```
    #[inline]
    pub fn inverse_mut(&mut self) {
        self.conjugate_mut()
    }
}

/// # Conversion to a matrix
impl<T: SimdRealField> UnitComplex<T>
where
    T::Element: SimdRealField,
{
    /// Builds the rotation matrix corresponding to this unit complex number.
    ///
    /// # Example
    /// ```
    /// # use nalgebra::{UnitComplex, Rotation2};
    /// # use std::f32;
    /// let rot = UnitComplex::new(f32::consts::FRAC_PI_6);
    /// let expected = Rotation2::new(f32::consts::FRAC_PI_6);
    /// assert_eq!(rot.to_rotation_matrix(), expected);
    /// ```
    #[inline]
    pub fn to_rotation_matrix(&self) -> Rotation2<T> {
        let r = self.re;
        let i = self.im;

        Rotation2::from_matrix_unchecked(Matrix2::new(r, -i, i, r))
    }

    /// Converts this unit complex number into its equivalent homogeneous transformation matrix.
    ///
    /// # Example
    /// ```
    /// # use nalgebra::{UnitComplex, Matrix3};
    /// # use std::f32;
    /// let rot = UnitComplex::new(f32::consts::FRAC_PI_6);
    /// let expected = Matrix3::new(0.8660254, -0.5,      0.0,
    ///                             0.5,       0.8660254, 0.0,
    ///                             0.0,       0.0,       1.0);
    /// assert_eq!(rot.to_homogeneous(), expected);
    /// ```
    #[inline]
    pub fn to_homogeneous(&self) -> Matrix3<T> {
        self.to_rotation_matrix().to_homogeneous()
    }
}

/// # Transformation of a vector or a point
impl<T: SimdRealField> UnitComplex<T>
where
    T::Element: SimdRealField,
{
    /// Rotate the given point by this unit complex number.
    ///
    /// This is the same as the multiplication `self * pt`.
    ///
    /// # Example
    /// ```
    /// # #[macro_use] extern crate approx;
    /// # use nalgebra::{UnitComplex, Point2};
    /// # use std::f32;
    /// let rot = UnitComplex::new(f32::consts::FRAC_PI_2);
    /// let transformed_point = rot.transform_point(&Point2::new(1.0, 2.0));
    /// assert_relative_eq!(transformed_point, Point2::new(-2.0, 1.0), epsilon = 1.0e-6);
    /// ```
    #[inline]
    pub fn transform_point(&self, pt: &Point2<T>) -> Point2<T> {
        self * pt
    }

    /// Rotate the given vector by this unit complex number.
    ///
    /// This is the same as the multiplication `self * v`.
    ///
    /// # Example
    /// ```
    /// # #[macro_use] extern crate approx;
    /// # use nalgebra::{UnitComplex, Vector2};
    /// # use std::f32;
    /// let rot = UnitComplex::new(f32::consts::FRAC_PI_2);
    /// let transformed_vector = rot.transform_vector(&Vector2::new(1.0, 2.0));
    /// assert_relative_eq!(transformed_vector, Vector2::new(-2.0, 1.0), epsilon = 1.0e-6);
    /// ```
    #[inline]
    pub fn transform_vector(&self, v: &Vector2<T>) -> Vector2<T> {
        self * v
    }

    /// Rotate the given point by the inverse of this unit complex number.
    ///
    /// # Example
    /// ```
    /// # #[macro_use] extern crate approx;
    /// # use nalgebra::{UnitComplex, Point2};
    /// # use std::f32;
    /// let rot = UnitComplex::new(f32::consts::FRAC_PI_2);
    /// let transformed_point = rot.inverse_transform_point(&Point2::new(1.0, 2.0));
    /// assert_relative_eq!(transformed_point, Point2::new(2.0, -1.0), epsilon = 1.0e-6);
    /// ```
    #[inline]
    pub fn inverse_transform_point(&self, pt: &Point2<T>) -> Point2<T> {
        // TODO: would it be useful performancewise not to call inverse explicitly (i-e. implement
        // the inverse transformation explicitly here) ?
        self.inverse() * pt
    }

    /// Rotate the given vector by the inverse of this unit complex number.
    ///
    /// # Example
    /// ```
    /// # #[macro_use] extern crate approx;
    /// # use nalgebra::{UnitComplex, Vector2};
    /// # use std::f32;
    /// let rot = UnitComplex::new(f32::consts::FRAC_PI_2);
    /// let transformed_vector = rot.inverse_transform_vector(&Vector2::new(1.0, 2.0));
    /// assert_relative_eq!(transformed_vector, Vector2::new(2.0, -1.0), epsilon = 1.0e-6);
    /// ```
    #[inline]
    pub fn inverse_transform_vector(&self, v: &Vector2<T>) -> Vector2<T> {
        self.inverse() * v
    }

    /// Rotate the given vector by the inverse of this unit complex number.
    ///
    /// # Example
    /// ```
    /// # #[macro_use] extern crate approx;
    /// # use nalgebra::{UnitComplex, Vector2};
    /// # use std::f32;
    /// let rot = UnitComplex::new(f32::consts::FRAC_PI_2);
    /// let transformed_vector = rot.inverse_transform_unit_vector(&Vector2::x_axis());
    /// assert_relative_eq!(transformed_vector, -Vector2::y_axis(), epsilon = 1.0e-6);
    /// ```
    #[inline]
    pub fn inverse_transform_unit_vector(&self, v: &Unit<Vector2<T>>) -> Unit<Vector2<T>> {
        self.inverse() * v
    }
}

/// # Interpolation
impl<T: SimdRealField> UnitComplex<T>
where
    T::Element: SimdRealField,
{
    /// Spherical linear interpolation between two rotations represented as unit complex numbers.
    ///
    /// # Examples:
    ///
    /// ```
    /// # #[macro_use] extern crate approx;
    /// # use nalgebra::geometry::UnitComplex;
    ///
    /// let rot1 = UnitComplex::new(std::f32::consts::FRAC_PI_4);
    /// let rot2 = UnitComplex::new(-std::f32::consts::PI);
    ///
    /// let rot = rot1.slerp(&rot2, 1.0 / 3.0);
    ///
    /// assert_relative_eq!(rot.angle(), std::f32::consts::FRAC_PI_2);
    /// ```
    #[inline]
    pub fn slerp(&self, other: &Self, t: T) -> Self {
        Self::new(self.angle() * (T::one() - t) + other.angle() * t)
    }
}

impl<T: RealField + fmt::Display> fmt::Display for UnitComplex<T> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "UnitComplex angle: {}", self.angle())
    }
}

impl<T: RealField> AbsDiffEq for UnitComplex<T> {
    type Epsilon = T;

    #[inline]
    fn default_epsilon() -> Self::Epsilon {
        T::default_epsilon()
    }

    #[inline]
    fn abs_diff_eq(&self, other: &Self, epsilon: Self::Epsilon) -> bool {
        self.re.abs_diff_eq(&other.re, epsilon) && self.im.abs_diff_eq(&other.im, epsilon)
    }
}

impl<T: RealField> RelativeEq for UnitComplex<T> {
    #[inline]
    fn default_max_relative() -> Self::Epsilon {
        T::default_max_relative()
    }

    #[inline]
    fn relative_eq(
        &self,
        other: &Self,
        epsilon: Self::Epsilon,
        max_relative: Self::Epsilon,
    ) -> bool {
        self.re.relative_eq(&other.re, epsilon, max_relative)
            && self.im.relative_eq(&other.im, epsilon, max_relative)
    }
}

impl<T: RealField> UlpsEq for UnitComplex<T> {
    #[inline]
    fn default_max_ulps() -> u32 {
        T::default_max_ulps()
    }

    #[inline]
    fn ulps_eq(&self, other: &Self, epsilon: Self::Epsilon, max_ulps: u32) -> bool {
        self.re.ulps_eq(&other.re, epsilon, max_ulps)
            && self.im.ulps_eq(&other.im, epsilon, max_ulps)
    }
}